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Abstract—Data scale has been acknowledged as a crucial factor
for enhancing the generalization and effectiveness of pre-training
models. While existing methods of multivariate time series pre-
training are primarily limited to a single specific dataset, scaling
to a larger scenario that includes multiple diverse datasets (e.g.,
multi-region data) remains a substantial challenge. In this paper,
we present a novel Decoupled Spatial-Temporal Representation
Learning (DeSTR) framework to serve as the backbone network
for investigating the data scaling capability of multivariate time
series pre-training architectures. Specifically, DeSTR utilizes two
separate encoders to capture both the temporal dynamics within
each time series and the spatial correlations among multiple
variables. The obtained representations of distinct modalities are
then fed into a Spatial-Guided Temporal Transformer to equip
the temporal features with spatial discriminative information.
Moreover, we employ masked autoencoding as the foundational
pre-training framework and introduce spacetime-agnostic aug-
mentation to improve robustness and facilitate implicit spatiotem-
poral modeling. Finally, we successfully pre-train a unified time
series representation learning framework on real-world datasets
from three different cities. Extensive experiments are carried
out on various downstream tasks to validate the performance
of DeSTR, compared with three categories of state-of-the-art
baselines: deep sequential models, spatial-temporal graph neural
networks, and time series representation learning methods. The
results clearly demonstrate the advantages of scaling multivariate
time series pre-training to multiple datasets, highlighting the
effectiveness of DeSTR as a general spatiotemporal learner.

Index Terms—multivariate time series pre-training, spatiotem-
poral data, data scalability

I. INTRODUCTION

Self-supervised representation learning has emerged as a
highly effective paradigm in learning generic representations
for multiple data modalities, such as text [1], [2], vision [3]–
[5], and audio [6], [7]. These foundational models, once pre-
trained, can be easily adapted to a wide range of down-
stream tasks through fine-tuning, resulting in a substantial
performance boost compared to those task-specific crafted
architectures [1], [3].

For multivariate time series, numerous efforts have been
devoted to developing effective pre-training models. Among
them, the mainstream frameworks include methods based on
contrastive learning [8]–[10] and masked autoencoding [11],
[12]. Despite their encouraging results, a significant limitation
of these methods is the necessity to pre-train individual models

tailored for each dataset. In multi-region spatiotemporal sce-
narios, this will require separate pre-training models for each
region even for the same application, leading to significant
training overhead. Meanwhile, the compelling evidence from
the emerging Large Language Models (LLM) [1], [2] has
demonstrated the crucial role of scaling data size for achieving
remarkable performance improvements. In this context, pre-
training solely on data from a single geographic region fails
to fully exploit the benefit of data scale, leading to suboptimal
generalization capability.

Building upon the promising findings in recent LLM, we
aim to investigate the data scaling capability of multivariate
time series pre-training models. The goal is to pre-train a
unified representation learning framework by harnessing multi-
region spatiotemporal data. This framework can subsequently
be adapted to various downstream tasks in each specific
region through fine-tuning. In particular, we attempt to address
this problem by discussing the following two most-adopted
backbone networks for multivariate time series analysis over
spatiotemporal data:

(i) Using Deep Sequential Models to extract high-
dimensional representations has been widely adopted in time
series analysis. However, their application to real-world sit-
uations still presents two main challenges. First, practical
data often encounter noise from irregular missing values,
potentially arising from non-synchronous measurements or
errors during data collection [13]. This missing pattern sub-
stantially undermines the robustness of sequential models,
preventing them from deriving comprehensive time series rep-
resentations. Second, despite their effectiveness in capturing
temporal dynamics, these sequential models often overlook the
crucial aspect of spatial correlations. As depicted in Figure 1a,
conventional sequential models process each univariate time
series independently, lacking the capability to differentiate
diverse variables. In scenarios involving large-scale datasets
with extensive variables, these models tend to learn generic
knowledge, resulting in a decline in prediction accuracy.

(ii) As an alternative, Spatial-Temporal Graph Neural Net-
works (STGNNs) have attracted significant attention for inte-
grating spatial information into time series analysis. By uti-
lizing Graph Neural Networks (GNNs), these models adeptly
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Fig. 1: Concept comparison of Deep Sequential Model, STGNNs, and our DeSTR paradigms.

capture spatial correlations, offering enhanced discriminative
ability across different variables and harnessing valid neigh-
boring information to mitigate noise induced by missing data.
Nevertheless, these models heavily depend on explicit online
message passing. As depicted in Figure 1b, for any batch of
input time series at any timestep, each node has to exchange
signal information with adjacent nodes. This process entails
two critical limitations: First, deep-layer STGNNs bear a
high computational cost due to the inherent neighborhood
explosion problem associated with GNNs [14]. Even shallow
STGNNs, which must repeatedly propagate information at
each timestep in an online setting, remain time-intensive. This
complexity poses challenges in meeting low-latency inference
requirements for time-sensitive applications, such as traffic
flow forecasting. Second, achieving real-time communications
between different nodes is infeasible due to hardware con-
straints, especially when handling geographically dispersed
data. This constraint hinders the efficient implementation of
STGNNs in time-critical situations.

Driven by the above discussions, we introduce a novel
backbone network based on decoupled spatial-temporal rep-
resentations, eliminating the need for online message passing
across nodes. As depicted in Figure 1c, we first employ a
dual encoder composed of separate convolution networks to
distill both temporal dynamics and spatial correlations into
two distinct dense vector embeddings. These representations
of different modalities are then fed into a transformer-like
module, namely the Spatial-Guided Temporal Transformer,
equipping each independent time series with its corresponding
spatial discriminative information.

Contrasting with traditional decoupled spatial-temporal ap-
proaches, our backbone architecture is distinguished by two
novel features. Firstly, since spatial learning relies solely on
the static graph structure and is unrelated to online time series,
our proposed backbone can be effectively scaled to handle
larger datasets covering multiple regions. Secondly, during the
online deployment, we can directly use the pre-trained static
node embeddings to serve as side information for online time
series processing. This procedure obviates the need for inter-
node message passing in existing methods, thereby resulting
in enhanced computational efficiency.

To further enhance the robustness of the pre-trained encoder
against missing data, we employ masked autoencoding as the
foundational framework for learning generic time series rep-
resentations. Specifically, we introduce a spacetime-agnostic
augmentation for multivariate time series, randomly masking
a subset of valid values across both spatial and temporal
dimensions. These corrupted inputs are processed through the
aforementioned backbone network, followed by a lightweight
decoder to reconstruct the original time series. The objective
of this pre-training phase is to teach the model to undo these
degradations. In summary, the main contributions of this paper
are outlined as follows:
• We are among the first to explore the data scalability in

multivariate time series pre-training, focusing on multi-
regional spatiotemporal datasets.

• We introduce a novel backbone network for streamlined spa-
tiotemporal data processing, facilitating operations on large-
scale datasets with remarkable computational efficiency.

• We present a unified pre-training architecture based on
masked autoencoding, supporting robust pre-training on
practical multi-region spatiotemporal datasets.

• We perform extensive experiments on large-scale real-world
datasets spanning multiple cities, and the results strongly
demonstrate the benefits of scaling data size for multivariate
time series pre-training.

II. RELATED WORK

Multivariate Time Series Forecasting. Multivariate Time
Series (MTS) forecasting has been a critical task across
various domains, ranging from transportation to environmental
science [15], [16]. Conventional deep learning methods mainly
utilize Convolution Neural Networks (CNNs) or Recurrent
Neural Networks (RNNs) to enhance MTS prediction efficacy.
Among these, methods such as TCN [17] and its variants
treat time series as 1D structures and employ convolution
kernels to distill high-level features. Conversely, architectures
like LSTM [18] and GRU [19] embrace an autoregressive
framework for forecasting. With the rapid growth of Trans-
former [20], recent methods like Informer [21] and Aut-
oformer [22] exploit its capability for handling long-term
dependencies in MTS forecasting. Nonetheless, our study



focuses on the spatial-temporal data which prioritizes short-
term time series for real-time forecasting needs.

Building upon this, Spatial-Temporal Graph Neural Net-
works (STGNNs) have recently gained substantial atten-
tion [23]–[30] to improve the prediction by incorporating inter-
variant correlations. These methods identify temporal patterns
within each node using sequential models and propagate them
across neighboring nodes through GNNs, effectively capturing
spatial-temporal dependencies. Based on their spatial learning
strategies, these methods can be categorized into two distinct
branches: The first branch utilizes static graphs based on
various distance functions, such as topological distance [31]
and Dynamic Time Warping (DTW) distance [26]. In contrast,
the second branch posits that static graphs may infuse domain-
specific biases, potentially leading to inadequate modeling
of spatial correlations. Hence, they opt to dynamically and
adaptively construct a latent graph, typically fashioned using
pair-wise similarities from current temporal embeddings [23],
[24], [27]. However, a notable limitation of these approaches is
their significant reliance on the quality of temporal representa-
tions. Real-world noise, such as missing data, can compromise
these temporal representations, subsequently undermining the
graph structure learning process and culminating in suboptimal
forecasting performance.
Multivariate Time Series Imputation. Multivariate time
series imputation is another important task in time series
analysis, aiming to fill in missing values from observed
records. Traditional studies primarily adopt statistical methods
like K-Nearest Neighbors [32], Expectation-Maximization al-
gorithms [33], and matrix factorization [34]. Recently, deep
learning architectures have surged to the forefront [35]–[38],
especially the recurrent networks. For instance, BRITS [35]
employs a bidirectional recurrent dynamical system for han-
dling missing data. GAIN [36] integrates RNN with Gener-
ative Adversarial Networks (GAN) to achieve imputation in
a generative manner. Additionally, the rising Transformer has
also been adapted for sequence imputation, with SAITS [37]
employing diagonally-masked self-attention blocks to capture
both fine-grained feature correlations between timesteps.

While these methods prioritize inner-channel temporal dy-
namics, they tend to overlook inter-variate relationships. To
bridge this gap, a subset of research employs STGNNs as
the backbone network for higher-accuracy time series imputa-
tion [39]–[42]. For example, GRIN [41] extends the sequential
module of BRITS with STGNN to improve the imputation
performance. SPIN [42] replaces both temporal and spatial
modeling in typical STGNN with attention-based architectures
to mitigate the unstable learning dynamics. However, despite
the effectiveness of STGNNs in boosting the performance of
both downstream time series forecasting and imputation, they
still suffer from high computational costs.
Time Series Representation Learning. The representation
learning for multivariate time series has also gained significant
attention in recent years. Existing techniques in this domain
typically follow two basic paradigms: contrastive learning and
masked autoencoders. For time series contrastive learning,

TABLE I: Notations Used in This Paper

Notion Description

G The static graph structure
hi
g The spatial embedding of node i

eji The weighted geospatial distance from j-th node to the
i-th node

xℓ
s The signal features within a specific convolutional

window at ℓ-th layer
mℓ The binary mask of signal features within a specific

convolutional window at ℓ-th layer
Hi

s The tokenized signal representations of i-th node
xt The calendar features at timestamp t
ht The time embedding at timestamp t
Ht The tokenized time embeddings
H̃i

s The tokenized signal representations which equipped
with the temporal position encoding

zi The spatial-guided temporal representation of i-th node
M The spacetime-agnostic mask over input signals
Sin The ground truth of input signals
Sout The outputs of the reconstructed signals
Lmask The reconstruction loss over mask signals
Lvalid The reconstruction loss over observed signals

the fundamental principle involves defining positive pairs
that are encouraged to be semantically similar, and negative
pairs that should be dissimilar [9], [10], [43], [44]. Early
studies like SRL [43] treat random subseries within an anchor
series as positive samples and subseries from other variables
as negative, using a Triplet loss function for optimization.
Subsequent approaches introduce various data augmentation
techniques and contrastive loss designs. For example, TNC [9]
utilizes a debiased contrastive objective to ensure distinction
between the distributions of signals within neighborhoods and
those outside. However, contrastive-based methods inevitably
introduce sampling biases, which can potentially undermine
the effectiveness of the learned representations. To mitigate
this impact, masked autoencoders introduce denoising as a
data augmentation strategy, allowing the backbone encoder to
fully capture the data distribution through the reconstruction
of masked inputs [11], [12]. For instance, TST [11] first
leverages Transformer as the backbone to distill dense vectors
from corrupted time series, guided by a denoising objective.
PatchTST [12], another state-of-the-art model in MTS pre-
training, further delves into the capabilities of Transformer for
time series representation learning. Unlike these pre-training
studies that customize models to individual single-region
datasets, we explore a more challenging yet crucial problem:
scaling time series pre-training across extensive multi-region
datasets, and enabling adaptable fine-tuning for various tasks
in diverse urban contexts.

III. METHODOLOGY

A. Problem Definition

Given a collection of multivariate time series instances
with a look-back window L : {x1, . . . , xN}, our goal is
to devise two nonlinear embedding functions, fθ and fϕ, to
transform each variate i into a spatial representation hig , and
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Fig. 2: The overview of Decoupled Spatial-Temporal Representation Learning (DeSTR) framework.

its corresponding univariate time series xi into a temporal
representation his, respectively. These embeddings are subse-
quently integrated through a learnable fusion function gψ to
generate the final d-dimensional embedding, which is expected
to accurately reconstruct the input time series.

B. Model Overview

As shown in Figure 2, we propose a representation learning
framework, DeSTR, for multivariate time series pre-training.
The core idea is to utilize the decoupled spatial-temporal
encoder as the backbone network to learn generic time se-
ries representations within a masked autoencoding paradigm.
Specifically, the proposed backbone is structured based on a
hybrid convolution-transformer architecture. Given the input
multivariate time series, two distinct convolution encoders
are employed independently: one for extracting temporal dy-
namics from each time series, and the other for capturing
spatial correlations from the graph structure characterized
by inter-variant relationships. The resulting representations in
diverse modalities are then fused by the Spatial-Guided Tem-
poral Transformer, which serves to enrich temporal features
with corresponding spatial discriminative information. This
backbone is further integrated into a masked autoencoding
paradigm for pre-training, wherein a spacetime-agnostic aug-
mentation is introduced for effective masked signal modeling.
The notations used in this paper are listed in Table I.

C. Dual-Encoder for Spatiotemporal Signals

In this subsection, we provide an in-depth discussion of how
we decompose input multivariate time series into decoupled
spatial-temporal representations utilizing convolutional stems
that are specialized for both spatial and temporal dimensions.
Spatial Graph Convolution Encoder. In the spatial dimen-
sion, we represent the graph structure by G = (V,E,W ),

where edges E characterize the interconnectivity of nodes V ,
and edge weights W quantify the distance along with each
edge. Besides, we initialize the node embedding with one-hot
encoding, packed together into a feature matrix Xg ∈ RN×N ,
where N denotes the number of nodes.

In practice, we employ the Graph Convolution Network
(GCN), a typical GNN, to transform the input node features
into high-level static spatial embeddings, capturing the spatial
correlations effectively. Considering the hidden state of node
i at layer ℓ, the message passing from its neighbors N (i)
towards it takes the form:

(hig)
ℓ+1 = σ

bℓ +
∑

j∈N (i)

eji
cji

(hjg)
ℓW ℓ

 (1)

where eji is the weighted geospatial distance from the j-th
node to the i-th node, cji =

√
|N (j)|

√
|N (i)| corresponds to

the ji-th value of the normalized adjacency matrix. Moreover,
W ℓ ∈ Rd×d, bℓ ∈ Rd are learnable parameters and σ denotes
the activation function.

We declare that this model design is agnostic to particular
choices of graph structures and GNNs. Various alternative
graphs can be utilized to delineate the inter-variant relation-
ships, such as applying Gaussian kernels to the Euclidean
distance [45] or adapting the DTW distance based on observed
time series [26]. Additionally, a wide range of GNNs can also
be adopted, such as GAT [46] and Graph Transformer [47].
We opt for the conventional GCN since it has fewer param-
eters compared to attention-based models, offering superior
computational efficiency. Considering the relative stability of
spatial distribution in independent graph structures, employing
a simple GCN provides an optimal trade-off between accuracy
and efficiency.



Temporal Signal Convolution Encoder. In the temporal di-
mension, we carefully design our temporal signal convolution
encoder to capture temporal dynamics within each independent
time series as shown in Figure 2b. Before diving into this
module, we first highlight two key characteristics of the
investigated signals:

(i) In real-world situations, signals frequently display irreg-
ular missing patterns, potentially caused by sensor malfunc-
tions. These missing values can take the form of contiguous
blocks or discrete points. In more extreme cases, an entire
historical window might be devoid of data, posing significant
challenges to stable and accurate feature extraction.

(ii) Natural signals typically exhibit low information-dense
with heavy temporal redundancy. In other words, the alter-
ations in signals between adjacent timesteps are subtle and
continuous. Such continuity will be conveyed into the temporal
representations extracted by the sliding convolutional kernels,
making it difficult to distinguish discrete global dynamics
within them.

To address the first point, we introduce a masked causal
convolution to adjust for the irregular missing patterns. This
scheme, derived from the standard causal convolution, ensures
the prevention of information leakage from future to past.
Considering a sliding convolution window with the kernel
size of 1 × S that operates on the input time series of
length L. Let W and b represent the convolution weights and
the corresponding bias term, respectively. For any particular
timestep, let xℓs ∈ R1×S denote the localized signal within the
current window, while mℓ ∈ R1×S serves as the corresponding
binary mask that indicates the absence of signal values at each
location. The convolution operation can be formulated as:

xℓ+1
s =

{
1

∥mℓ∥1
W (xℓs ⊙mℓ) + b, if ∥mℓ∥1 > 0

0, otherwise
(2)

where ⊙ symbolizes element-wise multiplication and ∥mℓ∥1
computes the sum of the valid signal values. We remark that
the refined representations are influenced solely by the valid
inputs. Besides, the scaling factor 1

∥mℓ∥1
provides adaptive

adjustments for the varying number of these valid values. We
also update the mask mℓ according to a simple principle: if all
signal values covered by the current kernel are missing, the
result output mask is assigned to zero. Mathematically, this
can be represented as:

mℓ+1
t =

{
1, if ∥mℓ∥1 > 0

0, otherwise
(3)

where the subscript t represents the output time point corre-
sponding to the current localized window.

We implement the convolutional stem by stacking multiple
layers of the masked causal convolution to distill the localized
temporal dynamics into dense vector embeddings. However,
since the output produced by casual convolution has the same
length as the input, the second issue about low information-
dense still exists. To tokenize the time series effectively, we
introduce a large-kernel and large-stride convolution scheme

at the end of the convolutional stem for rapid downsampling.
By default, both the kernel size and stride are set to p. We use
Hi
s = [hi,1s , · · · , hi,ks ] to denote the tokenized representations,

where k = L/p indicates the number of time series patches.
This model design comes with two advantages: it meets the
d-dimension input requirements of the subsequent transformer
through the terminal downsampling operation. Besides, given
the O(L2) complexity of the transformer, this form of time
series tokenization diminishes it to O(L2/k2), resulting in a
significant efficiency boost.

D. Spatial-Guided Temporal Transformer

After extracting both the temporal signal features and their
corresponding static topological attributes, we then discuss
how to combine these two decoupled components. To this
end, we introduce the Spatial-Guided Temporal Transformer
(SGTT) as illustrated in Figure 2c, which serves two roles:
performing sequential modeling over the tokenized time series
and equipping the temporal features with static discriminative
information.
Temporal Position Encoding. Like most transformer-based
architectures, we incorporate positional encodings to help each
time series token be aware of its positional information. While
vanilla or learnable positional encodings are commonly used,
they often overlook important timestamp information that
reveals natural temporal dynamics, such as the month, week,
and hour. Recent advancements in multivariate time series
analysis have attempted to leverage such golden information
[21], [22], but they still possess a significant inductive bias.
For instance, the assumption that durations such as a week
or a day intrinsically display cyclical signal patterns is often
taken as given.

Different from existing methods, we introduce a novel
temporal position encoding to harness the timestamp in-
formation in an adaptive fashion. Drawing inspiration from
Time2Vec [48], we assume that the representation of each
timestamp is composed of a non-periodic component and sev-
eral periodic dimensions. Consider the input calendar feature
xt ∈ RC at timestamp t, the corresponding time embedding
can be derived as:

ht = [Wnpxt + bnp]︸ ︷︷ ︸
non-periodic

⊕ [F(Wpxt + bp)]︸ ︷︷ ︸
periodic

(4)

where ⊕ denotes the concatenation operation, F(·) represents
the periodic activation function, such as sine and cosine
function. The terms Wnp ∈ R1×C and Wp ∈ R(d−1)×C are
learnable parameters, while bnp and bp are the corresponding
bias associated with these parameters.

In this way, we can construct cyclical factors in a learnable
manner, dispensing with empirical configurations. Moreover,
the quantity of periodic patterns in the time features can be
controlled flexibly by adjusting the dimension of the time
embedding. To ensure compatibility with the shape of the tok-
enized signal patch, we also apply a stride-p 1×p convolution
on the derived time embeddings, yielding the final temporal
position encodings Ht = [h1

t , · · · , hkt ]. We further add this



specific positional information into signal token embeddings
Hi
s as the input for the vanilla Transformer encoder to capture

inter-patch correlations, which takes the form:

H̃i
s = TransformerEncoder

(
Hi
s +Ht

)
(5)

Spatial-Temporal Cross Attention. Following the idea of de-
coupled spatial-temporal representations, we develop a cross-
attention mechanism to serve the second function of SGTT:
equipping the temporal features with static spatial attributes
to provide discriminative information. To this end, we treat
the spatial representation hig of the i-th node as the query to
compute the compatibility function in conjunction with each
term of the signal token embeddings H̃i

s, which takes the form:

h̃ig ← Aggregate
∀l∈{1,··· ,k}

(
Attention(hig, h̃

i,l
s ) · Value(h̃i,ls )

)
(6)

We remark that the static node representation remains in-
dependent of the current input time sequence, the latter of
which keeps changing during the training phase. This could
introduce misleading gradient flows from static spatial to
dynamic temporal modeling. To tackle this issue, we employ a
gradient-stop mechanism for each cross-attention connection,
isolating the static spatial influence from the dynamic temporal
tokens. Finally, the dual-channel of SGTT produces both
updated temporal and spatial embeddings, which are fused
together after the stacked SGTT blocks to obtain the final
spatial-guided temporal representation as follows:

zi = fΦ

([
h̃i,1s ; · · · ; h̃i,ks ; h̃ig

])
(7)

where fΦ is a fully connected feed-forward network parame-
terized with Φ and [·; ·] denotes concatenation.

E. Spatial-Temporal Masked AutoEncoder

Motivated by the recent progress of using denoising au-
toencoders for representation learning in vision [3] and
text [49], we develop a Spatial-Temporal Masked Autoencoder
to achieve effective multivariate time series pre-training. The
goal is to approximate the distribution of MTS and generate
comprehensive representations within a unified framework.
Spacetime Masking. We employ a spacetime-agnostic aug-
mentation tailored for the spatiotemporal data structure in
multivariate time series. Specifically, we randomly sample
valid observations across both spatial and temporal dimen-
sions in accordance with a Bernoulli distribution, resulting
in a mask M(ρ) that is characterized by probabilities ρ.
In contrast to the commonly used time-only or space-only
strategies which perform sampling solely within a single
dimension [12], this augmentation aligns more closely with
the principle of decoupled representations. Moreover, unlike
the prevalent approach in Masked Autoenoders [3], [4] where
sampling is done without replacement, we replace the sampled
observations with a default value that signifies the missing
case. Since the practical signals that we investigate contain
inherent irregular missing data, this adaptation is expected to
enhance the robustness of the pre-trained encoder.

Time Series Reconstruction. In terms of information density,
the time series shares similarities with vision, in that both
exhibit heavy information redundancy. For 2D images and
3D videos, using Transformers as Decoders to discern the
semantic content of the learned representations has become
mainstream, as evidenced by approaches like MAE [3] and
VideoMAE [4]. Conversely, we remark that a 1D time series
typically contains substantially less semantic information, as
exemplified by a 24-step signal value sequence. In this context,
the model choice of the decoder becomes trivial and a simple
MLP proves to be adequately efficient.

Once the lightweight Decoder outputs the reconstructed
multivariate time series Sout, our target is to enforce both
masked and unmasked signals aligning with the input ground
truth Sin. Specifically, we optimize the following objective:

L = Lvalid + λ ∗ Lmask

Lmask =
1

∥M∥1
∥M⊙ (Sout − Sin)∥1

Lvalid =
1

∥1−M∥1
∥(1−M)⊙ (Sout − Sin)∥1

(8)

where λ is a hyper-parameter. Terms Lmask and Lvalid
denote the reconstruction loss for the sampled masks and the
unsampled valid values, respectively.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. To evaluate the efficacy of DeSTR, we collected
large-scale traffic flow data across three distinct cities in
China from 1/Jan/2023 to 31/Mar/2023, namely Zhuzhou,
Guangzhou and Yizhuang. Each dataset records the vehicle
volume in different directions at each intersection. Unlike pre-
viously used traffic datasets, the collected practical data covers
a larger scale of nodes, well supporting the exploration into the
data scaling property for multivariate time series pre-training.
We aggregated the original data into 5-minute intervals and
preprocessed the flow values using z-score normalization. Be-
sides, the road network is an asymmetric graph characterized
by the Euclidean distance between sensor nodes. In addition to
traffic data, we also conducted experiments on an open-source
geo-tagged time series dataset [50], which records the Air
Quality Index (AQI) across three major Chinese cities: Bejing,
Tianjin, and Guangzhou. Each dataset encapsulates hourly air
quality statistics recorded by various stations from 1/May/2014
to 30/April/2015. Following previous works [41], we apply a
threhold Gaussian kernel to the geographic distances between
stations to obtain the undirected adjacency matrix. Table II
presents the details of these pre-training datasets.
Tasks. We fine-tune the pre-trained model on the following
downstream tasks to validate its generalization capability:

Time Series Forecasting. Given a series of observations
{x1, . . . , xT } spanning the past T timesteps, the goal of time
series forecasting is to predict the values {xT+1, . . . , xT+H}
for the next H timesteps. Consistent with previous stud-
ies [24], [28], we divided the datasets chronologically into



TABLE II: Statistics of datasets

DATASETS NODES EDGES TIMESTEPS MISSINGRATIO

Tr
af

fic Zhuzhou 329 372 25546 15.30%
Guangzhou 357 251 25541 16.16%
Yizhuang 1402 1492 25827 37.96%

A
Q

I Beijing 36 38 8759 13.25%
Tianjin 26 28 8759 18.67%

Guangzhou 37 64 8759 17.09%

training, validation, and testing sets following a 6:2:2 partition-
ing scheme. In experiments, we use the past 24 timesteps for
prediction and report results for varying forecasting horizons,
specifically at 3/6/12 timesteps. For a comprehensive compar-
ative assessment, we choose three distinct categories of base-
line models, including Deep Sequential Models (FC-LSTM,
TCN, DLinear), STGNN-based models (ASTGCN, AGCRN,
STGODE, DSTAGNN), and Time Series Pre-training models
(TNC, TS2Vec, Patch2TST):

• FC-LSTM: which employs a fully connected layer on
input features, processed with LSTM.

• TCN [17]: which combines dilated convolution and causal
convolution to extract the dense signal embeddings.

• DLinear [51]: which decomposes the input time series
into trend and seasonality patterns and handle these two
patterns separately with simple linear layers.

• ASTGCN [23]: which introduces spatial-temporal atten-
tion mechanism to capture the dynamic spatial-temporal
correlations.

• AGCRN [24]: which attempts to capture node-specific pat-
terns with node adaptive parameter learning and generate
the graph in an adaptive manner.

• STGODE [26]: which captures spatial-temporal dynamics
with a tensor-based ordinary differential equation.

• DSTAGNN [28]: which introduces Wasserstein distance to
construct the spatial-temporal aware graph and process the
time series with multiple spatial-tempotal attention blocks.

• TNC [9]: which is multivariate time series representation
framework that employs contrastive learning on neighbor-
ing time points.

• TS2Vec [10]: which introduces contrastive learning on
both temporal and spatial dimensions to obtain more
discriminative representations.

• PatchTST [12]: which is a fashion framework for time
series representation learning based on the masked au-
toencoding strategy.

Time Series Imputation. Given a sequence of observations
x = (x1, . . . , xT ) spanning T timesteps, along with a binary
masking vector m = (m1, . . . ,mT ) indicating the absence
of xi. The objective of time series imputation is to estimate
the missing values by leveraging the observed features. In
practice, we concentrate on the out-of-sample scenario, a more
challenging problem where the model is trained and evaluated
on disjoint sequences [41]. Specifically, we partitioned the
dataset temporally in the same fashion as in the forecasting
task. Building upon previous studies [42], we simulated the
presence of missing data by randomly masking 30%/50%/70%

of valid time series and utilizing a window size of 24 steps.
In addition to adopting time series pre-trained models as
comparative baselines (TNC, TS2Vec, Patch2TST), similar
to those employed in forecasting tasks, we also compare
DeSTR against three other categories of imputation-oriented
models, including Statistical Methods (MEAN, KNN, MICE),
Deep Sequential Models (BRITS, SAITS), and STGNN-based
models (GRTN, SPIN):
• MEAN: which impute the missing data naively with the

mean value of observed data at the same time point.
• KNN [32]: which considers the relationships of different

variables to impute the missing values.
• MICE [52]: which iteratively impute the missing data using

multiple regression models.
• BRITS [35]: which treats the inputs as a RNN graph and

impute the missing values in a bidirectional manner.
• SAITS [37]: which introduces self-attention mechanism

into time series imputation.
• GRIN [41]: which uses a bidirectional RNN graph and

process the hidden representations with a spatial decoder.
• SPIN [42]: which is a fully attention-based architecture that

impute the missing values on sparse discrete observations.
Implementations. We employ a temporal convolution stem
comprising three layers of masked causal convolutions and
set parameter p to 4, tokenizing the 24-step time series into 6
patches. For the spatial convolution, two layers of GNN are
used to extract the static node features. We use two layers
of SGTT blocks to fuse the temporal and spatial represen-
tations, maintaining a fixed number of four multi-heads in
the attention mechanism. During pre-training, the ratio of
spacetime-agnostic masking ρ is set to 0.4 and the window
size is maintained at 24 steps. The reconstruction decoder is
structured as a two-layer MLP and the hyper-parameter λ is
set to 6. The comprehensive pre-training is performed solely
on the training data for 200 epochs, and we use a cosine
learning rate [53] of 5e−4 warming up for 20 epochs. In
addition, we use the AdamW optimizer and set the batch size
to 28. For each downstream task, two training alternatives
are provided: (1) an end-to-end supervised learning strategy
that involves pre-training the DeSTR from scratch, and (2)
replacing the reconstruction decoder with an MLP head and
fine-tuning the entire network. For all baseline models, we
follow the parameter configurations specified in their original
works to reproduce the results. Additionally, to ensure fairness
in evaluation, the dimension of the hidden embedding across
all models is standardized to 128. We use 4 Nvidia Tesla V100
32G GPUs to perform the pre-training and conduct all end-to-
end supervised training on a single GPU. It takes about 8 hours
to pre-train DeSTR. In the fine-tuning stage, we use a constant
learning rate schedule with a learning rate of 1× 10−3. Both
the data and source codes have been made publicly accessible
at: https://github.com/zruiii/DeSTR.

B. Overall Performance

Results on forecasting. Table III details comparative time
series forecasting results of DeSTR (both supervised from

https://github.com/zruiii/DeSTR


TABLE III: The comparison results for time series forecasting with DeSTR. We use prediction horizons of 3/6/12 steps for
all datasets. The best results are highlighted in bold and the second-best are underlined.

Traffic
Datasets

Zhuzhou Guangzhou Yizhuang

RMSE MAE RMSE MAE RMSE MAE

FC-LSTM 5.740 / 6.102 / 6.777 3.337 / 3.498 / 3.794 5.652 / 5.981 / 6.762 2.904 / 3.029 / 3.317 5.325 / 6.007 / 7.050 2.422 / 2.628 / 2.998
TCN 5.886 / 6.359 / 7.090 3.413 / 3.619 / 3.941 6.031 / 6.476 / 7.395 3.059 / 3.217 / 3.511 5.578 / 6.253 / 7.267 2.540 / 2.777 / 3.127

DLinear 6.168 / 6.652 / 7.581 3.527 / 3.731 / 4.097 5.883 / 6.345 / 7.467 2.993 / 3.151 / 3.510 6.022 / 6.596 / 7.494 2.791 / 3.029 / 3.395
ASTGCN 6.071 / 6.457 / 7.212 3.451 / 3.615 / 3.941 6.167 / 6.731 / 7.855 3.083 / 3.298 / 3.655 6.055 / 6.581 / 7.371 2.839 / 3.038 / 3.348
AGCRN 5.865 / 6.192 / 6.851 3.398 / 3.545 / 3.840 5.674 / 5.914 / 6.504 2.919 / 3.012 / 3.238 6.077 / 6.745 / 7.872 2.871 / 3.112 / 3.513
STGODE 5.579 / 5.852 / 6.352 3.227 / 3.332 / 3.558 5.521 / 5.778 / 6.508 2.864 / 2.966 / 3.220 4.851 / 5.265 / 6.025 2.374 / 2.519 / 2.785

DSTAGNN 5.751 / 6.021 / 6.599 3.299 / 3.417 / 3.667 5.751 / 6.006 / 6.638 2.933 / 3.030 / 3.290 5.849 / 6.397 / 7.229 2.820 / 3.070 / 3.425
TNC 5.838 / 6.151 / 6.493 3.281 / 3.514 / 3.773 5.691 / 5.788 / 6.098 2.855 / 2.931 / 3.224 5.255 / 5.422 / 5.650 2.578 / 2.647 / 2.876

TS2Vec 5.824 / 6.132 / 6.678 3.257 / 3.474 / 3.681 5.820 / 6.044 / 6.943 2.953 / 3.027 / 3.274 OOM OOM
PatchTST 5.733 / 6.122 / 6.762 3.332 / 3.500 / 3.787 5.565 / 5.981 / 6.836 2.875 / 3.037 / 3.331 5.357 / 5.965 / 6.998 2.445 / 2.633 / 2.996

Supervised 5.462 / 5.678 / 5.959 3.161 / 3.237 / 3.323 5.146 / 5.293 / 5.589 2.671 / 2.717 / 2.804 4.420 / 4.638 / 4.947 2.113 / 2.171 / 2.256
Fine-tuning 5.424 / 5.618 / 5.843 3.124 / 3.192 / 3.278 5.224 / 5.406 / 5.663 2.686 / 2.740 / 2.826 4.113 / 4.287 / 4.552 2.045 / 2.098 / 2.177

AQI
Datasets

Beijing Tianjin Guangzhou

RMSE MAE RMSE MAE RMSE MAE

FC-LSTM 35.440 / 43.363 / 53.068 20.539 / 26.033 / 34.166 25.924 / 32.921 / 38.331 15.431 / 21.074 / 25.219 11.233 / 13.657 / 16.256 6.807 / 8.515 / 10.467
TCN 35.630 / 43.906 / 52.041 20.281 / 26.523 / 34.566 26.215 / 32.773 / 37.886 16.544 / 20.117 / 25.175 11.065 / 13.526 / 16.185 6.819 / 8.505 / 10.498

DLinear 35.353 / 43.696 / 53.027 19.094 / 25.368 / 33.393 26.070 / 31.763 / 37.171 15.520 / 21.153 / 25.208 11.072 / 13.513 / 16.180 6.770 / 8.464 / 10.423
ASTGCN 36.180 / 44.655 / 53.702 20.104 / 25.248 / 32.797 27.089 / 32.658 / 37.319 16.555 / 21.058 / 25.992 11.293 / 13.775 / 16.326 7.200 / 8.911 / 10.765
AGCRN 36.389 / 44.512 / 53.588 20.186 / 26.309 / 34.178 27.490 / 32.182 / 37.846 16.246 / 21.801 / 25.911 11.702 / 14.043 / 16.539 7.193 / 8.789 / 10.711
STGODE 33.891 / 42.185 / 51.815 18.795 / 24.864 / 32.704 25.325 / 32.712 / 37.074 15.309 / 20.607 / 24.844 10.518 / 13.001 / 15.951 6.691 / 8.835 / 10.463

DSTAGNN 34.262 / 42.754 / 52.195 19.238 / 25.714 / 33.888 27.235 / 33.071 / 38.826 16.391 / 21.004 / 25.138 11.573 / 14.066 / 16.625 7.403 / 9.341 / 11.106
TNC 35.785 / 43.886 / 53.067 19.599 / 25.136 / 33.675 26.122 / 32.505 / 38.513 15.721 / 21.034 / 25.581 11.165 / 13.663 / 16.315 6.908 / 8.674 / 10.878

TS2Vec 35.420 / 43.428 / 52.392 19.121 / 25.235 / 33.530 25.929 / 31.361 / 37.943 15.452 / 20.459 / 25.136 10.973 / 13.529 / 15.954 6.727 / 8.481 / 10.358
PatchTST 35.701 / 44.115 / 53.581 20.013 / 26.150 / 34.525 26.268 / 32.568 / 38.325 15.934 / 21.375 / 25.194 11.115 / 13.884 / 16.260 7.185 / 8.726 / 10.282

Supervised 33.613 / 41.851 / 51.172 17.941 / 23.189 / 31.125 24.920 / 31.163 / 36.519 15.077 / 19.872 / 24.364 10.931 / 13.278 / 16.010 6.508 / 8.355 / 10.108
Fine-tuning 33.242 / 40.304 / 50.531 17.445 / 22.298 / 30.760 24.268 / 30.867 / 36.120 14.827 / 19.303 / 23.888 10.137 / 12.514 / 15.137 6.299 / 8.005 / 9.876

scratch and fine-tuned) against other state-of-the-art ap-
proaches. Across the board for both Traffic and AQI datasets,
our method consistently outperforms the baseline models
under these two training procedures. Specifically, for the
traffic scenario, DeSTR achieves up to 7.9% improvement on
Zhuzhou, 12.9% on Guangzhou, and a substantial improve-
ment of 21.8% on Yizhuang, as measured by the MAE metric.
For the air quality data, our approach registers enhancements
of up to 7.2% on Beijing, 6.4% on Tianjin, and 5.8% on
Guangzhou. This demonstrates the superiority of DeSTR in
capturing the temporal dynamics of signals under real-world
noises. Besides, across a majority of the evaluated scenarios
(including traffic data from Zhuzhou and Yizhuang, along with
all three air quality datasets), we can observe that models fine-
tuned from pre-trained DeSTR exhibit enhanced performance
compared to those subject to end-to-end supervised training. In
particular, the enhancements manifest as a remarkable increase
in accuracy: a 3.5% reduction in MAE and an 8.0% reduction
in RMSE are observed for traffic forecasting in Yizhuang.
Similarly, air quality forecasting in Guangzhou experienced
improvements of 4.2% in MAE and 7.3% in RMSE. Regarding
the baseline models, a notable performance decline is observed
in adaptive graph-based STGNNs like ASTGCN and AGCRN,
falling even below TCN which lacks spatial correlation ca-
pabilities. We conjecture that the inherent missing data pre-
cludes these models from deriving comprehensive temporal
representations, adversely affecting latent graph learning. This
generated graph in turn misguides the information propagation
between nodes, leading to suboptimal performance. We also
observe that STGODE performs the best among all baselines,
which suggests the promising efficacy of integrating ordinary
differential equations to capture spatiotemporal dynamics and

employing multiple pre-defined graphs concurrently to mini-
mize learning biases. Moreover, among pre-training methods,
the contrastive-based models slightly outperform those based
on masked autoencoding. We attribute this to the ability of
temporal contrastive learning to implicitly capture temporal
dynamics, which benefits time series forecasting. However,
these methods typically require a large number of negative
samples [54], leading to substantial memory overhead and
failure to adapt to high-dimensional multivariate time series,
such as Yizhuang which encompasses thounds of nodes.

Results on imputation. We present a comprehensive compari-
son with time series imputation models in Table IV. Compared
to baseline models, DeSTR improves performance in ten
of the eighteen traffic flow imputation scenarios with fine-
tuning, achieving notable enhancements in the MAE metric
by up to 0.8% on Zhuzhou and a remarkable 18.6% on
Yizhuang. Furthermore, these advancements span across all
scenarios within the air quality imputation domain, marking
significant enhancements in the MAE metric by up to 7.5% in
Beijing, 6.0% in Tianjin, and 8.1% in Guangzhou. The results
demonstrate the ability of DeSTR to better fill in missing data
based on valid observations. Besides, we note that pre-training
consistently enhances performance in both types of data com-
pared to supervised training from scratch, with maximum gains
of 6.4% on traffic flow imputation in Guangzhou, and 7.3%
on air quality imputation in Tianjin. This empirical evidence
strongly validates the generalization capabilities of our pre-
training model. Among baseline models, the STGNN-based
SPIN model also achieves competitive results. However, it
suffers from high computational costs due to explicit real-
time message passing and fails to operate on large-scale
datasets like Yizhuang. In addition, we observe comparable



TABLE IV: The comparison results for time series imputation with DeSTR. We simulate missing scenario with 30%/50%/70%
masking ratio for all datasets. The best results are highlighted in bold and the second-best are underlined.

Traffic
Datasets

Zhuzhou Guangzhou Yizhuang

RMSE MAE RMSE MAE RMSE MAE

MEAN 6.774 / 6.779 / 6.820 3.960 / 3.964 / 3.984 8.409 / 8.432 / 8.474 4.029 / 4.033 / 4.054 5.984 / 5.985 / 5.992 2.796 / 2.794 / 2.801
KNN 5.804 / 6.124 / 6.628 3.446 / 3.589 / 3.809 5.900 / 6.089 / 6.339 3.092 / 3.179 / 3.301 4.513 / 5.164 / 5.993 2.280 / 2.510 / 2.813
MICE 6.774 / 6.779 / 6.820 3.960 / 3.964 / 3.984 8.409 / 8.433 / 8.474 4.029 / 4.033 / 4.054 9.260 / 9.253 / 9.250 4.460 / 4.460 / 4.458
BRITS 5.342 / 5.569 / 6.035 3.066 / 3.199 / 3.488 5.017 / 5.442 / 7.046 2.622 / 2.859 / 3.724 4.876 / 5.474 / 6.299 2.438 / 2.757 / 3.201
SAITS 6.168 / 7.554 / 9.728 3.544 / 4.690 / 6.234 7.287 / 9.151 / 11.912 3.639 / 4.711 / 6.116 9.156 / 9.389 / 9.481 4.258 / 4.372 / 4.410
SPIN 5.182 / 5.384 / 5.693 3.038 / 3.141 / 3.268 4.795 / 4.950 / 5.284 2.493 / 2.571 / 2.704 OOM OOM
GRIN 5.631 / 6.098 / 7.440 3.295 / 3.523 / 4.214 5.097 / 5.591 / 6.619 2.641 / 2.876 / 3.375 4.128 / 4.537 / 5.353 2.079 / 2.256 / 2.605
TNC 5.688 / 5.851 / 6.076 3.568 / 3.720 / 3.892 5.982 / 6.183 / 6.427 3.097 / 3.224 / 3.368 4.535 / 4.711 / 4.937 2.285 / 2.400 / 2.539

TS2Vec 5.680 / 5.842 / 6.066 3.549 / 3.701 / 3.871 5.780 / 6.174 / 6.417 2.962 / 3.078 / 3.210 OOM OOM
PatchTST 5.598 / 5.999 / 6.753 3.265 / 3.445 / 3.791 5.551 / 6.031 / 7.151 2.867 / 3.051 / 3.526 4.300 / 4.809 / 5.549 2.136 / 2.345 / 2.622

Supervised 5.210 / 5.550 / 6.283 3.072 / 3.224 / 3.546 5.251 / 5.487 / 6.066 2.727 / 2.823 / 3.041 3.777 / 4.026 / 4.365 1.938 / 2.031 / 2.171
Fine-tuning 5.140 / 5.356 / 5.898 3.033 / 3.114 / 3.368 4.943 / 5.138 / 5.560 2.602 / 2.686 / 2.847 3.747 / 3.979 / 4.344 1.918 / 1.994 / 2.116

AQI
Datasets

Beijing Tianjin Guangzhou

RMSE MAE RMSE MAE RMSE MAE

MEAN 31.729 / 31.557 / 32.621 18.705 / 18.863 / 19.304 24.853 / 24.972 / 26.211 16.271 / 16.444 / 17.165 14.452 / 14.650 / 14.999 9.686 / 9.790 / 10.081
KNN 21.511 / 23.481 / 26.226 12.888 / 13.986 / 15.852 20.847 / 21.801 / 24.112 12.796 / 13.716 / 15.298 12.443 / 13.468 / 15.195 8.347 / 8.975 / 10.172
MICE 32.014 / 31.926 / 32.943 18.800 / 18.992 / 19.381 24.853 / 24.970 / 25.182 16.271 / 16.444 / 17.078 14.452 / 14.650 / 15.005 9.686 / 9.790 / 10.084
BRITS 23.210 / 24.514 / 29.216 12.034 / 13.454 / 16.659 19.306 / 20.765 / 23.818 12.100 / 13.342 / 15.924 9.486 / 10.505 / 11.725 6.101 / 6.724 / 7.787
SAITS 26.686 / 34.643 / 51.352 15.007 / 22.182 / 36.333 19.788 / 24.999 / 32.145 13.070 / 17.614 / 23.908 10.519 / 12.930 / 16.225 6.783 / 8.510 / 11.393
SPIN 19.279 / 20.232 / 24.211 8.544 / 9.513 / 11.117 14.113 / 16.026 / 19.296 7.743 / 8.907 / 11.152 6.969 / 7.918 / 9.312 4.067 / 4.970 / 5.554
GRIN 19.099 / 20.744 / 25.252 9.801 / 11.337 / 13.804 14.258 / 16.635 / 19.797 8.069 / 9.463 / 11.936 7.005 / 7.920 / 9.873 4.075 / 4.714 / 5.796
TNC 22.486 / 23.542 / 23.613 13.248 / 13.771 / 13.951 15.618 / 15.728 / 18.333 10.171 / 11.852 / 12.562 8.832 / 9.577 / 11.363 5.452 / 7.051 / 7.806

TS2Vec 21.968 / 23.042 / 23.163 12.776 / 13.182 / 13.365 14.874 / 15.472 / 18.823 9.733 / 11.192 / 11.986 8.335 / 9.902 / 10.713 4.929 / 6.531 / 7.303
PatchTST 22.640 / 23.598 / 23.713 13.327 / 13.772 / 13.916 15.376 / 16.042 / 18.374 10.288 / 11.748 / 12.533 8.842 / 9.633 / 11.394 5.462 / 7.072 / 7.934

Supervised 18.010 / 19.753 / 21.283 8.162 / 8.960 / 10.898 13.596 / 15.657 / 18.749 7.587 / 9.434 / 11.647 6.492 / 7.291 / 9.276 3.966 / 4.641 / 5.480
Fine-tuning 17.189 / 18.942 / 20.469 7.945 / 8.158 / 10.282 12.770 / 14.845 / 17.862 7.279 / 8.630 / 10.791 6.233 / 7.131 / 9.130 3.737 / 4.419 / 5.414

performance between MICE and the simpler MEAN method,
which may be caused by the weak inter-variable correlations
and complex missing patterns of the data. We also notice that
BRITS and GRIN demonstrate remarkable results, indicating
bidirectional sequence modeling as a promising choice for
time series imputations. For pre-training models, we observe
a significant decrease in performance with methods based
on contrastive learning. This decline is attributed to these
methods mainly employing a linear probing protocol, which
leverages offline-inferred fixed representations as input to
downstream shallow architectures. As a result, the crucial non-
linear features in the time series are not fully pursued.

C. Main Properties

Mask sampling strategy. In Figure 3a, we compare the
forecasting performance of DeSTR on the Zhuzhou dataset,
considering different mask sampling strategies and a range
of masking ratios. The space-only masking, which removes
all valid signals from sampled nodes, yields the poorest
performance. Since no temporal information is present, the
reconstruction evolves into a zero-shot problem, which is
extremely hard for time series representation learning. We also
study time-only masking, wherein observations are uniformly
sampled across the temporal dimension for all nodes. Despite
its simplicity, its performance still falls short compared to
spacetime-agnostic augmentation. In the spacetime-agnostic
approach, an increase in the mask ratio first leads to a decrease
in prediction error, followed by an increase, with the optimal
mask ratio lying between 40− 70%. This trend suggests a
notable information redundancy in time series as opposed to
text, where the best practice of masking ratio is 15% [49].
We also observe a slight upward bump when the mask ratio

hits 50%, possibly due to the exact halving of valid values,
disrupting the information balance the model is adapted to.

Computational Costs. To empirically validate the efficiency
of DeSTR, we assess its performance by visually depicting
the trade-off between time series forecasting error and model
inference time. The analysis is performed on the largest
Yizhuang dataset and presented in Figure 3b. We observe
that DeSTR can achieve a low prediction error (3.278) while
ensuring a fast inference time (31ms). Compared with deep
sequential models, DeSTR provides significant performance
enhancements at a reasonable computational cost. For the
STGNN-based models, the real-time propagation of temporal
information between adjacent nodes results in a considerable
inference latency, especially for those that include additional
adaptive graph learning, such as ASTGCN. Conversely, De-
STR benefits from its architecture of decoupled represen-
tations, eschewing online message passing, and achieves a
5.6× speed-up compared to DSTAGNN and a 2.6× speed-
up compared to STGODE. Therefore, it can be concluded
that DeSTR emerges as a superior solution in terms of both
accuracy and computational efficiency.

Data scaling. We explore the data scaling of DeSTR by
varying the size of the pre-training dataset and comparing
the forecasting results of both supervised training and fine-
tuning on the Zhuzhou dataset in Figure 3. Compared to end-
to-end supervised training, the results indicate a consistent
performance improvement for fine-tuned models, whether the
pre-training is applied to a single Zhuzhou or multiple datasets.
Moreover, we can also observe a similar phenomenon of
data scaling commonly witnessed in NLP. Specifically, as
the amount of pre-training data increases, the performance of
models pre-trained on multi-region spatiotemporal data shows



(a) Masking Ratio. (b) MAE vs. Inference Time.
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Fig. 3: Main properties study of (a) mask sampling strategy, where space-only and time-only are sampled at a 40% masking
ratio; (b) computation costs comparison among deep sequential models, spatial-temporal graph neural networks and our DeSTR;
(c) data scaling capability, where ZZ, GZ, YZ are the abbreviations for Zhuzhou, Guangzhou, and Yizhuang.

TABLE V: The comparison results for long-term time series
forecasting on Zhuzhou.

Models RMSE MAE

FC-LSTM 8.562 / 8.878 / 8.934 / 9.372 5.074 / 5.241 / 5.279 / 5.404
TCN 9.032 / 9.116 / 9.372 / 9.726 6.224 / 6.227 / 6.557 / 6.861

DLinear 8.233 / 8.729 / 8.862 / 9.170 4.392 / 4.650 / 4.732 / 5.282
ASTGCN 8.115 / 8.597 / 8.876 / 9.228 4.386 / 4.695 / 4.784 / 5.272
AGCRN 8.265 / 8.526 / 8.627 / 8.964 4.381 / 4.518 / 4.553 / 4.781
STGODE 6.866 / 6.925 / 7.181 / 7.775 4.058 / 4.145 / 4.159 / 4.293

DSTAGNN 6.952 / 7.130 / 7.829 / 8.023 4.086 / 4.164 / 4.248 / 4.325
TNC 7.603 / 7.677 / 7.694 / 7.854 4.239 / 4.343 / 4.510 / 4.712

TS2Vec 7.146 / 7.262 / 7.311 / 7.672 4.061 / 4.136 / 4.283 / 4.356
PatchTST 7.383 / 7.436 / 7.506 / 7.798 4.246 / 4.270 / 4.275 / 4.323

Supervised 6.759 / 6.822 / 7.137 / 7.492 3.975 / 4.084 / 4.127 / 4.229
Fine-tuning 6.668 / 6.784 / 6.806 / 7.059 3.818 / 4.027 / 4.065 / 4.105

remarkable improvements. These encouraging results suggest
that DeSTR is a general spatiotemporal learner and provides
a promising path for gathering more distinct regional data to
further enhance the effectiveness of the pre-training model.
Long-term forecasting. To validate the effectiveness of our
approach in long-term time series forecasting tasks, we also
conducted experiments to forecast the observations of future
96/192/336/720 timesteps based on the past 96 timesteps,
aligning with the prior studies [12]. Table V reports the
comparative results on the Zhuzhou dataset. We can find that
despite a relative decline in predictive accuracy for long-
term forecasting compared to short-term scenarios, DeSTR
consistently outperforms all other models. The pre-training
still benefits DeSTR under long-term forecasting, yielding
an approximate 3.0% enhancement in the MAE metric for
720-step forecasts. In addition, it is worth noting that, in
contrast to 12-step forecasts, the performance of DeSTR in
96-step forecasting experiences a smaller reduction in MAE
by 22.2%, a decrement that is notably smaller than that of
the best baseline model STGODE, which diminishes by about
25.7%. This indicates that as the prediction window increases,
DeSTR maintains a more stable performance and demonstrates
superior robustness.

D. Ablation Study

Main components. To validate the contribution of several key
components of DeSTR, we carry out ablation studies focusing
on the masked causal convolution (MCC) and SGTT block. We
conduct end-to-end supervised training on the Zhuzhou dataset
and present the comparison in Table VI. Specifically, we sub-

TABLE VI: Ablation study on the main modules, where MAE
on 12-steps forecasting and 70% imputation is reported.

DeSTR Variants Forecasting Imputation

MCC→TCN 3.335 3.570
MCC→LSTM 3.331 3.552
MCC→MLP 3.384 3.553
SGTT w/o spatial 3.334 3.585
SGTT w/o stop-grad 3.331 3.608
DeSTR w/o Lvalid 3.338 3.580
DeSTR 3.323 3.546

stitute MCC with three alternatives: (1) TCN, (2) LSTM, and
(3) MLP for token embedding as utilized in PatchTST [12].
Among these, MCC yields the most superior results in both
tasks and MLP performs the worst. Additionally, we also
notice a comparable performance when using LSTM to capture
temporal dynamics. However, this RNN architecture is not as
efficient as MCC due to its limitations on parallelization.

To investigate the efficacy of incorporating static spatial
discriminative information into temporal features, we devise
two variants: The first one eliminates the spatial embedding
and employs Transformer to process the temporal token repre-
sentations. The other variant excludes the stop-grad operation,
in this context, the spatial embedding can be seen as a variate-
specific [CLS] which plays a similar role with the [CLS]
token in the classic Transformer architecture. We observe
a considerable performance drop when back-propagating the
gradients from the spatial module to the temporal module, po-
tentially due to unstable training. Moreover, the lack of spatial
information notably diminishes the discrimination capability
of DeSTR across various variables, leading to suboptimal per-
formance. We also assess the effectiveness of DeSTR without
optimizing for the reconstruction of valid values, which results
in a slight performance decline. To sum up, this empirical
evidence well supports the effectiveness of MCC in extracting
temporal features from signals with irregular missing patterns
and highlights the benefits of SGTT for integrating spatial and
temporal representations.
Pretext Task. To investigate the potential advantages of em-
ploying Contrastive Learning (CL) in the pre-training of time
series data, we extend our analysis to include two distinct ex-
perimental setups: The first variant transitions from the MAE
framework to a purely CL-based approach for self-supervised
learning, denoted as MAE→CL. The second variant integrates



(a) Contrastive Learning for Pre-training. (b) Parameter Sensitivity on Kernel Size p. (c) Parameter Sensitivity on Loss Weight λ.
Fig. 4: (a) Ablation study of integrating contrastive learning as optimization objective in the pre-training phase; (b) parameter
sensitivity study on the kernel size p in the temporal convolution stem; (c) parameter sensitivity study on the loss weight λ
for masked data reconstruction.

both MAE and CL as the optimization objectives through a
weighted sum of their losses, denoted as MAE+CL. In these
experiments, we adopt the debiased contrastive objective from
the state-of-the-art method TNC [9], which aims to ensure that
the signal distribution from within a specific neighborhood
is discernible from that of signals outside the neighborhood.
The results of 12-step time series forecasting are shown in
Figure 4a. We can observe that both variants, MAE→CL
and MAE+CL, perform worse than using MAE only, which
indicates that the contrastive learning-based methods fall short
of MAE-based methods in the pre-training of multivariate
time series, especially in real-world scenarios characterized
by frequent missing observations. Moreover, the MAE+CL
variant, which combines denoising autoencoder principles with
contrastive learning, yields the worst results. This underperfor-
mance is attributed to the different optimization objectives of
these two approaches: MAE is designed to reconstruct masked
data, whereas CL aims to enhance discriminability among
distinct instances. This divergence potentially hinders model
convergence in the training phase, preventing the achievement
of optimal performance states.

E. Parameter Sensitivity

We conducted a detailed investigation into the sensitivity of
the parameter p, representing the kernel size in the temporal
convolution stem, as well as the impact of the weight Lmask
within the reconstruction loss. Specifically, we adjusted the
parameter p across the set {2, 3, 4, 6, 8, 12} to patchfy the 24-
step inputs into {12, 8, 6, 4, 3, 2} tokens, assessing its effect
on time series forecasting performance within an end-to-end
training scheme. As depicted in Figure 4b, we can observe
a trend across all three datasets where the performance of
DeSTR gradually improves with an increase in p. However,
performance begins to decline when p reaches 4. We hy-
pothesize that as p increases, the input tokens to the SGTT
become more compressed, facilitating a more effective capture
of temporal patterns by the transformer architecture. Beyond
a certain threshold, further compression leads to the loss of
fine-grained features, thereby diminishing forecast accuracy.
In addition, we also tuned the hyper-parameter λ across the
values {0.1, 0.2, 0.3, 1, 3, 6, 9} during the pre-training phase
and evaluated its impact on time series forecasting. As shown
in Figure 4c, the optimal performance is observed at λ = 6,

with larger or smaller weights would detrimentally affect the
effectiveness of DeSTR. This emphasizes the advantages of
integrating the reconstruction objectives for both masked and
valid data within the optimization. Furthermore, it indicates
that the constraints applied to the masked portions exert a
more significant influence on the efficacy of DeSTR during
the pre-training phase.

V. CONCLUSION

In this study, we presented DeSTR, a pioneering pre-training
framework tailored for multivariate time series across multi-
region spatiotemporal data. We introduced a novel backbone
network based on decoupled spatial-temporal representations,
to address the challenges posed by deep sequential models and
emerging STGNNs. Moreover, we utilized mask autoencoding
as the foundational pre-training paradigm which incorporates
the spacetime-agnostic augmentation. We successfully pre-
trained a unified representation learning framework across
three distinct real-world datasets. Extensive experiments were
conducted on two common downstream tasks, forecasting
and imputation, to compare the performance of this pre-
trained model against both state-of-the-art specifically-crafted
methods and other pre-training models. The empirical results
clearly demonstrate the high capability of DeSTR as an
effective and general spatiotemporal learner. Additionally, it is
promising to note that scaling the pre-training data provides
a remarkable performance boost, akin to the trends observed
in LLM. We anticipate that this insight will markedly propel
further exploration in spatial-temporal pre-training.
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