
Warming Up Cold-Start CTR Prediction
by Learning Item-Specific Feature Interactions

Yaqing Wang

Baidu Inc.

Baidu Research

Beijing, China

wangyaqing01@baidu.com

Hongming Piao

City University of Hong Kong

Department of Computer Science

Hong Kong SAR, China

hpiao6-c@my.cityu.edu.hk

Daxiang Dong

Baidu Inc.

Baidu AI Cloud

Beijing, China

dongdaxiang@baidu.com

Quanming Yao

Tsinghua University

Department of Electronic Engineering

Beijing, China

qyaoaa@tsinghua.edu.cn

Jingbo Zhou

Baidu Inc.

Baidu Research

Beijing, China

zhoujingbo@baidu.com

ABSTRACT
In recommendation systems, new items are continuously intro-

duced, initially lacking interaction records but gradually accumu-

lating them over time. Accurately predicting the click-through rate

(CTR) for these items is crucial for enhancing both revenue and user

experience. While existing methods focus on enhancing item ID

embeddings for new items within general CTR models, they tend to

adopt a global feature interaction approach, often overshadowing

new items with sparse data by those with abundant interactions.

Addressing this, our work introduces EmerG, a novel approach

that warms up cold-start CTR prediction by learning item-specific

feature interaction patterns. EmerG utilizes hypernetworks to gen-

erate an item-specific feature graph based on item characteristics,

which is then processed by a Graph Neural Network (GNN). This

GNN is specially tailored to provably capture feature interactions at

any order through a customized message passing mechanism. We

further design a meta learning strategy that optimizes parameters

of hypernetworks and GNN across various item CTR prediction

tasks, while only adjusting a minimal set of item-specific parame-

ters within each task. This strategy effectively reduces the risk of

overfitting when dealing with limited data. Extensive experiments

on benchmark datasets validate that EmerG consistently performs

the best given no, a few and sufficient instances of new items.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Supervised learning; Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3671784

KEYWORDS
Cold-Start Recommendation, Warm Up, Click-Through Rate Pre-

diction, Few-Shot Learning, Hypernetworks, New Items

ACM Reference Format:
Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo

Zhou. 2024. Warming Up Cold-Start CTR Prediction by Learning Item-

Specific Feature Interactions. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’24), August 25–
29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3637528.3671784

1 INTRODUCTION
The cold-start problem presents a significant challenge in recom-

mender systems [25], particularly evident as new items transition

from having no user interactions (termed as cold-start phase) to

accumulating a few initial clicks (termed as warm-up phase) in the

industry landscape. Deep learning models, renowned for their capa-

bility to capture complex feature interactions, have shown promise

in improving click-through rate (CTR) predictions, a critical met-

ric for assessing the likelihood of user engagement with various

items (e.g., movies, commodities, music) [1, 5, 9, 36]. However, these

models typically rely on extensive datasets to achieve optimal per-

formance, a requirement that poses a limitation in cold-start and

warm-up phases. With their substantial parameter size, these mod-

els struggle to adapt efficiently to these phases characterized by

limited interaction records, thereby exacerbating the challenge of

making accurate CTR predictions and updating models without

incurring significant costs.

Recent studies have focused on enhancing the initialization of

item ID embeddings as a strategy to mitigate the item cold-start

problem in recommender systems, which allows subsequent up-

dates through gradient descent as interaction records become avail-

able in the warm-up phase [23, 24, 42, 45]. Then, they leverage gen-

eral CTR backbones for further processing. However, they overlook

a crucial aspect: the distinctiveness of feature interaction patterns

across different users and items. This oversight limits the ability of

these models to fully capture the nuanced dynamics of user-item in-

teractions, potentially impacting the accuracy and effectiveness of

CTR predictions in scenarios where personalized recommendations

are crucial. For example, comparing high-priced luxury items with

https://doi.org/10.1145/3637528.3671784
https://doi.org/10.1145/3637528.3671784
https://doi.org/10.1145/3637528.3671784

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

low-priced daily necessities reveals distinct interaction patterns.

For high-priced luxury items, the interaction between the item’s

price and the user’s income level is pivotal. Specifically, the second-

order feature interaction <price, income> can be a determining

factor in the user’s willingness to purchase such items. As for low-

priced daily necessities, the impact of the user’s income level on

purchasing decisions diminishes. In these instances, other feature

interactions, such as those between the user’s age and the item’s

category, become relatively more important. This variation under-

scores the necessity of modeling item-specific feature interaction

patterns. While existing works all learn a global feature interaction

pattern between users and items, which overwhelms new items

with a limited number of interaction records by old items with

abundant interaction records.

Recognizing the crucial role of feature interactions, we introduce

EmerG to address CTR prediction of newly emerging items with

incremental interaction data (from no interaction records to few

and then abundant records) through the learning of item-specific

feature graphs. Our contributions can be summarized as follows:

• We propose a unique method that emphasizes item-specific fea-

ture interactions, addressing the challenge of new item CTR

prediction by reducing the overshadowing effect of older items

with extensive data. Utilizing hypernetworks, we construct item-

specific feature graphs with nodes as features and edges as their

interactions, capturing complex interaction patterns unique to

each item. We use a graph neural network (GNN) with a cus-

tomized message passing process designed to provably capture

feature interactions at any orders, which can be combined into

nuanced and accurate predictions.

• To mitigate overfitting given limited data, we adopt a meta-

learning strategy that optimizes parameters of hypernetworks

and GNN across different item CTR prediction tasks with a few

adjustments to item-specific parameters within each task. Be-

sides, hypernetworks and GNN learned this way are expected to

generalize to each task easily.

• We conduct extensive experiments on benchmark datasets and

validate that EmerG performs the best for CTR prediction of

emerging items. We also evaluate the performance given more

training data, and find that EmerG consistently performs the best.

Visualization of adjacency matrices which record item-specific

feature graphs shows that EmerG can learn item-specific feature

interactions properly.

2 RELATEDWORKS
We briefly review four groups of methods relevant to CTR predic-

tion of newly emerging items.

A. General CTR Models. General CTR models are applied uni-

versally without prioritizing underrepresented items. They mainly

focus on modeling complex feature interactions, which is crucial

for enhancing CTR prediction accuracy [3]. Historical advance-

ments in this area show a progression from simple first-order in-

teractions captured by linear models like logistic regression [27]

to second-order interactions modeled by Factorization Machines

(FM) [26], and to high-order interactions addressed by higher-order

FMs (HOFMs) [2]. Various deep-learning models then automate

the learning of these complex patterns. Both Wide&Deep [5] and

DeepFM [9] employ hybrid architectures to handle second-order

and higher interactions. DIN [43] dynamically captures user in-

terests through an attention mechanism that adapts to varying ad

features. AutoInt [28] introduces a multi-head self-attention mech-

anism [30] to model high-order feature interactions. LorentzFM

[40] explores feature interactions in hyperbolic space to minimize

parameter size. AFN [6] converts the power of each feature into the

coefficient to be learned. FinalMLP [21] uses two multi-layer per-

ceptron (MLP) networks in parallel, and equips them with feature

selection and interaction aggregation layers. FINAL [44] introduces

a factorized interaction layer for exponential growth in feature

interaction learning. Considering that feature interactions can be

conceptualized as graphs with nodes representing user and item

features, graph neural network (GNN) [15] are used. Fi-GNN [17]

learns to generate feature graphs where the edges are established

according to the similarity between feature embeddings. FIVES

[39] learns a global feature graph where edges are established by

differentiable search from large-scale CTR datasets, thus new items

with limited data can be underrepresented. GMT [22] models the

interactions among items, users, and their features into a large het-

erogeneous graph, then feeds the local neighborhood of the target

user-item pair for prediction. However, these general CTR models,

designed for extensive datasets, often struggle during the cold-start

& warm-up phases due to their substantial parameter size, which

can lead to overfitting when adapted for new items. In contrast,

EmerG introduces a specialized GNN that operates on item-specific

feature graphs, generated via hypernetworks learned from diverse

CTR tasks, ensuring precise modeling of feature interactions for

new items with minimal parameter adjustments.

B. Methods for New Items without Interaction Records. Several
methods specifically address the cold-start phase, where new items

lack interaction records, while still maintaining model performance

on older, established items. DropoutNet [31] trains neural networks

with a dropout mechanism on input samples to infer missing data.

Heater [46] employs a multi-gate mixture-of-experts approach to

generate item embeddings. GAR [4] adopts an adversarial training

strategy between a generator and a recommender to produce new

item embeddings that mimic the distribution of old embeddings,

deceiving the recommender systems. ALDI [12] learns to transfer

the behavioral information of old items to new items. However,

these methods do not consider the incorporation of incoming inter-

action records for new items and typically require re-training to

accommodate the evolving interaction history of these items.

C. Methods for New Items with A Few Interaction Records. In sce-

narios where only a few instances of new items are available, which

correspond to warm-up phases, few-shot learning [35] present a

natural solution. Few-shot learning targets at generalizing to new

tasks with a few labeled samples, which has been applied to image

classification [8], query intent recognition [34] and drug discov-

ery [33, 38, 41]. For CTR prediction, existing works typically ap-

proach the problem as a 𝑁 -way 𝐾-shot task, where each of the 𝑁

new items is associated with 𝐾 labeled instances, then utilize the

classic gradient-based meta-learning strategy [8]. MeLU [16] lever-

ages this strategy to selectively adapt model parameters for new

items through gradient descents. MAMO [7] enhances adaptation

by incorporating an external memory mechanism. MetaHIN [20]

EmerG KDD ’24, August 25–29, 2024, Barcelona, Spain

utilizes heterogeneous information networks to exploit the rich se-

mantic relationships between users and items. PAML [32] employs

social relations to facilitate information sharing among similar

users. More recent approaches have shifted from user-specific fine-

tuning via gradient descent to amortization-based methods. These

methods directly map user interaction histories to user-specific

parameters, thus modulating the main network without iterative

adjustments. TaNP [18] learns to modulate item-specific parameters

based on item interaction records. ColdNAS [37] employs neural

architecture search to optimize the modulation function and its

application within the network. However, these methods struggle

to handle new items that lack interaction records and cannot dy-

namically incorporate additional interaction records of new items

as they become available.

D.Methods for Emerging Itemswith Incremental Interaction Records.
To mirror the industry’s dynamic evolution of new items, progress-

ing from no interaction records to few and then abundant records,

models are developed to manage these transitions smoothly. Ex-

isting efforts primarily enhance item ID embeddings for general

CTR backbones. MetaE [24] employs gradient-based meta-learning

to train an embedding generator. MWUF [45] transforms unstable

item ID embeddings into stable ones using meta networks. CVAR

[42] decodes new item ID embeddings from a distribution over

item side information, circumventing additional data processing.

GME [23] leverages information from neighboring old items for

new item ID embedding generation. However, these methods gen-

erally optimize initial item ID embeddings while maintaining a

global feature interaction pattern, thus failing to capture the unique

characteristics and interaction dynamics of these items. In contrast,

our EmerG addresses new item CTR prediction by tailoring fea-

ture interactions to each item with the help of hypernetworks. By

learning with item-specific feature interactions, the risk of over-

whelming new items by old items with abundant data is alleviated

and prediction accuracy is enhanced.

3 PROBLEM FORMULATION
LetV = {𝑣𝑖 } denote a set of items where each item 𝑣𝑖 is associated

with 𝑁𝑣 item features such as item ID, type and price. Similarly, let

U = {𝑢 𝑗 } denote a set of users where each user𝑢 𝑗 is also associated
with 𝑁𝑢 user features such as user ID, age and hometown. When a

user 𝑢 𝑗 clicks through an item 𝑣𝑖 , label 𝑦𝑖, 𝑗 = 1. Otherwise, 𝑦𝑖, 𝑗 = 0.

During learning, the predictor is learned from a set of CTR pre-

diction tasks T old = {T𝑖 }𝑁𝑡

𝑡=1
sampled from old items, which can

rapidly generalize to predict for tasks from new items that are un-

seen during training. Each taskT𝑖 corresponds to an old item 𝑣𝑖 , with
a training set S𝑖 = {(𝑣𝑖 , 𝑢 𝑗 , 𝑦𝑖, 𝑗)}𝑁𝑠

𝑗=1
containing existing interaction

histories associated with 𝑣𝑖 and a test set Q𝑖 = {(𝑣𝑖 , 𝑢 𝑗 , 𝑦𝑖, 𝑗)}
𝑁𝑞

𝑗=1

containing interactions to predict whether 𝑢 𝑗 clicks through 𝑣𝑖 . 𝑁𝑠

and 𝑁𝑞 are the number of interactions in S𝑖 and Q𝑖 respectively.

During testing, we consider CTR prediction for new items that

start with no interaction records, then gradually gather a few, and

eventually accumulate sufficient interaction records. Consider a

task T𝑘 associated with a new item 𝑣𝑘 which is not considered

during training, we handle three phases:

• Cold-start phase: No training set is provided.

• Warm-up phase: A training set S𝑘 containing a few interaction

records of 𝑣𝑘 is given. There can be multiple warm-up phases

where interaction records are gradually accumulated.

• Common phase: The training interaction records of 𝑣𝑘 are accu-

mulated to be sufficient.

For all three phases, the performance is evaluated on test set Q𝑘 .

4 THE PROPOSED EMERG
Aligning with the established understanding that feature inter-

actions are crucial, we propose EmerG (Figure 1) to capture the

uniqueness of items through their associated feature interaction

patterns. We design two key components in EmerG: (ii) hyper-

networks shared across different tasks to generate item-specific

adjacent matrices encoding feature graphs; and (i) a GNN that oper-

ates on the generated item-specific feature graphs, whose message

passing mechanism is specially tailored to provably capture feature

interactions at any order. As we consider cold-start & warm-up

phases, we further design a meta learning strategy that optimizes

parameters of hypernetworks and GNN across various item CTR

prediction tasks, while only adjusting a small set of item-specific

parameters within each task. This strategy effectively reduces the

risk of overfitting when dealing with limited data.

4.1 Embedding Layer
Given an instance (𝑢, 𝑣), embedding layer maps the user features

of 𝑢 and item features of 𝑣 into dense vectors. For the𝑚th feature

𝑓𝑚,𝑚 ∈ [1, 𝑁𝑣 + 𝑁𝑢], its feature embedding e𝑚 is obtained as

e𝑚 =


𝑾𝑒,𝑚 · one-hot(𝑓𝑚) if 𝑓𝑚 is single-valued∑
𝑒 𝑾𝑒,𝑚 ·multi-hot(𝑓𝑚) if 𝑓𝑚 is multi-valued

𝑾𝑒,𝑚 · 𝑓𝑚 if 𝑓𝑚 is continuous

, (1)

where𝑾𝑒,𝑚 represents the embedding matrix corresponding to the

𝑚th feature, one-hot(𝑓𝑚) represents the one-hot vector of single-
valued feature 𝑓𝑚 , and multi-hot(𝑓𝑚) represents the multi-hot vec-

tor of multi-valued feature 𝑓𝑚 .

4.2 Item-Specific Feature Graph Generation
We employ hypernetworks, following the strategy of Ha et al. [10],

to generate item-specific feature graphs. Hypernetworks, small

neural networks trained to generate parameters for a larger main

network, present a unique challenge in their application, as their

integration is highly problem-specific. In EmerG, hypernetworks

are used to produce the initial adjacency matrix A(1)
𝑖

, encoding the

item-specific feature graph for the first GNN layer. We streamline

the process by allowing subsequent GNN layers to derive their adja-

cency matrices from the initial A(1)
𝑖

, optimizing storage efficiency

without compromising the model’s specificity to each item.

Consider task T𝑖 for item 𝑣𝑖 . For item features 𝑓1, . . . , 𝑓𝑁𝑣
, item

feature embeddings are denoted as e1,𝑖 , . . . , e𝑁𝑣 ,𝑖 respectively. The

feature graph [17, 39] is a graph where each node corresponds to a

feature 𝑓𝑚 , and the edge between two nodes records their interac-

tion. We let our hypernetworks, which consists of 𝑁𝑣 + 𝑁𝑢 subnet-

works, produce a dense item-specific Ā(1)
𝑖

∈ R(𝑁𝑣+𝑁𝑢)×(𝑁𝑣+𝑁𝑢)

which encodes the feature graph to be used in the first GNN layer.

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

Embedding
Layer

Click
or
NotItem-Specific Feature Graph

With Feature Embeddings

GNN
Layer PredictorGNN

Layer

Feature
Embeddings

Item
Features

User
Features

High-Order
Iteration

High-Order
Iteration

one-hot(5)

Hypernetworks

Item-specific
Adjacency Matrix

MLP 5MLP 4MLP 1 MLP 2

one-hot(4)one-hot(3)one-hot(2)

MLP 3

one-hot(1)

Pretrained, then Meta-Trained

Meta-Trained

Deterministic Computation

Figure 1: Illustration of the proposed EmerG, designed to enhance CTR predictions of newly emerging items through the
learning of item-specific feature interaction patterns. EmerG uses hypernetworks to generate an initial item-specific adjacency
matrix for a feature graph, with nodes representing user and item features and edges denoting their interactions, based on item
feature embeddings. Higher-order adjacencymatrices for subsequent GNN layers are generated from the initial matrix, reducing
both model complexity and storage requirements. The GNN’s message passing process is tailored to capture 𝑙-order feature
interactions at the 𝑙 − 1th layer, enabling nuanced integration of various interaction orders for accurate predictions. EmerG
optimizes the parameters of hypernetworks and GNN across diverse CTR prediction tasks to enhance generalization, while
utilizing minimal item-specific parameters to capture the uniqueness of new items, which are adaptable with the introduction
of additional item instances.

Denote the𝑚th row of Ā(1)
𝑖

as[Ā(1)
𝑖

]𝑚:, which is calculated as:

[Ā(1)
𝑖

]𝑚: = MLPW𝑎
([e1,𝑖 , . . . , e𝑁𝑣 ,𝑖 , one-hot(𝑚)]), (2)

where MLPW𝑎
denotes a multi-layer perceptron (MLP) with param-

eter W𝑎 . Then, we generate Ā
(𝑙)
𝑖

as

Ā(𝑙)
𝑖

= Ā(𝑙−1)
𝑖

· Ā(1)
𝑖
. (3)

This (3) returns Ā(𝑙)
𝑖

as the matrix product of 𝑙 copies of Ā(1)
𝑖

.

Therefore, [Ā(𝑙)
𝑖

]𝑚𝑛 records the number of 𝑙-hop paths from node

𝑚 to node 𝑛. In this way, we only need to keep one adjacency matrix

(i.e., Ā(1)
𝑖

) for each item 𝑣𝑖 no matter how many GNN layers are

used, which reduces parameter size.

Further, we take the following steps to refine adjacency matrices:

Â(𝑙)
𝑖

= sparsify(normalize(Ā(𝑙)
𝑖

), 𝐾), (4)

Ã(𝑙)
𝑖

= ((Â(𝑙)
𝑖

)⊤ + Â(𝑙)
𝑖

)/2, (5)

A(𝑙)
𝑖

= normalize(mask([Ã(𝑙−1)
𝑖

· Ã(1)
𝑖

], Ã(𝑙−1)
𝑖

)), (6)

where normalize(·) applies min-max normalization to scale all the

elements of a matrix to be in the range [0, 1] and sets the diagonal

elements of a matrix directly as 1, sparsify(·, 𝐾) keeps the top 𝐾
largest elements and set the rest as 0, and mask(·, Ã(𝑙−1)

𝑖
) sets all

zero elements of Ã(𝑙−1)
𝑖

in Ã(𝑙)
𝑖

as zero. From (4) to (6), we first

sparsify the dense Ā(𝑙)
𝑖

by (4) such that only two highly related

features are connected. Further, because of the commutative law

of ⊙, we transform Â(𝑙)
𝑖

into a symmetric matrix by (5). Apart

from the above-mentioned considerations, we expect that nodes

disconnected in low-order feature graphs to be disconnected in high-

order feature graphs. For example, if the message is not propagated

from node 𝑛2 to node 𝑛1 in the 𝑙th GNN layer, the message of 𝑛2

will be not propagated to 𝑛1 in higher GNN layers. Thus, we apply

(6) to obtain the final A(𝑙)
𝑖

.

4.3 Customized Message Passing Process on
Item-Specific Feature Graph

Upon the learned item-specific feature graphs, we use a GNN with

a customized message passing process designed to provably cap-

ture feature interactions at any orders, which are then explicitly

combined into the final CTR predictions.

We first describe the general mechanism of message passing. At

the 𝑙th GNN layer, node embedding h(𝑙)𝑚 of feature 𝑓𝑚 is updated as

h(𝑙)𝑚 = UPD
(𝑙)

(
h(𝑙−1)
𝑚 ,AGG(𝑙)

({
h(𝑙−1)
𝑛 : 𝑓𝑛 ∈ N (𝑓𝑚)

}))
, (7)

where UPD
(𝑙) (·) updates node embedding of 𝑓𝑚 as h(𝑙)𝑚 , AGG

(𝑙) (·)
aggregates node embeddings of neighbor nodes, N(𝑓𝑚) contains
neighbor nodes of node corresponding to feature 𝑓𝑚 , and h(0)𝑚 = e𝑚 .

After 𝑁𝑙 layers, node embedding h𝑚 = h(𝑁𝑙)
𝑚 is returned as the

final feature representation.

In EmerG, we realize (7) as

h(𝑙)𝑚 = h(𝑙−1)
𝑚 ⊙

[∑︁𝑁𝑣+𝑁𝑢

𝑛=1

[A(𝑙−1)
𝑖

]𝑚𝑛W
(𝑙−1)
𝑔 h(0)𝑛

]
, (8)

EmerG KDD ’24, August 25–29, 2024, Barcelona, Spain

where ⊙ is the element-wise product, A(𝑙−1)
𝑖

is the final item-

specific adjacency matrix obtained by (6), andW(𝑙−1)
𝑔 is a learnable

parameter. Unlike existing GNNs [15, 17, 39] that aggregate h(𝑙−1)
𝑚

with h(𝑙−1)
𝑛 , we aggregate h(𝑙−1)

𝑚 with h(0)𝑛 . In this way, as Proposi-

tion 4.1 shows, the output of (𝑙 − 1)th GNN layer is 𝑙-order feature

interactions, which enables EmerG to explicitly model arbitrary-

order feature interaction.

Proposition 4.1 (Efficacy of EmerG.). With the customized
message passing process defined in (8), the (𝑙−1)th GNN layer captures
𝑙-order feature interactions.

The proof is in Appendix A.1. One may consider integrating

residual connections into GNN to model arbitrary-order feature

interaction. However, as analyzed in Appendix A.2, incorporating

residual connections will significantly elevate the maximum order

of feature interaction.

With different orders of feature interactions, we then explicitly

combine all nodes embeddings of each node 𝑓𝑚 into the updated

node embeddings Ĥ𝑚 of 𝑓𝑚 by multi-head attention:

attention(Q,K,V) = softmax(QK⊤/
√︁
𝑁𝑑)V,

headℎ = attention(W𝑞,ℎH𝑚,W𝑘,ℎH𝑚,W𝑣,ℎH𝑚),
Ĥ𝑚 = [head1; . . . ; head𝑁ℎ

],

where H𝑚 = [h(0)𝑚 ; . . . ; h(𝑁𝑙)
𝑚] contains 𝑁𝑙 row vectors with length

𝑁𝑑 , and 𝑁ℎ is the number of attention heads. Then, we estimate

the contribution factor for each of the 𝑁𝑣 + 𝑁𝑢 features as

[𝑐1, . . . , 𝑐𝑁𝑣+𝑁𝑢
] = sigmoid

(
MLPW𝑐,1

([Ĥ1, . . . , Ĥ𝑁𝑣+𝑁𝑢
])
)
, (9)

whereMLPW𝑐,1
is parameterized byW𝑐,1. Finally, we predict whether

item 𝑣 and user 𝑢 interact as

𝑦 =
∑︁𝑁𝑣+𝑁𝑢

𝑚=1

𝑐𝑚 ·MLPW𝑐,2
(Ĥ𝑚), (10)

whereW𝑐,2 is a trainable parameter.

4.4 Learning and Inference
To reduce the risk of overfitting when dealing with limited data,

we introduce a meta learning strategy that optimizes parameters of

hypernetworks and GNN across various item CTR prediction tasks,

while only adjusting a minimal set of item-specific parameters

within each task.

For simplicity, we denote hypernetworks as hyper𝜽hyper where

𝜽
hyper

= W𝑎 is the shared trainable parameter. Then, we denote the

GNN as GNN𝜽GNN,𝝓𝑖
, where 𝜽GNN represents shared parameters

including parameters of embedding layers {W𝑒,𝑚}𝑁𝑣+𝑁𝑢

𝑚=1
, param-

eters of GNN layers {W(𝑙)
𝑔 }𝑁𝑙

𝑙=1
, W𝑞,ℎ , W𝑘,ℎ , W𝑣,ℎ , parameters of

predictorW𝑐,1,W𝑐,2, and 𝝓𝑖 represents item-specific parameters

𝝓𝑖 = {hyper𝜽hyper (𝑣𝑖), eID,𝑖 }, (11)

which includes item-specific adjacency matrix A(1)
generated by

hypernetworks and the randomized item ID embedding eID,𝑖 of item
𝑣𝑖 . We target at learning 𝜽 ∗

GNN
, 𝜽 ∗

hyper
, which can achieve good cold-

start & warm-up performance on new item 𝑣𝑖 by only generating

𝝓𝑖 and warming up 𝝓𝑖 with gradient descent.

We optimize EmerG w.r.t. the following objective calculated

across 𝑁𝑡 tasks from T old
:∑︁𝑁𝑡

𝑖
𝛾LS𝑖

(𝜽GNN, 𝝓𝑖) + (1 − 𝛾)LQ𝑖
(𝜽GNN, 𝝓′𝑖), (12)

where 𝛾 is a hyperparameter to balance the contribution of two loss

terms. In particular, the first term can represent the performance

of cold-start phase [24] as the model has not been exposed to the

labels in S𝑖 . We compute LS𝑖
(𝜽GNN, 𝝓𝑖) as

LS𝑖
(𝜽GNN, 𝝓𝑖) (13)

≡ 1/|S𝑖 | ·
∑︁

(𝑣𝑖 ,𝑢 𝑗 ,𝑦𝑖 𝑗) ∈S𝑖

BCE(𝑦𝑖 𝑗 ,GNN𝜽GNN,𝝓𝑖
(𝑣𝑖 , 𝑢 𝑗)),

where BCE(𝑦,𝑦) = −𝑦 log(𝑦) − (1 − 𝑦) log(1 − 𝑦) is the binary

cross entropy. The second term in (12) represents the performance

of warm-up phase after updating 𝝓𝑖 by a few new item instances

provided in S𝑖 . We compute LQ𝑖
(𝜽GNN, 𝝓′𝑖) as

LQ𝑖
(𝜽GNN, 𝝓′𝑖) (14)

≡ 1/|Q𝑖 | ·
∑︁

(𝑣𝑖 ,𝑢 𝑗 ,𝑦𝑖 𝑗) ∈Q𝑖

BCE(𝑦𝑖 𝑗 ,GNN𝜽GNN,𝝓′
𝑖
(𝑣𝑖 , 𝑢 𝑗)),

with 𝝓′
𝑖
obtained by performing gradient descent steps w.r.t (13):

𝝓′𝑖 = 𝝓𝑖 − 𝛼1∇𝝓𝑖
LS𝑖

(𝜽GNN, 𝝓𝑖), (15)

where 𝛼1 is the learning rate.

Algorithm 1 summarizes the training procedure of EmerG.

Algorithm 1 The training procedure of EmerG.

1: randomly initialize 𝜽
hyper

and 𝜽GNN;
2: pretrain 𝜽GNN by old item instances;

3: for T𝑖 in T old do
4: sample S𝑖 and Q𝑖 for T𝑖 ;
5: randomly initialize item ID embedding eID,𝑖 for T𝑖 ;
6: obtain feature embeddings e1,𝑖 , . . . , e𝑁𝑣+𝑁𝑢 ,𝑖 by (1);

7: generate Ā(1)
𝑖

of the first GNN layer by (2);

8: get item-specific parameter 𝝓𝑖 = {Ā(1)
𝑖
, hID,𝑖 };

9: obtain A(𝑙)
𝑖

of subsequent GNN layers by (3)-(6);

10: obtain feature representations h1,𝑖 , . . . , h𝑁𝑣+𝑁𝑢 ,𝑖 by (8);

11: obtain prediction 𝑦𝑖 𝑗 by (10) for (𝑣𝑖 , 𝑢 𝑗 , 𝑦𝑖, 𝑗) ∈ S𝑖 ;
12: update 𝝓𝑖 as 𝝓′𝑖 by (15) with learning rate 𝛼1;

13: optimize 𝜽
hyper

and 𝜽GNN w.r.t. (12) by gradient descents

with learning rate 𝛼2;

14: end for

By learning from a set of tasks T old
, the learned 𝜽 ∗

GNN
, 𝜽 ∗

hyper

encode common knowledge. Consider taskT𝑘 of new item 𝑣𝑘 . When

𝑣𝑘 has no interaction record, namely |S𝑘 | = 0, we obtain its task-

specific parameter 𝝓𝑘 and test its performance on the test set as

cold-start phase performance. Given a few new item instances, we

can update 𝝓𝑘 to take in the supervised information. Once 𝝓𝑘 is

updated, we measure performance on the test set as warm-up phase

performance. Algorithm 2 describes the testing procedure.

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

Algorithm 2 The testing procedure of EmerG.

1: optimized 𝜽 ∗
hyper

and 𝜽 ∗
GNN

;

2: Consider task T𝑘 of a new item 𝑣𝑘 , given S𝑘 with a few in-

teraction records of 𝑣𝑘 and Q𝑘 for evaluating CTR prediction

performance of 𝑣𝑘 ;

3: if |S𝑘 | = 0 then
4: randomly initialize item ID embedding e

ID,𝑘 for T𝑘 ;
5: obtain feature embeddings e

1,𝑘 , . . . , e𝑁𝑣+𝑁𝑢 ,𝑘 by (1);

6: generate Ā(1)
𝑘

of the first GNN layer by (2);

7: get item-specific parameter 𝝓𝑘 = {Ā(1)
𝑘
, e

ID,𝑘 };
8: obtain A(𝑙)

𝑘
of subsequent GNN layers by (3)-(6);

9: obtain feature representations h
1,𝑘 , . . . , h𝑁𝑣+𝑁𝑢 ,𝑘 by (8);

10: obtain prediction 𝑦𝑘 𝑗 by (10) for (𝑣𝑘 , 𝑢 𝑗 , 𝑦𝑘,𝑗) ∈ S𝑘 ;
11: measure performance on Q𝑘 ;

12: else
13: update A(𝑙)

𝑘
, 𝑙 ∈ {1 · · ·𝑁𝑙 } by (3) to (6);

14: update feature representations h
1,𝑘 , . . . , h𝑁𝑣+𝑁𝑢 ,𝑘 by (8);

15: update 𝝓𝑘 as 𝝓′
𝑘
by (15);

16: obtain prediction 𝑦𝑘 𝑗 by (10) for (𝑣𝑘 , 𝑢 𝑗 , 𝑦𝑘,𝑗) ∈ S𝑘 ;
17: measure performance on Q𝑘 ;

18: end if

5 EXPERIMENTS
5.1 Experimental Settings

Datasets. We use two benchmark datasets: (i)MovieLens [11]:
a dataset containing 1 million interaction records on MovieLens,

whose item features include movie ID, title, year of release, gen-

res and user features include user ID, age, gender, occupation and

zip-code; and (ii) Taobao [29]: a collection of 26 million ad click

records on Taobao, whose item features include ad ID, position

ID, category ID, campaign ID, advertiser ID, brand, price and user

features include user ID, Micro group ID, cms_group_id, gender,

age, consumption grade, shopping depth, occupation and city level.

Following existing works [24, 42], we binarize the ratings of Movie-

Lens, setting rating smaller than 4 as 0 and the others as 1.

Data Split. We adopt the public data split [24, 42, 45], group

items according to their frequency: (i) old items which are items

appearing in more than 𝑁 interaction records, where 𝑁 = 200 in

MovieLens and 𝑁 = 2000 in Taobao; and (ii) new items which
are items appearing in less than 𝑁 and larger than 3𝐾 interaction

records, where 𝐾 is set to 20 and 500 for MovieLens and Taobao

respectively. To mimic the dynamic process where new items are

gradually clicked by more users, the interaction records associated

with new items are sorted by timestamp. We consider three succes-

sive warm-up phases, labeled as A, B, and C, each of which involves

the introduction of a set of 𝐾 new interaction records for each item.

The rest interaction records form testing data for evaluation.

Experiment Pipeline. We adopt pipeline of existing works [24, 42,

45] to assess how a model adapts to new items over time. First, we

use old item instances to pretrain the model, and directly evaluate

the model performance on testing data of new items as cold-start

phase performance. Then, we measure how model performs as it

learns from a few training data in successive warm-up phases. In

particular, we use the training data in warm-up phases A, B and C

to sequentially update the model, and evaluate the performance of

corresponding updated models on testing data.

Evaluation Metric. Following existing works [42], the perfor-

mance is evaluated by (i) Area Under the Curve (AUC) [19] which

represents the degree of separability, and (ii) F1 score [13] which

is a harmonic mean of the precision and recall. Both AUC and F1

vary between 0 (worst) and 1 (best).

5.2 Performance Comparison
We compare the proposed EmerG

1
with the following four groups

of baselines:

A General CTR backbones pretrained using old item instances

and fine-tuned by new item instances, including DeepFM [9],

Wide&Deep [5], AutoInt [40], AFN [6], Fi-GNN [17], recent

FinalMLP [21] and FINAL [44].

B Methods for new items without interaction records, including

DropoutNet [31] and ALDI [12].
C Methods for new items with a few interaction records, includ-

ing MeLU [16], MAMO [7], TaNP [18], and ColdNAS [37].

These methods cannot incorporate new item instances dynami-

cally. Therefore, to accommodate the training interaction records

provided in warm-up phases A, B, and C, we adopt a phased

approach: initially, we use 𝐾 interaction records from phase A

as the support set to assess testing performance. Subsequently,

we combine 2𝐾 records from phases A and B as the support set

for a second evaluation. Finally, we incorporate 3𝐾 records from

all three warm-up phases—A, B, and C—as the support set to

conduct a third assessment of testing performance.

D Methods for emerging itemswith incremental interaction records,

which are the most relevant to ours. Existing works mainly equip

general CTR backbones with the ability to generate and warm-

up item ID embeddings for new items, including MetaE [24],

MWUF [45], GME [23], and CVAR [42]. We use the classic

DeepFM as the CTR backbone. Results of equipping these meth-

ods with other backbones are reported in Appendix C.1.

We implement the compared methods using public codes of the

respective authors. More implementation details are provided in

Appendix B.

Performance for Cold-Start & Warm-Up Phases. Table 1 shows
the results. As shown, cold-start methods designed for cold-start

& warm-up phases generally perform better. EmerG consistently

performs the best in all four phases, validating the effectiveness

of capturing item-specific feature interaction by hypernetworks.

Few-shot methods for N-way K-shot settings obtains good perfor-

mance in warm-up phase A. However, as the number of samples

increases, it is unable to achieve greater performance improvement

without complete retraining. General CTR backbones which are

fine-tuned using the training sets perform worse, where FinalMLP

performs the best. Recall that they randomly initialize item-specific

parameters for new items, fine-tuning pretrained models by a small

number of new item instances is not enough to obtain good perfor-

mance. Particularly, note that the GNN-based CTR model Fi-GNN

which uses item-user-specific feature interaction graphs perform

1
Our code is available at https://github.com/LARS-group/EmerG.

https://github.com/LARS-group/EmerG

EmerG KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: Test performance obtained onMovieLens and Taobao. The best results are bolded, the second-best results are underlined.

MovieLens
Cold-Start Phase Warm-Up Phase A Warm-Up Phase B Warm-Up Phase C

AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%)

DeepFM 71.48(0.15) 60.96(0.22) 75.21(0.27) 64.09(0.01) 77.70(0.26) 66.18(0.15) 79.45(0.19) 67.81(0.14)
Wide&Deep 69.44(0.29) 59.53(0.31) 74.82(0.29) 64.44(0.21) 77.58(0.25) 66.82(0.24) 79.09(0.22) 67.67(0.27)
AutoInt 68.64(0.24) 59.63(0.14) 75.60(0.31) 64.93(0.36) 77.65(0.33) 66.84(0.42) 79.20(0.34) 67.77(0.36)

LorentzFM 68.91(0.15) 56.22(0.27) 75.35(0.17) 62.77(0.21) 78.46(0.08) 66.23(0.25) 79.85(0.02) 67.93(0.08)
AFN 71.23(0.42) 61.76(0.37) 74.26(0.08) 64.39(0.09) 76.19(0.24) 65.84(0.16) 77.36(0.35) 66.71(0.28)

Fi-GNN 71.37(0.05) 61.46(0.08) 74.62(0.03) 63.83(0.12) 76.83(0.06) 65.71(0.05) 78.49(0.05) 66.74(0.06)
FinalMLP 69.51(0.06) 60.59(0.17) 78.48(0.12) 67.34(0.10) 78.47(0.16) 67.27(0.07) 79.07(0.17) 68.00(0.10)
FINAL 71.64(0.15) 61.72(0.17) 77.87(0.13) 66.99(0.10) 77.94(0.10) 66.93(0.14) 78.29(0.09) 67.42(0.10)

DropoutNet 72.94(0.17) 62.43(0.18) - - - - - -

ALDI 65.53(0.13) 57.47(0.23) - - - - - -

MeLU - - 77.54(0.06) 66.71(0.11) 79.43(0.10) 68.51(0.05) 80.26(0.03) 68.13(0.06)
MAMO - - 77.69(0.10) 66.92(0.13) 79.61(0.07) 68.72(0.04) 80.37(0.05) 68.49(0.04)
TaNP - - 79.15(0.10) 68.39(0.14) 80.49(0.17) 69.43(0.15) 80.71(0.09) 69.63(0.09)

ColdNAS - - 77.45(0.03) 67.01(0.03) 77.88(0.12) 67.25(0.21) 78.06(0.09) 67.31(0.11)
MetaE 71.82(0.70) 61.76(0.30) 79.53(0.25) 67.96(0.15) 80.27(0.09) 68.31(0.12) 80.47(0.04) 68.46(0.12)
CVAR 73.58(0.21) 63.15(0.12) 78.23(0.10) 67.03(0.26) 80.28(0.06) 68.76(0.12) 81.06(0.04) 69.33(0.14)
GME 71.54(0.13) 64.31(0.10) 75.81(0.20) 67.50(0.26) 78.10(0.18) 69.26(0.20) 79.15(0.12) 69.95(0.16)
MWUF 73.19(0.66) 62.61(0.74) 78.88(0.11) 67.34(0.22) 80.26(0.08) 68.40(0.13) 80.57(0.05) 68.66(0.10)
EmerG 75.44(0.05) 64.76(0.15) 79.92(0.27) 68.61(0.24) 81.28(0.21) 69.71(0.14) 81.82(0.16) 70.26(0.14)

Taobao
Cold-Start Phase Warm-Up Phase A Warm-Up Phase B Warm-Up Phase C

AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%)

DeepFM 59.01(0.84) 13.47(0.42) 60.68(0.65) 14.27(0.20) 61.51(0.64) 14.56(0.34) 62.34(0.54) 15.00(0.24)
Wide&Deep 59.07(0.44) 13.65(0.06) 60.92(0.56) 14.25(0.10) 61.69(0.51) 14.56(0.15) 62.33(0.46) 14.75(0.13)
AutoInt 55.69(1.37) 12.14(0.22) 58.65(1.26) 13.61(0.51) 59.43(1.20) 13.84(0.36) 60.07(1.13) 14.19(0.39)

LorentzFM 56.53(0.41) 12.72(0.04) 60.83(0.50) 14.15(0.24) 61.26(0.47) 14.31(0.14) 61.96(0.45) 14.60(0.14)
AFN 57.94(0.99) 13.28(0.15) 58.99(0.74) 13.73(0.20) 59.81(0.87) 13.99(0.18) 60.18(0.69) 14.18(0.13)

Fi-GNN 56.92(0.08) 12.79(0.10) 60.00(0.13) 14.06(0.18) 62.09(0.14) 14.82(0.14) 62.46(0.21) 14.90(0.05)
FinalMLP 60.64(0.12) 13.57(0.04) 63.44(0.06) 14.83(0.03) 63.49(0.07) 14.80(0.03) 64.05(0.02) 15.05(0.03)
FINAL 60.53(0.24) 13.63(0.05) 63.30(0.12) 14.81(0.06) 63.35(0.13) 14.74(0.04) 63.93(0.12) 15.01(0.02)

DropoutNet 60.41(0.09) 13.53(0.02) - - - - - -

ALDI 50.10(0.18) 10.93(0.05) - - - - - -

MeLU - - 61.37(0.17) 14.09(0.17) 62.48(0.04) 14.34(0.05) 63.07(0.07) 14.64(0.11)
MAMO - - 61.96(0.11) 14.31(0.09) 62.52(0.05) 14.34(0.04) 63.15(0.12) 14.78(0.13)
TaNP - - 55.67(0.22) 11.92(0.31) 55.85(0.16) 12.07(0.16) 56.19(0.09) 12.08(0.11)

ColdNAS - - 54.27(0.07) 10.89(0.05) 54.86(0.14) 11.33(0.13) 55.01(0.09) 11.71(0.13)
MetaE 59.75(0.37) 13.58(0.06) 61.19(0.26) 14.01(0.09) 62.06(0.31) 14.41(0.10) 62.87(0.32) 14.71(0.07)
CVAR 60.56(0.46) 13.71(0.13) 62.54(0.19) 14.38(0.06) 63.17(0.10) 14.69(0.05) 63.95(0.18) 15.09(0.12)
GME 60.57(0.23) 13.32(0.33) 62.55(0.17) 13.96(0.22) 63.29(0.05) 14.39(0.12) 63.85(0.13) 14.52(0.08)
MWUF 59.65(0.46) 13.44(0.15) 62.08(0.17) 14.20(0.07) 63.03(0.13) 14.63(0.07) 63.79(0.12) 14.93(0.06)
EmerG 61.58(0.03) 13.99(0.05) 63.56(0.03) 15.02(0.06) 63.76(0.02) 15.15(0.01) 64.22(0.02) 15.21(0.02)

not well. This shows that too much freedom is not beneficial to

capture feature interaction patterns under cold-start & warm-up

phases. While in EmerG, we utilize hypernetworks to generate

item-specific feature graphs, which is then processed by a GNN

with customized message passing mechanism to capture arbitrary-

order feature interaction, and optimize parameters by meta learning

strategy. All these design considerations contributes the best per-

formance obtained by EmerG. For computational overhead, EmerG

is relatively more efficient in terms of both time and computational

resources. See Appendix C.2 for a detailed comparison.

Performance Given Sufficient Training Samples. One might ques-

tion how EmerG performs with an abundance of training samples

for new items, referred to as the common phase, especially in com-

parison to traditional CTR backbones. Here, we set aside samples

from original testing samples of new items (so the test set is smaller),

use them to augment the experiment pipeline with more training

samples, and evaluate the performance on the smaller test set. We

compare EmerG with baselines which perform the best among CTR

backbones and few-shot methods in Table 1. Figure 2 shows the

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

testing AUC (%) with the number of training samples. Experimen-

tal results measured by testing F1 (%) are similar. As shown, all

methods get better performance given more training samples. The

classic CTR backbone DeepFM gradually outperforms CVAR which

equips DeepFM with additional modules to generate item ID em-

beddings for new items. In contrast, EmerG consistently performs

the best and converges to better performance than the others. This

validates the effectiveness of our EmerG which can nicely capture

item-specific feature interaction at different orders.

0 200 400 600 800 1000 1200
Number of Samples

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
U
C
(%

)

DeepFM

CVAR

EmerG

(a) MovieLens.

0 350 700 1050 1400 1750
Number of Samples

58

60

62

64

66

A
U
C
(%

)

DeepFM

CVAR

EmerG

(b) Taobao.

Figure 2: Comparing EmerG with DeepFM and CVAR given
sufficient training samples.

5.3 Model Analysis
5.3.1 Ablation Study. We compare the proposed EmerG with the

following variants: (i) w/ random graph generates the adjacency

matrix A(1)
in (8) randomly; (ii)w/o sparsification does not apply

(4) to sparsify the adjacency matrices; (iii)w/omask does not apply

(6) to enforce nodes which are disconnected in low-order feature

graphs to be disconnected in higher-order feature graphs; (iv) w/
shared graph employs global shared adjacency matrices for all

items, in contrast to EmerG, which utilizes item-specific adjacency

matrices; (v) w/o meta learns both GNN and hypernetworks from

old items, without forming tasks and employ a meta-learning strat-

egy; and (vi) w/o inner directly uses 𝝓𝑖 and does not update it to

𝝓′
𝑖
within each task.

Figure 3 shows the results. As shown, “w/ random graph" per-

forms worse than EmerGwhich shows that the item-specific feature

graphs generated by hypernetworks is meaningful. The perfor-

mance gain of EmerG over “w/o sparsification" shows that a sparse

feature graph where only closely-related nodes are connected can

let the GNN model concentrate on useful messages. Comparing

“w/o mask" to EmerG, the performance drop validates our assump-

tion in (6). The mask operation also prevents the adjacency matrices

from being too dense, which can be beneficial to prune unneces-

sary feature interactions and provide better explainability. We can

also observe that“w/ shared graph" performs worse than EmerG.

This validates that using global shared adjacency matrices cannot

capture the various feature interaction patterns between different

users and items. Finally, EmerG defeats “w/o meta" and “w/o inner",

which underscores the necessity of both meta-learning across tasks

and inner updates within each task.

5.3.2 Effect of Number of GNN Layers. As demonstrated in Propo-

sition 4.1, we have customized the message passing process of the

GNN to ensure that the 𝑙th layer encapsulates 𝑙-order feature in-

teractions. Furthermore, we optimize this process by generating

Cold-Start Phase Warm-Up Phase A Warm-Up Phase B Warm-Up Phase C

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
U
C
(%

)

w/o meta

w/o inner

w/ random graph

w/o sparsification

w/o mask

w/ shared graph

EmerG

(a) MovieLens.

Cold-Start Phase Warm-Up Phase A Warm-Up Phase B Warm-Up Phase C
56

58

60

62

64

66

A
U
C
(%

)

w/o meta

w/o inner

w/ random graph

w/o sparsification

w/o mask

w/ shared graph

EmerG

(b) Taobao.

Figure 3: Ablation study on MovieLens and Taobao.

adjacency matrices for subsequent GNN layers directly from the

initial matrix provided by hypernetworks. This approach not only

streamlines the architecture but also facilitates the extension to

additional layers, thereby capturing higher-order feature interac-

tions with ease. In this context, we investigate the influence of the

number of GNN layers on performance across various datasets.

Cold Warm A Warm B Warm C
70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
U
C
(%

)

1 layer

2 layer(ours)

3 layer

(a) MovieLens.

Cold Warm A Warm B Warm C
58

60

62

64

66

A
U
C
(%

)

1 layer

2 layer

3 layer(ours)

(b) Taobao.

Figure 4: Varying the number of GNN layers in EmerG.

Figure 4 shows the results. As can be seen, EmerG with different

layer numbers obtain the best performance on different datasets:

EmerG with 2 GNN layers performs the best on MovieLens while

EmerGwith 3 GNN layers achieves the best performance on Taobao.

This shows that different datasets requires different number of

GNN layers: larger datasets such as Taobao may need higher-order

features than smaller ones such as MovieLens. By design, EmerG

can easily meet this requirement.

5.3.3 Different Feature Interaction Functions. We consider using

different feature interaction functions. Table 2 shows the results.

EmerG KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 5: Visualizations of item-specific adjacency matrices of movie Lawnmower Man 2: Beyond Cyberspace (A(𝑖)
W) and movie

Waiting to Exhale (A(𝑖)
L) in MovieLens generated by EmerG.

As shown, using element-wise product performs the best, which is

adopted in EmerG.

Table 2: Test performance in AUC (%) obtained on MovieLens
and Taobao. The best results are bolded.

MovieLens Cold-Start Warm-Up A Warm-Up B Warm-Up C

⊙ 75.44 79.92 81.28 81.82
max 74.14 79.43 81.02 81.65

+ 73.64 79.31 80.77 81.39

Taobao Cold-Start Warm-Up A Warm-Up B Warm-Up C

⊙ 61.58 63.56 63.76 64.22
max 59.98 62.49 62.56 63.07

+ 59.80 62.34 62.26 62.89

5.4 Case Study
Finally, we take movie Lawnmower Man 2: Beyond Cyberspace and
movieWaiting to Exhale fromMovieLens as new items, and visualize

their adjacency matrices which record the item-specific feature

graphs in Figure 5.

As can be seen, EmerG learns different task-specific feature

graphs for different items. Comparing Figure 5(a) with Figure 5(b),

we find that Lawnmower Man 2: Beyond Cyberspace has a particu-
larly important second-order feature interaction ⟨genres, title⟩. The
genre of Lawnmower Man 2: Beyond Cyberspace is science fiction
while the genre ofWaiting to Exhale is comedy. For a science fiction,

its title often reflects its world view or theme, which is the key for

people to judge whether they are interested. As for a comedy work,

whether it is interesting or not is often irrelevant to the title.

Besides, EmerG can capture meaningful higher-order feature

interactions. As shown, both ⟨year, age⟩ and ⟨year, zip-code⟩ are
important second-order feature interactions, they contribute to

discovering the third-order feature interaction ⟨year, age, zip-code⟩.
In Figure 5(c), the relation between nodes of year, age and zip-code

all become relatively important although <age, zip-code> is not

important in Figure 5(b). It is easy to understand that the year of

movies determines the age of people who are more likely to watch

them. For example, elderly people generally prefer watching old

movies. Apart from this, location which is indicated by zip-code

also plays an important role: people in developed areas tend to be

more receptive to new things. Therefore, area changes may lead

to changes in the age of people who like the same movie, which

validates the efficacy of the learned third-order feature interaction.

We can also observe that the item-specific feature graphs gener-

ated by our hypernetworks can roughly capture the feature inter-

actions before seeing any training samples of new items. Although

they are continuously optimized using training sets of warm-up

phases, the changes are not sharp. As can be seen, the second-order

feature interaction patterns are similar in Figure 5(b) and Figure 5(d)

to Figure 5(f), with small changes to accommodate the training

samples. Overall, we conclude that EmerG can learn reasonable

adjacency matrices to capture item-specific feature interactions at

different orders.

6 CONCLUSION
In this study, we underscore the critical role of feature interac-

tions and introduce EmerG, a novel solution designed to capture

the unique interaction patterns of items, effectively handling CTR

prediction of newly emerging items with incremental interaction

records. Our approach leverages hypernetworks to construct item-

specific feature graphs, with nodes representing features and edges

denoting their interactions, thus enabling the model to discern the

intricate interaction patterns that characterize each item. We incor-

porate a graph neural network (GNN) equipped with a specialized

message passing process, crafted to capture feature interactions

across all orders, facilitating precise CTR predictions. To combat

overfitting in scenarios with sparse data, we implement a meta-

learning strategy that finely tunes parameters of hypernetworks

and GNN across various item CTR prediction tasks, necessitating

only minimal modifications to item-specific parameters for each

task. Experimental results on real-world datasets show EmerG ob-

tains the state-of-the-art performance on CTR prediction for new

items that have no interaction history, a few interactions, or a sub-

stantial number of interactions. We expect this approach can be

used to warm-up cold-start problems in other applications such as

drug recommendation in the future.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their valuable comments.

This work is supported by National Key Research and Develop-

ment Program of China under Grant 2023YFB2903904 and National

Natural Science Foundation of China under Grant No. 92270106.

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

REFERENCES
[1] Jiang Bian, Jizhou Huang, Shilei Ji, Yuan Liao, Xuhong Li, Qingzhong Wang,

Jingbo Zhou, Dejing Dou, Yaqing Wang, and Haoyi Xiong. 2023. Feynman:

Federated Learning-based Advertising for Ecosystems-Oriented Mobile Apps

Recommendation. IEEE Transactions on Services Computing 16, 5 (2023), 3361–

3372.

[2] Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. 2016.

Higher-order factorization machines. In Advances in Neural Information Process-
ing Systems. 3351–3359.

[3] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2014. Simple and scalable

response prediction for display advertising. ACM Transactions on Intelligent
Systems and Technology 5, 4 (2014), 1–34.

[4] Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng

He, and Zhoujun Li. 2022. Generative adversarial framework for cold-start

item recommendation. In International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2565–2571.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Workshop on Deep
Learning for Recommender Systems. 7–10.

[6] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Adaptive factorization

network: Learning adaptive-order feature interactions. In AAAI Conference on
Artificial Intelligence. 3609–3616.

[7] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. MAMO:

Memory-augmented meta-optimization for cold-start recommendation. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 688–697.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In International Conference on
Machine Learning. 1126–1135.

[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A factorization-machine based neural network for CTR prediction. In

International Joint Conference on Artificial Intelligence. 1725–1731.
[10] David Ha, Andrew Dai, and Quoc V Le. 2017. Hypernetworks. In International

Conference on Learning Representations.
[11] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History

and context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2015), 1–19.
[12] Feiran Huang, Zefan Wang, Xiao Huang, Yufeng Qian, Zhetao Li, and Hao Chen.

2023. Aligning distillation for cold-start item recommendation. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1147–1157.

[13] Hao Huang, Haihua Xu, XianhuiWang, andWushour Silamu. 2015. Maximum F1-

score discriminative training criterion for automatic mispronunciation detection.

IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 4 (2015),

787–797.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. In International Conference on Learning Representations.
[15] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representations.
[16] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.

MeLU: Meta-learned user preference estimator for cold-start recommendation. In

ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1073–1082.
[17] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-GNN:

Modeling feature interactions via graph neural networks for CTR prediction.

In ACM International Conference on Information and Knowledge Management.
539–548.

[18] Xixun Lin, Jia Wu, Chuan Zhou, Shirui Pan, Yanan Cao, and Bin Wang. 2021.

Task-adaptive neural process for user cold-start recommendation. In The Web
Conference. 1306–1316.

[19] Charles X Ling, Jin Huang, Harry Zhang, et al. 2003. AUC: A statistically con-

sistent and more discriminating measure than accuracy. In International Joint
Conference on Artificial Intelligence. 519–524.

[20] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on heterogeneous

information networks for cold-start recommendation. InACMSIGKDDConference
on Knowledge Discovery and Data Mining. 1563–1573.

[21] Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, and Zhenhua Dong.

2023. FinalMLP: An enhanced two-stream MLP model for CTR prediction. In

AAAI Conference on Artificial Intelligence. 4552–4560.
[22] Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, Junzhou

Huang, Sophia Ananiadou, and Peilin Zhao. 2022. Neighbour interaction based

click-through rate prediction via graph-masked transformer. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
353–362.

[23] Wentao Ouyang, Xiuwu Zhang, Shukui Ren, Li Li, Kun Zhang, Jinmei Luo, Zhaojie

Liu, and Yanlong Du. 2021. Learning graph meta embeddings for cold-start ads in

click-through rate prediction. In International ACM SIGIR Conference on Research
and Development in Information Retrieval. 1157–1166.

[24] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm

up cold-start advertisements: Improving CTR predictions via learning to learn ID

embeddings. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 695–704.

[25] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender

systems and how to leverage it. In ACM Conference on Recommender Systems.
11–18.

[26] Steffen Rendle. 2010. Factorization machines. In IEEE International Conference on
Data Mining. 995–1000.

[27] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: Estimating the click-through rate for new ads. In International Conference
on World Wide Web. 521–530.

[28] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. AutoInt: Automatic feature interaction learning via self-

attentive neural networks. In ACM International Conference on Information and
Knowledge Management. 1161–1170.

[29] Tianchi. 2018. Taobao Display Ads Click Dataset. https://tianchi.aliyun.com/

dataset/dataDetail?dataId=56.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Processing Systems. 5998–6008.
[31] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: Ad-

dressing cold start in recommender systems. In Advances in Neural Information
Processing Systems. 4957–4966.

[32] Li Wang, Binbin Jin, Zhenya Huang, Hongke Zhao, Defu Lian, Qi Liu, and Enhong

Chen. 2021. Preference-adaptive meta-learning for cold-start recommendation..

In International Joint Conference on Artificial Intelligence. 1607–1614.
[33] Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. 2021.

Property-aware relation networks for few-shot molecular property prediction.

In Advances in Neural Information Processing Systems. 17441–17454.
[34] YaqingWang, SongWang, Yanyan Li, and Dejing Dou. 2022. Recognizing medical

search query intent by few-shot learning. In International ACM SIGIR Conference
on Research and Development in Information Retrieval. 502–512.

[35] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing

from a few examples: A survey on few-shot learning. Comput. Surveys 53, 3
(2020), 1–34.

[36] Yan Wen, Chen Gao, Lingling Yi, Liwei Qiu, Yaqing Wang, and Yong Li. 2023.

Efficient and Joint Hyperparameter and Architecture Search for Collaborative

Filtering. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
2547–2558.

[37] Shiguang Wu, Yaqing Wang, Qinghe Jing, Daxiang Dong, Dejing Dou, and Quan-

ming Yao. 2023. ColdNAS: Search tomodulate for user cold-start recommendation.

In The Web Conference. 1021–1031.
[38] Shiguang Wu, Yaqing Wang, and Quanming Yao. 2024. PACIA: Parameter-

efficient adapter for few-shot molecular property prediction. In International
Joint Conference on Artificial Intelligence.

[39] Yuexiang Xie, ZhenWang, Yaliang Li, Bolin Ding, Nezihe Merve Gürel, Ce Zhang,

Minlie Huang, Wei Lin, and Jingren Zhou. 2021. FIVES: Feature interaction via

edge search for large-scale tabular data. InACM SIGKDDConference on Knowledge
Discovery and Data Mining. 3795–3805.

[40] Canran Xu and Ming Wu. 2020. Learning feature interactions with lorentzian

factorization machine. In AAAI Conference on Artificial Intelligence. 6470–6477.
[41] Quanming Yao, Zhenqian Shen, Yaqing Wang, and Dejing Dou. 2024. Property-

aware relation networks for few-shot molecular property prediction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2024).

[42] Xu Zhao, Yi Ren, Ying Du, Shenzheng Zhang, and Nian Wang. 2022. Improving

item cold-start recommendation via model-agnostic conditional variational au-

toencoder. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2595–2600.

[43] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui

Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through

rate prediction. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 1059–1068.

[44] Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong,

Ruiming Tang, and Rui Zhang. 2023. FINAL: Factorized interaction layer for CTR

prediction. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2006–2010.

[45] Yongchun Zhu, Ruobing Xie, Fuzhen Zhuang, Kaikai Ge, Ying Sun, Xu Zhang,

Leyu Lin, and Juan Cao. 2021. Learning to warm up cold item embeddings for cold-

start recommendation with meta scaling and shifting networks. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1167–1176.

[46] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Recom-

mendation for new users and new items via randomized training and mixture-of-

experts transformation. In International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1121–1130.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

EmerG KDD ’24, August 25–29, 2024, Barcelona, Spain

A MESSAGE PASSING MECHANISM
A.1 Proof of Proposition 4.1

Proof. In (8), node embedding h(𝑙−1)
𝑚 aggregates from multiple

first-order node embeddings h(0)𝑛 to generate h(𝑙)𝑚 . Therefore,

order(h(0)𝑚) = 1,

order(h(𝑙)𝑚) = order(h(𝑙−1)
𝑚) + 1,

where order(h(𝑙)𝑚) represents the order of h(𝑙)𝑚 . We can conclude

order(h(𝑙)𝑚) = 𝑙 + 1.

After merging all nodes embedding with multi-head self-attention,

all orders of features we can obtain after 𝑙 − 1 GNN layers are

order(Ĥ𝑚) = {1, 2, ..., 𝑙, 𝑙 + 1}.
□

A.2 Comparing with GNN with Residual
Connections

Although GNNwith residual connections canmodel arbitrary-order

feature interaction [17], the maximum order of feature interaction

will increase drastically. To see this, instead of using (8), (7) can be

realized with residual connection as

h(𝑙)𝑚 = h(𝑙−1)
𝑚 + h(𝑙−1)

𝑚 ⊙
∑︁𝑁𝑣+𝑁𝑢

𝑛=1

[A(𝑙−1)
𝑖

]𝑚𝑛W
(𝑙−1)
𝑔 h(𝑙−1)

𝑛 .

As h(𝑙−1)
𝑚 and h(𝑙−1)

𝑛 have the same maximum order, when we

aggregate them via ⊙, we have:

maxorder(h(𝑙)𝑚) = maxorder(h(𝑙−1)
𝑚) × 2.

In other words, using residue connections will lead to too many

noisy high-order feature interactions. Consequently, it is also chal-

lenging to determine which feature interactions contribute to the

prediction, resulting in low interpretability.

B IMPLEMENTATION DETAILS
All results are averaged over five runs and are obtained on a 32GB

NVIDIA Tesla V100 GPU. We use Adam optimizer [14]. To search

for the appropriate hyperparameters, we set aside 20% old items

and form validation set using their samples. The performance is

then directly evaluated on the validation set of these items, which

corresponds to cold-start phase. When the hyperparameters are

found by grid search, we put back samples of these old items, then

follow the experiment pipeline described in Section 5.1 and report

the results. The hyperparameters and their range used by EmerG

are summarized in Table 3.

C MORE EXPERIMENTAL RESULTS
C.1 Comparing with Existing Methods

Equipped with Different Backbones
In Section 5.2, we employ DeepFM as the backbone for methods

in Group D. Despite this, results in Table 1 indicate that FinalMLP

generally surpasses DeepFM, particularly in the warm-up phases,

though not in the cold-start phases. Therefore, we further integrate

FinalMLP, the top-performing backbone from Group A, into meth-

ods in Group D. Results are reported in Table 4. Notably, FinalMLP,

Table 3: Hyperparameters used by EmerG. 𝑁 ′ = 𝑁𝑣 + 𝑁𝑢 .

Hyperparameter Range MovieLens Taobao

number of GNN layers [1, 2, 3] 2 3

𝐾 in (4) [0, 1, · · · , 𝑁 ′ · 𝑁 ′ 𝑁 ′ ·𝑁 ′
2

𝑁 ′ ·𝑁 ′
2

𝛾 in loss function [1𝑒 − 2, . . . , 1] 0.1 0.1

number of heads [1, 2, . . . , 5] 3 3

embedding dimension [10, 11, . . . , 20] 16 16

batch size [64, 128, · · · , 1024] 512 512

pretraining learning rate [1𝑒 − 4, 1𝑒 − 1] 0.005 0.001

pretraining epochs [1, 2, . . . , 20] 2 1

meta-training learning rate 𝛼2 [1𝑒 − 4, 1𝑒 − 1] 0.001 0.0001

meta-training epochs [1, 2, . . . , 20] 11 3

update learning rate 𝛼1 during meta-training [1𝑒 − 4, 1𝑒 − 1] 0.01 0.001

update learning rate 𝛼1 during warming-up [1𝑒 − 4, 1𝑒 − 1] 0.01 0.01

warming-up epochs [1, 2, . . . , 20] 11 16

when utilized as a backbone for cold-start methods, does not exceed

the performance of configurations using DeepFM. This suggests

that more recent CTR backbones cannot effectively handle the CTR

prediction of newly emerging items.

C.2 Computational Overhead
Table 5 shows a detailed comparison of the computational over-

head for all compared methods. As indicated, EmerG demonstrates

relatively lower time and space requirements.

Table 5: Computational overhead of compared methods on
MovieLens. Time is reported as seconds per epoch.

Training Time Test Time # Para.

DeepFM 831.30 43.59 0.51

Wide&Deep 725.15 45.30 0.51

AutoInt 877.75 48.90 0.54

LorentzFM 922.75 52.21 0.51

AFN 926.65 46.30 10.29

Fi-GNN 970.11 56.11 0.53

FinalMLP 1013.55 53.30 2.30

FINAL 944.84 49.00 1.03

MeLU 1123.94 52.11 0.51

MAMO 1299.84 52.71 0.71

TaNP 1089.23 31.25 0.54

ColdNAS 1190.11 25.81 1.81

ALDI 576.40 16.40 0.51

DropoutNet

DeepFM 827.20 43.20 0.51

FinalMLP 1043.23 54.26 2.3

MetaE

DeepFM 1235.44 44.27 0.51

FinalMLP 1319.18 52.70 2.30

CVAR

DeepFM 2372.70 44.20 0.52

FinalMLP 2516.50 52.89 2.31

GME

DeepFM 1099.30 43.99 0.52

FinalMLP 1101.44 54.21 2.31

MWUF

DeepFM 1784.95 43.67 0.52

FinalMLP 2012.60 53.44 2.31

EmerG 996.26 46.10 0.82

KDD ’24, August 25–29, 2024, Barcelona, Spain Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou

Table 4: Comparing EmerG with methods for emerging items with incremental interaction records, using various backbones.
Test performance obtained on MovieLens and Taobao. The best results are bolded, the second-best results are underlined.

MovieLens
Cold-start Phase Warm-up Phase A Warm-up Phase B Warm-up Phase C

AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%)

DropoutNet

DeepFM 72.94(0.17) 62.43(0.18) 78.69(0.01) 67.17(0.05) 78.73(0.06) 67.12(0.04) 79.28(0.05) 67.76(0.09)
FinalMLP 72.78(0.10) 62.41(0.16) 78.55(0.13) 67.39(0.11) 78.46(0.07) 67.18(0.00) 78.96(0.07) 67.78(0.10)

MetaE

DeepFM 71.82(0.70) 61.76(0.30) 79.53(0.25) 67.96(0.15) 80.27(0.09) 68.31(0.12) 80.47(0.04) 68.46(0.12)
FinalMLP 59.50(4.80) 53.22(4.77) 72.38(3.44) 62.11(3.03) 75.34(3.64) 64.35(3.19) 76.98(3.05) 65.83(2.64)

CVAR

DeepFM 73.58(0.21) 63.15(0.12) 78.23(0.10) 67.03(0.26) 80.28(0.06) 68.76(0.12) 81.06(0.04) 69.33(0.14)
FinalMLP 65.91(2.58) 59.02(1.14) 77.33(0.16) 65.94(0.45) 77.90(0.37) 66.58(0.26) 78.86(0.32) 67.62(0.17)

GME

DeepFM 71.54(0.13) 64.31(0.10) 75.81(0.20) 67.50(0.26) 78.10(0.18) 69.26(0.20) 79.15(0.12) 69.95(0.16)
FinalMLP 71.56(0.28) 63.79(0.37) 76.48(0.36) 67.81(0.44) 78.94(0.28) 68.86(0.34) 80.04(0.19) 69.79(0.34)

MWUF

DeepFM 73.19(0.66) 62.61(0.74) 78.88(0.11) 67.34(0.22) 80.26(0.08) 68.40(0.13) 80.57(0.05) 68.66(0.10)
FinalMLP 69.02(0.41) 59.56(0.41) 78.06(0.37) 66.88(0.39) 79.58(0.15) 68.23(0.07) 80.12(0.10) 68.69(0.08)

EmerG 75.44(0.05) 64.76(0.15) 79.92(0.27) 68.61(0.24) 81.28(0.21) 69.71(0.14) 81.82(0.16) 70.26(0.14)

Taobao
Cold-start Phase Warm-up Phase A Warm-up Phase B Warm-up Phase C

AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%) AUC(%) F1(%)

DropoutNet

DeepFM 60.41(0.09) 13.53(0.02) 62.48(0.26) 14.55(0.10) 62.60(0.26) 14.68(0.12) 63.12(0.17) 14.82(0.08)
FinalMLP 60.86(0.14) 13.69(0.09) 63.37(0.08) 14.75(0.03) 63.43(0.01) 14.84(0.03) 63.98(0.03) 15.04(0.04)

MetaE

DeepFM 59.75(0.37) 13.58(0.06) 61.19(0.26) 14.01(0.09) 62.06(0.31) 14.41(0.10) 62.87(0.32) 14.71(0.07)
FinalMLP 59.71(1.00) 13.12(0.91) 62.58(0.45) 14.87(0.13) 62.68(0.43) 14.79(0.12) 63.30(0.44) 15.13(0.08)

CVAR

DeepFM 60.56(0.46) 13.71(0.13) 62.54(0.19) 14.38(0.06) 63.17(0.10) 14.69(0.05) 63.95(0.18) 15.09(0.12)
FinalMLP 60.55(0.49) 13.83(0.23) 63.24(0.47) 14.99(0.22) 63.25(1.18) 15.03(0.50) 63.79(0.77) 15.15(0.43)

GME

DeepFM 60.57(0.23) 13.32(0.33) 62.55(0.17) 13.96(0.22) 63.29(0.05) 14.39(0.12) 63.85(0.13) 14.52(0.08)
FinalMLP 60.78(0.15) 13.76(0.06) 63.10(0.18) 14.89(0.16) 63.12(0.04) 14.81(0.07) 63.76(0.19) 14.96(0.14)

MWUF

DeepFM 59.65(0.46) 13.44(0.15) 62.08(0.17) 14.20(0.07) 63.03(0.13) 14.63(0.07) 63.79(0.12) 14.93(0.06)
FinalMLP 60.36(0.11) 13.73(0.08) 63.26(0.07) 14.00(0.02) 63.37(0.22) 14.79(0.05) 63.96(0.23) 15.09(0.05)

EmerG 61.58(0.03) 13.99(0.05) 63.56(0.03) 15.02(0.06) 63.76(0.02) 15.15(0.01) 64.22(0.02) 15.21(0.02)

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 The Proposed EmerG
	4.1 Embedding Layer
	4.2 Item-Specific Feature Graph Generation
	4.3 Customized Message Passing Process on Item-Specific Feature Graph
	4.4 Learning and Inference

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Model Analysis
	5.4 Case Study

	6 Conclusion
	References
	A Message Passing Mechanism
	A.1 Proof of Proposition 4.1
	A.2 Comparing with GNN with Residual Connections

	B Implementation Details
	C More Experimental Results
	C.1 Comparing with Existing Methods Equipped with Different Backbones
	C.2 Computational Overhead

