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Abstract
Visualization recommendations, which aim
to automatically match proper visual charts
for specific data tables, can significantly sim-
plify the data analysis process. Traditional
approaches in this domain have primarily re-
lied on rule-based or machine learning-based
methodologies. These methods often demand
extensive manual maintenance and yet fail to
fully comprehend the tabular data, leading to
unsatisfactory performance. Recently, Large
Language Models (LLMs) have emerged as
powerful tools, exhibiting strong reasoning ca-
pabilities. This advancement suggests their
substantial promise in addressing visualization
recommendation challenges. However, effec-
tively harnessing LLMs to discern and rational-
ize patterns in tabular data, and consequently
deduce the essential information for chart gen-
eration, remains an unresolved challenge. To
this end, we introduce a novel Hierarchical Ta-
ble Prompt-based reprogramming framework,
named HTP. This framework aims to inte-
grate multi-dimensional tabular data into LLMs
through a strategically crafted prompt learning
method while keeping the LLMs’ backbone
and weights unaltered. The HTP framework
uniquely incorporates a four-level prompt struc-
ture, encompassing general, instance, cluster,
and column levels. This multi-level approach is
engineered to provide a comprehensive under-
standing of both general distribution and mul-
tifaceted fine-grained features of tabular data,
before inputting the tabular data into the frozen
LLM. Our empirical studies confirm that the
HTP framework achieves state-of-the-art per-
formance, marking an advancement in the field
of data visualization and analysis.

1 Introduction

Data visualization, which facilitates effective
decision-making via better responding the human
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Figure 1: Illustration of HTP framework.

sensitivity and efficiency in processing visual in-
formation (Kosmyna et al., 2018), has become in-
creasingly crucial nowadays. Traditional visualiza-
tion tools necessitate extensive effort for manual
specification, which often requires domain exper-
tise in data analysis. Therefore, large efforts have
been made to develop automatic tools for solving
the visualization recommendation task, i.e., recom-
mending the proper visual charts.

Generally, prior arts can be divided into two
categories. The first, known as Rule-based ap-
proaches (Mackinlay, 1986; Mackinlay et al.,
2007), relies on expert-designed rules to generate
visualizations. However, these approaches not only
suffer the massive manual labor for rule mainte-
nance, but also struggle to address the combinato-
rial explosion problem caused by increasing data
dimensions. In contrast, the Machine Learning-
based approaches (Dibia and Demiralp, 2019; Li
et al., 2021) are investigated to automatically learn
the best matching between tabular data and visual-
ization elements. Unfortunately, few of them could
fully extract the multi-level features within tables,
which severely limits the performance.

Last year has witnessed the prosperity of Large
Language Models (LLMs), whose advanced ca-
pabilities of LLM in processing and interpreting
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complex data unlocks new possibilities in the field
of data visualization. However, significant chal-
lenges persist in effectively harnessing the poten-
tial of an LLM for visualization recommendation.
Firstly, LLMs are typically designed to process
sequences of discrete tokens in an unstructured for-
mat, whereas tables used for visualization often
display highly structured and predominantly nu-
merical characteristics, which leads to a mismatch.
Second, the inherent pre-training of LLMs does not
naturally encompass the comprehension abilities
required to interpret complex tabular data. Third,
rather than fine-tuning the entire model, it is of-
ten preferable to keep the LLM backbone “frozen”.
This approach ensures the model’s versatility in
supporting a variety of tasks without compromis-
ing its fundamental capabilities.

To this end, we propose a novel Hierarchical
Table Prompt-based reprogramming framework
(HTP), to adapt LLM for visualization recommen-
dation without altering the backbone structure. The
essence of HTP lies in leveraging data-driven multi-
level prompts to adaptively reprogram the tabular
data across various dimensions, thereby bridging
the gap between the structured nature of tabular
data, as well as the inherent capabilities of LLMs
for textual processing. Specifically, HTP utilizes
four levels of prompts as follows:
• General-level prompt, which is employed to

describe the overall distribution of table dataset,
while facilitating information sharing and integra-
tion among prompts at various levels, thereby en-
hancing the generalization performance of LLM.

• Instance-level prompt, which connects the in-
dividual table instances with various charts, by
leveraging the specific distribution of tabular data
and corresponding chart.

• Cluster-level prompt, which is generated via
feature extraction and clustering, and targets en-
hancing the LLM to capture the implicit patterns
that exist within the table datasets, as well as the
correlations among patterns.

• Column-level prompt, which originates from
the inherent structural information of tables, and
highlights the columnar organization to improve
the column-level information processing, and
support cross-column comprehension.
Based on these four prompts, as illustrated in

Figure 1, we concatenate prompts at general, in-
stance, and cluster levels with a serialized table
before feeding them into LLMs, thereby facilitat-
ing table-specific knowledge extraction and inte-

gration. Meanwhile, the column-level prompts are
prepended to encoded inputs to retain the structural
information of tables, thereby improving the dis-
tinction among columns, and fostering a contextual
understanding between them. The contribution of
this paper could be summarized as follows:

• To the best of our knowledge, we are the first
to utilize LLMs to explore the visualization rec-
ommendation task through soft prompt-based re-
programming, without altering the pre-trained
backbone model.

• A novel prompt-based framework is proposed to
reprogram the hierarchical table information into
multi-prompts, which enhances the comprehen-
sion capabilities of LLMs.

• Extensive experiments on real-world datasets
demonstrate the effectiveness of the proposed
HTP compared with state-of-the-art approaches.

2 Related Work

2.1 Visualization Recommendation
Prior researches on automated visualization rec-
ommendation includes rule-based and machine
learning-based approaches. Rule-based approaches
(Mackinlay, 1986; Roth et al., 1994; Perry et al.,
2013; Wongsuphasawat et al., 2016) are based
on manually developed rules, which heavily rely
on expert knowledge, and have high maintenance
costs. Moreover, as table size grows, these meth-
ods may encounter combinatorial explosion issues.
Recently, machine learning-based methods have
shown notable progress in enhancing recommen-
dation accuracy and scalability. (Luo et al., 2018)
employed expert rules for initial visualizations, and
evaluated them using a trained classifier. (Li et al.,
2021; Hu et al., 2019) formulated the visualization
recommendation challenge as a series of classi-
fication tasks, learn to predict labels for various
design choices, while (Zhou et al., 2020; Dibia
and Demiralp, 2019) cast the challenge as a se-
quence generation problem. The former utilized
a Deep Q-Network (DQN) for selecting action to-
kens to fill the predefined chart templates, while
the latter employed a seq2seq model to autoregres-
sively generate JSON-encoded charts. However,
these approaches are limited to learning the exist-
ing knowledge within datasets, and lack sufficient
exploration of multifaceted table features, such as
table patterns and structures, leading to a limited
comprehension of complicated tables. Recently,
some researchers (Dibia, 2023; Ko et al., 2024;
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Cheng et al., 2023; Maddigan and Susnjak, 2023)
leveraged LLMs to investigate the visualization rec-
ommendation task. They divided the visualization
generation process into several subtasks, explor-
ing appropriate discrete prompts for each subtask
to maximize the capabilities of the larger model.
Different from prior arts, in our work, we enrich
the extensive pre-trained knowledge of LLMs with
multi-level prompt, to fully extract the semantics
within table data from multiple dimensions.

2.2 Prompt Tuning

With continuous parameter scaling of pre-training
models, fine-tuning entire models for downstream
tasks becomes daunting due to inefficiency and po-
tential catastrophic forgetting (Pfeiffer et al., 2021;
Kan et al., 2023). Thus, Prompt Tuning (Lester
et al., 2021), which prepends learnable continu-
ous prompts to input text while keeping model
parameters fixed, has achieved success across vari-
ous domains. However, directly using this method
to complex table datasets results in substantial in-
formation loss. In this paper, we use multi-level
prompts to integrate table information, enhancing
the efficiency of utilizing prior knowledge.

3 Preliminaries

3.1 Problem Formulation

We formulate the visualization recommendation
task as a text generation problem. Consider a la-
beled training dataset D = {(T, V )i}|D|

i=1 where Ti

represents a serialized table and Vi = v1i , v
2
i , · · · v

li
i

is a concise json description of chart with length
li, which encapsulating key information for defin-
ing a chart. Our goal is to generate Vi in an auto-
regressive way. Based on Prompt Tuning (Lester
et al., 2021), we learn a prompts group P that have
multi-level prompts, with a module G designed
to dynamically produce prompts P . We train our
model by maximizing the likelihood of generating
the target sequence, as follows:

max
P,G

pθ

|D|∏
i=1

li∏
j=1

(vji | v
1
i , v

2
i · · · v

j−1
i , Ti,P,G).

(1)
Here parameters θ of LLM remain frozen, only the
prompts group P and G are updated.

3.2 Data Serialization

3.2.1 Table Linearization
As demonstrated in (Suadaa et al., 2021; Zhang
et al., 2020), the representation of data in table
form has a significant impact on generation perfor-
mance. In this paper, we adopt a template-based
linearization approach, transforming tables into flat
string representations to enhance their compatibil-
ity with the internal structures of LLMs. Formally,
given a table T , it is represented as:

< header1,1 > is < value1,1 >, · · · <
headeri,j > is < valuei,j >, · · · .

3.2.2 Chart Mapping
We employs a JSON-based template to encode
chart data similar to (Poco and Heer, 2017; Satya-
narayan et al., 2017). The template encapsulates
the key information necessary for defining a chart,
including the visualization types and the arrange-
ment of x-/y-axes. When using tools like Echarts
or Plotly, our recommended attributes allow users
to easily create chart images while giving them the
freedom to adjust or add attributes to suit their spe-
cific analysis needs or presentation preferences if
needed. The details of our template are as follows:

where each object in “y” and the objects of “x”
form a visual trace.

4 Methodology

In this section, we will introduce the proposed
framework in detail. As shown in Figure 2,
our framework consists of four primary prompts,
namely general, instance, column and cluster level
prompts, to inject table insights into the LLM. Tech-
nical details of each component are discussed in
the following subsections, step-by-step.

4.1 General-level Prompt Generation

To encompass the overall information of the table
dataset and enhance generalization ability, we in-
troduce a soft prompt Pgen as (Lester et al., 2021)
do, which is uniformly applied across all instances.
This general prompt ensures that the model com-
prehensively understanding table dataset. It also
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Figure 2: The overall framework of HTP. (a) Supervised contrastive learning for chart style representations. (b)
Style query generation. (c) Clustering table features to generate cluster-level prompts. (d) The overall workflow of
the model. (e) The detailed structure of Style Controller.

facilitates sharing and integrating information from
other level prompts.

4.2 Instance-level Prompt Synthesization

Since tables target for visualizing data across
diverse domains, there are inherent differences
among tables within the dataset. Obviously, a sin-
gle general prompt is insufficient to fully adapt
to these complicated variations of tables. In re-
sponse, we introduce an instance-aware prompt
capable of dynamically capturing the table-specific
features. In detail, we first synthesize a style vector
that reflects the characteristics of different types
of charts, named style query. Then, we use this
style query to project information from the serial-
ized table embedding into the chart space. In this
way, the style query facilitates the extraction of
fine-grained information from tables across various
dimensions, enhancing the table’s perceptibility to
charts. Moreover, projecting table information into
chart space narrows down the search space for the
LLM, thereby reducing the likelihood of producing
hallucinations.

4.2.1 Style Query Generation
To ensure that the style query adequately represents
the stylistic characteristics of each chart type, our
style query is composed of two parts: hard codes
and soft codes. Hard codes capture the inter-class

features among different chart types, while soft
codes are employed to explore the intra-class fea-
tures within each chart type.

Hard Codes Generation. Since chart images have
explicit labels (e.g., bar charts, pie charts), enabling
distinction of different chart styles and further guid-
ing chart generation. Thus, we employ a supervised
contrastive learning approach that trains a projector
P on labeled chart images, enabling it to learn the
distinct representation of each chart style.

The detailed process is shown in Figure 2 (a).
During training, we first feed a chart image i
alongside its augmented version i+ (e.g., rotation,
grayscale), as well as other batch samples, into
a frozen pre-trained image encoder to obtain vi-
sual embeddings. These extracted embeddings are
then fed into a bottleneck architecture projector P ,
which maps them to vectors that reflect chart style.

Then, we utilize supervised contrastive learning
loss on generated vectors to train the projector P .
Drawing inspiration from MOCO (He et al., 2020),
we maintain a continuously updated memory bank
for each chart type. In our method, positive samples
for a given instance include its augmented versions
and same-type instances within batch and memory
banks. In contrast, negative samples encompass
instances of different chart types within the same
batch and memory bank, ensuring that the model
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learns to distinguish different chart categories.
As shown in Figure 2 (b), after the contrastive

learning phase, we reprocess the visual embeddings
of images through projector P to obtain style fea-
tures. To obtain an overall stylistic representation
for each chart type, we categorize these features
by chart type and perform an averaging operation
within each category. In this way, we obtain a stylis-
tic representation set {qih}mi=1, named hard codes,
where m represents the number of chart types.
Soft Codes Generation. Even within the same
chart category, there are many subtle variations.
Relying solely on hard codes could lead to over-
looking significant intra-class differences among
chart types, limiting the model’s ability to detect
subtle stylistic differences between charts. To more
effectively explore the intra-class features among
charts, we introduce m trainable soft style codes
{qis}mi=1, which are prepended to the hard codes to
provide a more comprehensive representation of
the chart space.

Now the style query can be defined as follows:

Qs = {[qis; qih]} i = 1, 2, ...,m.

Here [·; ·] denotes the concatenation operation.
Consequently, the style query Qs captures intra
and inter-class characteristics of each chart type
simultaneously, which will be updated during train-
ing, allowing a better perception of input table.

4.2.2 Generating Instance-level Prompts with
Style Query

We then use style query to guide instance-level
prompt generation through a structure called Style
Controller. As depicted in Figure 2 (e), we first
employ a mapping network M to align dimension
and modality between Qs and the serialized input
embedding Tr. For efficiency, M consists of down
and up projection layers, with a nonlinear layer
situated between them. Then we adopt two atten-
tion layers: the self-attention over Qs, followed by
cross-attention from Tr, as follows:

Qs = M(Qs),

Qs = Self -Attn(Qs),

S = Cross-Attn(Qs, Tr).

(2)

The S = {s1, s2, ...sm} represents features ex-
tracted by style query from m spaces based on
the distributional information of table embedding.
Intuitively, self-attention layer enables the model to
effectively process and integrate contextual infor-
mation from style query. While the cross-attention

layer can dynamically emphasize the essential
chart-related information within a table through
style query. Finally, we generate the instance-level
prompt Pins by averaging the si ∈ S.

4.3 Cluster-level Prompt Generation

When two tables exhibit similar messages, they are
likely to be represented by similar charts. Thus,
using the shared information within table pattern
is crucial for comprehending table representations
and making chart recommendations. The diverse
features of table data, such as trends, entropy, and
variance, provide a comprehensive overview of ta-
ble data, thus play a crucial role in identifying dis-
tinct table patterns. Thus, we extract various table
features and cluster them into k different table pat-
terns. Each table schema has its own shared prompt,
resulting in a cluster prompts pool {pic}ki=1. Cor-
respondingly, for a given table T ∈ Ci, its cluster
prompt can be directly set as pic.

4.4 Column-level Prompt Generation

The previous discussion emphasized the overall se-
mantic understanding of the table. However, since
the selection of chart type and the arrangement of
x-/y-axes are fundamentally based on column data,
a detailed understanding of each column’s role and
characteristics within the table is also critical for
recommending appropriate charts. To this end, we
introduce column-level prompt that designed to
encapsulate column structure information within
table, facilitating intra-column understanding and
cross-column analysis.

As shown in Figure 2 (d), following (Chen et al.,
2022), we first encode a given table T on a per-cell
basis to retain structure. Specifically, for each cell
in T , we concatenate the cell’s header and value,
and query the LLM to obtain embeddings. To en-
hance representation at the column level, we intro-
duce a unique soft prompt for each column, which
is prepended to the embeddings of cells within the
same column, yielding a refined, column-centric ta-
ble structure representation E ∈ Rm×n×s×d, with
s, m and n denoting sequence length, number of
rows and columns, respectively.

Next, we employ a two-layer attention structure,
the first is a cell-wise layer that focus on individual
cells, while the second operates on single column
to explore column semantics:

5



E0 = E + Ecpe,

Ê0 = Linear(Self -Attn(E0)) + E0,

E1 =
1

s

∑s

i=1
Ê0[:, :, i, :],

Ê1 = Self -Attn(E1),

(3)

where Ecpe ∈ Rs×d is the cell text position em-
bedding, which will be updated during training. In
this way, the Ê1 can grasp the column structure
information inside the table.

4.5 Prompt Integration for Reprogramming
LLM

After obtaining the general, instance, and cluster
level prompts, we use a shallow network V with
a skip connection to reparameterize them. Subse-
quently, the reparameterized prompts are concate-
nated:

P
′
= [V(Pgen);V(Pins);V(Pclu)],

V(P ) = ϕ(P ) + P,
(4)

where ϕ is a simple linear layer. Furthermore, a
self attention layer is applied to enable information
sharing among the prompts:

Ppre = Self -Attn(P
′
). (5)

The refined prompts Ppre ∈ Rlp×d are concate-
nated with the serialized table embedding Tr ∈
Rls×d, where lp denotes the prefix length, ls de-
notes the input sequence length. They are then
fed into the LLM to obtain the last hidden states
H . After that, we apply a cross-attention layer, us-
ing H as a query, to integrate the structured and
unstructured information from the entire table:

E2 = Ê1 + Etpe,

H = Cross-Attn(H,E2) +H,
(6)

where Etpe ∈ Rm×n×d is the table position embed-
ding that provides row and column information for
tables. This obtained hidden state will replace the
original one to estimate probability of next word.

5 Experiments

5.1 Settings
Datasets Due to inaccessibility of the Plotly
Corpus, a publicly available dataset collected by
(Hu et al., 2019), we independently re-extracted
a substantial dataset of 443, 526 public visualiza-
tion pairs from the Plotly community feed via

the Plotly REST API1. Following rigorous data
cleaning, the refined dataset contains 116, 528
visualization pairs across 439, 001 columns,
including 4, 091(3.51%) pie, 36, 576(31.38%)
line, 29, 740(25.52%) scatter, 6, 269(5.38%) his-
togram, 29, 641(25.43%) bar and 10, 211(8.77%)
box charts. More details are in Appendix A.

Baselines To evaluate the performance of our
HTP framework, we compare our method with fol-
lowing baselines: (1) VizML (Hu et al., 2019), (2)
KG4Vis (Li et al., 2021), (3) MultiVision (Wu et al.,
2021), (4) Data2Vis (Dibia and Demiralp, 2019),
(5) Table2Charts (Zhou et al., 2020), (6) DeepEye
(Luo et al., 2018). More details are in Appendix B.

Metrics Referring to VizML, we employ Accu-
racy to evaluate whether models can recommend
correct design choices, including: XY (whether the
field encoded on the X-axis and Y-axis is correct),
chart type (whether the correct chart type is rec-
ommended) and overall (both XY-axis and chart
type are considered). Due to the variations among
the above baseline models in calculating metrics,
with some evaluations based on individual fields
and others on entire tables, for fair comparisons,
we report the metrics at the both level. More details
are in Appendix C.

Implementations We randomly split the dataset
into three parts: 80% for training, 10% for valida-
tion, and 10% for testing. For contrast learning, we
use CLIP (Radford et al., 2021) visual encoder to
extract features of input images. For our chart gen-
eration model, we primarily utilize the pre-trained
Bloom (Workshop et al., 2022) model with 1.1B
parameters as the backbone. We use K-Means
(MacQueen et al., 1967) to cluster table features.
Additional details are provided in Appendix D. 2

5.2 Comparison with Baselines

The performance comparison of our HTP and base-
lines is presented in Table 1, in which the mean
and standard deviation of all metrics are obtained
through three random runs. We have the following
observations: (1) Our HTP consistently achieves
the best performance in most of the evaluation
metrics, with 25.4% and 32.8% absolute improve-
ments of overall accuracy in field level and table

1https://api.plot.ly/v2/
2We make the code and dataset of HTP available

at: https://github.com/PaddlePaddle/PaddleSpatial/
tree/main/research/HTP
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Model
Field Level Table Level

XY Chart Type Overall XY Chart Type Overall

VizML 0.892 ± 0.008 0.553 ± 0.009 0.507 ± 0.014 0.795 ± 0.018 0.393 ± 0.015 0.334 ± 0.017
KG4Vis 0.819 ± 0.038 0.418 ± 0.055 0.319 ± 0.052 0.552 ± 0.030 0.257 ± 0.014 0.111 ± 0.024
MultiVision - 0.649 ± 0.020 - - 0.624 ± 0.021 -
Data2Vis 0.646 ± 0.038 0.341 ± 0.010 0.321 ± 0.012 0.508 ± 0.027 0.415 ± 0.007 0.281 ± 0.014
Table2Charts 0.932 ± 0.015 0.453 ± 0.016 0.436 ± 0.010 0.881 ± 0.013 0.426 ± 0.007 0.397 ± 0.012
DeepEye 0.523 ± 0.009 0.396 ± 0.022 0.237 ± 0.006 0.493 ± 0.006 0.427 ± 0.004 0.249 ± 0.004
HTP 0.928 ± 0.011 0.780 ± 0.014 0.761 ± 0.013 0.874 ± 0.009 0.802 ± 0.011 0.725 ± 0.008

Table 1: Performance comparison between HTP and all the baselines. The best results are in bold and the second
are underlined.

level. This indicates that our model is capable
of processing and integrating subtasks within vi-
sualization recommendation from a comprehen-
sive perspective. (2) In chart type accuracy, our
model achieves an accuracy of 0.780 at the field
level and 0.802 at the table level, with a large mar-
gin of 13.1% and 17.8% over the best-performing
baseline, respectively. This demonstrates the ef-
fectiveness of using style query to enhance table
perception across various chart types. Moreover,
chart type prediction accuracy is generally lower
than xy prediction across all models, suggesting
it’s more challenging and could be a bottleneck in
chart recommendation. (3) Table2Charts exhibits
greater accuracy on the xy-axis than other methods.
This may be due to the pre-defined chart template
constraining the selection of x and y-axis. How-
ever, in real-world scenarios with more complex
charts, such a strongly constrained template might
lack flexibility. (4) KG4Vis has high standard devi-
ation across all metrics, and a large drop in overall
accuracy from field to table level. This demon-
strates that focusing solely on single-column fea-
tures while neglecting the comprehensive attributes
of the entire table leads to incomplete understand-
ing, consequently impairing performance at the
table level. In contrast, our HTP , by encompassing
information across all table levels, achieves higher
accuracy with exhibiting great consistency.

5.3 Ablation Analysis

To verify the effectiveness of each design in our
model, we further compare HTP with six variants:

• w/o-CLUP removes the cluster-level prompt.
• w/o-TSI removes the all table structure informa-

tion (include the column-level prompt).
• w/o-COLP removes the column-level prompt.
• w/o-GP removes the general prompt.
• w/o-INSP removes the instance-level prompt.
• w/o-SSC removes the soft codes, using only hard

XY
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Figure 3: Performance comparison between HTP and
its variants on Table Level.

codes as source style query.
According to the results shown in Figure 3, HTP
outperforms all its variants, proving the signifi-
cance of our special designed prompts. Specifi-
cally, w/o-INSP and w/o-TSI underperform other
variants, highlighting the need for dynamically gen-
erating customized prompts to capture fine-grained
information and the internal structure of tables.
Meanwhile, we can see w/o-INSP has a significant
performance degradation on the chart type predic-
tion, proving that instance-level prompt can effec-
tively obtain perceptual information between table
and different types of charts. Besides, we observe
a decrease when removing the cluster-level prompt,
which demonstrates the importance of sharing in-
formation within table patterns (w/o-CLUP). In ad-
dition, the performance degrades if the soft codes is
not used, suggesting a comprehensive understand-
ing of chart representation through capturing intra-
class connections is crucial for enhancing model
performance. Further, removing the table-column
prompt results in a notable performance decline,
which verifies the importance of understanding ta-
ble structure and enhancing column-level insights.

5.4 Comparison with Adaptation Methods
across Model Scales

To evaluate the effectiveness and adaptability of our
model, we conduct a comprehensive comparison
between HTP and the following methods at differ-
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Model Method
Field Level Table Level

XY Chart Type Overall XY Chart Type Overall

Bloom-Small

(560M)

Fine-Tuning 0.953 0.745 0.734 0.918 0.701 0.649

Prompt Tuning 0.899 0.550 0.534 0.843 0.549 0.492
Prefix Tuning 0.924 0.592 0.584 0.869 0.584 0.550
LoRA 0.927 0.624 0.613 0.887 0.577 0.536
HTP 0.902 0.714 0.696 0.845 0.746 0.679

Bloom-Medium

(1.1B)

Fine-Tuning 0.940 0.782 0.772 0.896 0.803 0.755

Prompt Tuning 0.876 0.682 0.656 0.834 0.615 0.543
Prefix Tuning 0.912 0.746 0.726 0.858 0.765 0.697
LoRA 0.915 0.758 0.739 0.864 0.777 0.703
HTP 0.928 0.780 0.761 0.874 0.802 0.725

Bloom-Large

(3B)

Fine-Tuning 0.950 0.832 0.820 0.915 0.834 0.787

Prompt Tuning 0.817 0.670 0.672 0.845 0.748 0.676
Prefix Tuning 0.923 0.841 0.818 0.897 0.804 0.763
LoRA 0.936 0.813 0.798 0.897 0.820 0.764
HTP 0.938 0.850 0.836 0.899 0.831 0.773

Table 2: Performance comparison between HTP and adaptation methods at different model scales. The best results
except Fine-Tuning are in bold, and the second are underlined.

ent model scales, including Fine-Tuning, Prompt
Tuning (Lester et al., 2021), Prefix Tuning (Li and
Liang, 2021) and LoRA (Hu et al., 2022). From
Table 2, we observe that: (1) Across the majority
of metrics and model scales, our model signifi-
cantly outperforms other partial parameter tuning
methods. This indicates that our proposed prompt-
based framework can comprehensively unearth the
implicit insights of tables and more efficiently har-
ness the potential of LLMs for visualization recom-
mendation. (2) Our HTP outperforms parameter-
efficient tuning methods by a large margin in small-
scale LLMs. For example, HTP achieves abso-
lute improvements of 8.3% and 12.9% over the
best-performing PEFT method in overall metric
at field level and table level respectively. (3) We
can see that there is still a significant gap between
Fine-Tuning and parameter-efficient tuning meth-
ods. However, our method achieves comparable
performance to Fine-Tuning across models of var-
ious scales, and even outperforms Fine-Tuning in
most metrics. In the 560M model, both the chart
type and overall accuracy at table level exceed Fine-
Tuning. Moreover, in the 3B model, these two met-
rics also surpass Fine-Tuning performance at the
field level. This demonstrates that HTP can better
enrich the semantic features of table data and align
highly structured table data with the pre-training
paradigm of LLMs without loss of information.
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Figure 4: Performance comparison between different
prompt initialization methods.
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Figure 5: Parameter sensitivity of the number of table
pattern clusters K.

5.5 Parameters Analysis

5.5.1 Prompt Initialization

We explore the impact of soft prompt initializa-
tion in our study. Our investigation focuses on
two distinct initialization strategies: (1) Random-
based Initialization. Soft prompts are generated by
randomly initializing their embeddings. (2) Sam-
ple Vocabulary-based Initialization. We sample
high-frequency word chunks from the training set
dictionary, concatenate them in order of frequency,
then trim to match the prompts’ length. We use the
embeddings of the trimmed version as initial values.
As shown in Figure 4, we can see that HTP is ro-
bust to the prompt initialization method, achieving
comparable results with both initialization choices.
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Model
Field Level Table Level

XY Chart Type Overall XY Chart Type Overall

GPT-4 0.832 0.403 0.385 0.727 0.453 0.427
HTP 0.881 0.722 0.683 0.841 0.753 0.693

Table 3: Performance comparison between HTP and GPT-4.

5.5.2 Number of Table Patterns Clusters K
As depicted in Figure 5, more clusters of table pat-
tern, namely increasing K, enables HTP to capture
more complex and diverse table pattern informa-
tion. However, if K gets too large, there may be
insufficient corresponding table groups in the table
dataset to support cluster representation learning,
and some superfluous clusters may introduce noise
and undermine performance instead.

5.6 Comparison with GPT-4

Since the method we propose involves inputs (ta-
bles) and outputs (chart codes) that are both in text
format, without any image inputs or outputs, to
compare the performance of our HTP and GPT-4,
we conduct an experiment with small data batches
using GPT-4 (non-vision). We randomly selected
150 samples to conduct the experiment. As shown
in Table 3, our HTP consistently outperforms GPT-
4 across all tasks, with a particularly significant
margin of excellence in chart-type recommenda-
tion tasks. This suggests that HTP demonstrates
outstanding ability in understanding and recom-
mending visualizations that are most suitable for
the specific structure of the data at hand.

6 Conclusion

In this paper, we introduced a novel Hierarchical
Table Prompt-based reprogramming Framework,
called HTP, to enhance the visualization recom-
mendation process through Large Language Mod-
els (LLMs). The HTP harnessed potential of LLMs
through four level of prompts, aiming at extracting
semantic information from table through compre-
hensive perspectives. In this way, HTP effectively
unlocked the potential of LLM for transforming
table into insightful charts. Extensive experimental
results demonstrated the superior performance of
HTP framework.

7 Limitations

We briefly mention some limitations of our work.
First, we have only used a single self-collected
dataset. This is mainly due to the fact that the only
open-source dataset Plotly Corpus, collected by

(Hu et al., 2019), was not accessible. Moreover,
we mainly consider data-encodings attributes in-
cluding visualization types and the arrangement of
x-/y-axes while non-data-encoding attributes such
as layouts and colors are not considered, which is
because the evaluation of non-data-encoding at-
tributes is relatively subjective, and our dataset
predominantly utilizes default settings for these
attributes.
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Appendix

A Data Cleaning

We developed our dataset using a data cleansing
pipeline, outlined as follows:

(1) Format Verification. Since the Plotly commu-
nity stores table and chart data in json format, we
will initially filter out data that cannot be parsed in
json format.

(2) Completeness Assessment. Data samples
lacking either non-empty source table data or chart
data are discarded. Additionally, if data columns
corresponding to the x and y axes in the chart data
are missing in the table data, if table data contains
empty columns, or if chart data lacks specified
chart type or axes, the sample is excluded.

(3) Data Deduplication. In the Plotly community,
each visualization pair is uniquely identified by a
“fid”. When encountering multiple data entries with
the same “fid”, only the first one is retained. Since
many tables are slight modifications of each other,
we calculate their basic features, integrate these
values into a single feature identifier, and retain
only the first entry for each set of samples sharing
this feature identifier.

B Baselines

To evaluate the proposed framework, we adopt six
baselines for comparison. Here are the descriptions
of these baselines:

• VizML (Hu et al., 2019), which formulates vi-
sualization recommendation task as a series of
classification challenges, deploying distinct Neu-
ral Network-based models for each classification
task. We train VizML in our dataset on its Mark

Type task (chart type predixtion task and Is on X-
axis or Y-axis task). In our training process, we
divide the dataset by tables, meaning all columns
from the same table are assigned to the same set.

• KG4Vis (Li et al., 2021), which leverages
knowledge graphs to recommend from dataset-
visualization pairs.

• MultiVision (Wu et al., 2021), which design two
scoring network for recommending single and
multiple-view visualizations. Because we do not
recommend multiple-view visualizations, only
the first network is used to train on our dataset.
Specially, due to the incomplete disclosure of all
training parameters, we set the batch size to 4096
and the learning rate to 3e-3, conducting training
over 30 epochs. Because our dataset contains six
types of charts, so we set the initialization param-
eter num_class of the ChartTypeLSTM model
to 6. The remaining model hyperparameters are
consistent with those in the source code.

• Data2Vis (Dibia and Demiralp, 2019), which
leverages an LSTM-based neural translation
model to generate json encoded visualizations
in an autoregressive way. Following Data2Vis,
for each table-chart pair, three training samples
are generated by sampling three rows from table
(three different data rows with the same encoded
chart), resulting in a total of 279, 609 pairs which
are used for training. The vocabulary sizes of
source and target are 95 and 38.

• Table2Charts (Zhou et al., 2020), which use deep
Q-Network to fill the predefined chart templates
by estimating the next token or action. Specif-
icallybecause the chart templates defined in ta-
ble2charts—scatter, line, bar, and pie match the
types of charts in our dataset, we retain only these
four types of data for training.

• DeepEye (Luo et al., 2018), which provides two
public models (ML and rule-based) without train-
ing scripts. Thus, we evaluate its models on our
test set and report the best results between two
models.

For all baselines, all hyperparameter settings were
based on the values reported in the original paper
for optimal results, unless otherwise specified.

C Evaluation Details

Let N denote the total number of tables, Ci denote
the number of columns in table i, correctijxy and
correctijtype as binary indicators for column j in
table i, where correctijxy=1 if the xy axis allocation
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for column j is correct and 0 otherwise. Similarly,
correctijxy=1 if the chart type for column j is cor-
rectly predicted, and 0 otherwise.

At the table level, when calculating metrics, the
entire table is treated as a single unit; a prediction is
only considered correct if the X-Y axis allocation
and chart type for all columns within the table are
accurately predicted, as follows:

Accxy=

∑N
i=1(

∏Ci
j=1 correct

ij
xy)

N
,

Accchart type=

∑N
i=1(

∏Ci
j=1 correct

ij
type)

N
,

Accoverall=

∑N
i=1(

∏Ci
j=1(correct

ij
xy & correctijtype))

N
.

(7)
While at the field level, we calculate metrics on a
per-column basis:

M =

N∑
i=1

Ci, Accxy =

∑N
i=1

∑Ci
j=1 correct

ij
xy

M
,

Accchart type =

∑N
i=1

∑Ci
j=1 correct

ij
type

M
,

Accoverall =

∑N
i=1

∑Ci
j=1(correct

ij
xy & correctijtype)

M
.

(8)

D Implementations

To prevent bias towards imbalanced data, we ran-
domly split the dataset by chart type, allocating
80% for training, 10% for validation, and 10%
for testing for each chart category. We run all ex-
periments on NVIDIA RTX A100 GPUs, and use
the Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9 and β2 = 0.999 to optimize models. For
contrast learning , we adopt CLIP’s (Radford et al.,
2021) visual encoder to extract the global features
of input images. The temperature parameter, mem-
ory bank size, batch size and learning rate are set
to 0.07, 2048, 1024, and 9e-4, respectively. We em-
ploy K-Means (MacQueen et al., 1967) to cluster
table features, to minimize the impact of random
initialization of initial cluster centers as much as
possible, we execute the algorithm five times and
select the iteration with the lowest Sum of Squared
Errors (SSE) as the final result. For our chart gen-
eration model, we primarily utilize the pre-trained
Bloom (Workshop et al., 2022) model with 1.1 bil-
lion parameters as our backbone. For training our
chart generation model, we set the learning rate,
batch size to 1e-5 and 4. The length of general-
level, instance-level, column-level, cluster-level
prompts are set to 20, 100, 1, and 15. In addition
to parametric experiments, we fixed the number
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Figure A1: Performance comparison between HTP and
its variants on Field Level.

of clusters for cluster prompt at 8 and the prompt
initialization method to Sample Vocabulary-based
Initialization. In the generation stage, we adopt top-
p sampling as the default decoding method with a
temperature of 0.1 and a top-p = 0.75.

E Table Features for Clustring

We use table features that introduced in VizML (Hu
et al., 2019) for clustering. Following VizML, we
first extract 81 single-column features, comprising
both 50 continuous features and 31 categorical fea-
tures. These features are categorized into four main
groups: the data type of the column (Types), sta-
tistical characteristics of the column’s values such
as distribution and outliers (Values), the column’s
name (Names), and the column’s row count (Di-
mensions). To describe the relationship between
pairs of columns, we employ 30 pairwise-column
features. In the final step, we utilize 16 aggregation
functions to combine both pairwise-column and
single-column features, yielding 841 dataset-level
features for clustering.

F Discussion about Permutations

To investigate the impact of the permutations of ta-
ble rows and columns on the results, we conducted
relevant experiments. The results indicate that the
permutations of tables can have a certain negative
impact on the inference results of our model. We
will explore ways to mitigate this issue in our future
work.

G More Results about Ablation Analysis

Due to space constraints and the fact that trends
at both the table level and field level are largely
similar, we have chosen to present only the table
level results in the main text. For completeness,
we also include the field level results in Figure A1.
The analysis of ablation studies at the field level
follows a similar pattern to that at the table level.
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H Image Dataset

We collect 125,121 chart images from the public
web. These include 28100 bar images, 9838 box
images, 7319 histogram images, 38725 line images,
37215 scatter images and 3924 pie images.
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