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ABSTRACT
Segmenting an urban area into regions is fundamentally important
for many spatio-temporal applications. The traditional grid-based
method offers a simple solution as it divides the city map into equal-
sized grids, but it fails to preserve semantic information about the
original urban structure. Several studies apply the road network to
cut the metropolitan area into meaningful blocks. However, exist-
ing works do not achieve good scalability, and there is no public
system provided so far. To address those problems, we build GEN-
REGION, the first scalable vector-based system which generates
reasonable regions using all levels of the road network. We conduct
an evaluation to prove the efficiency and effectiveness of our system.
We also publish our system as a Python library through Python
Package Index (PyPI), and demonstrate its utility using real public
datasets in this paper. The source code and useful instructions can
be found on https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/paddlespatial/tools/genregion.
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1 INTRODUCTION
Segmentation of urban area has been widely demanded as the
prerequisite for many spatio-temporal applications such as urban
region analysis [7], trajectory data mining [5] and traffic prediction
[3]. Many researchers instinctively choose the grid-based method
in their studies to segment a map into equal-sized rectangle grids
[2], which have little semantic meaning to the urban structure.

To generate useful regions while retaining city structure, urban
road networks offer a promising solution. These networks inher-
ently convey public transportation, human mobility, and urban
economic activity, delineating work and residential areas. Thus,
interconnecting road segments can divide the map into seman-
tic regions. Also, city road network data is readily available on
platforms like OpenStreetMap [1] and public repositories such as
Figshare.com [4]. Consequently, road network-based segmentation
provides a feasible solution with two primary models: raster-based
and vector-based, for geospatial analysis and map segmentation.

The raster-based model divides an area into discrete grid cells,
representing road segments as sequences of these units. Yuan et al.
[6] introduced a raster-based approach for urban area segmentation
using the road network. They employ morphological techniques
like dilation and thinning, to simplify the road map. Subsequently,
connected component labeling identifies connected pixels, forming
regions. Nevertheless, the model’s accuracy hinges on image quality
when discretizing the road network. Additionally, since both the
input and output of this model are images, it poses challenges
for researchers aiming to conduct geospatial analysis requiring
topological and mathematically-friendly region objects.

The vector-based model employs geometric primitives (points,
lines, polygons) for spatial objects, offering accurate and mathe-
matically intuitive representations. These representations facilitate
tasks like finding shortest paths and conducting topological analy-
ses. Zhao et al. [8] use a vector-based approach to segment urban
areas via the road network. They simplify the graph by merging
points within a threshold and recursively apply the Dijkstra algo-
rithm until the region becomes inseparable. Although this algo-
rithm addresses raster-based model issues, it introduces challenges
in boundary identification and scalability. Efficient border identifi-
cation remains undisclosed, and even with pre-prepared boundary
information, segmenting an entire urban area is unfeasible due to
the algorithm’s super-linear complexity concerning the number of
nodes in a complex road network.

https://github.com/PaddlePaddle/PaddleSpatial/tree/main/paddlespatial/tools/genregion
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/paddlespatial/tools/genregion
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In this paper, we release GENREGION - a practical system with
releasing an open-sourced Python Library for segmenting urban
areas using road networks through a vector-based approach. We
also demonstrate its utility using a public real-life dataset. To the
best of our knowledge, the GENREGION system is the first scalable
vector-based approach to generate regions based on all levels of
the road network.

The proposed approach views the urban road network as a graph,
where each road segment becomes an edge with its two endpoints
as vertices. We streamline the graph by grouping vertices based
on a novel distance metric and break each edge at intersection
points to maintain graph connectivity. Then, we introduce a novel
"leftness" indicator for each road segment and create regions by
iteratively identifying the leftmost vector of an edge until it forms
a closed loop. Finally, we amalgamate small blocks and eliminate
sub-regions to produce a concise list of meaningful polygons.

To summarize, we make these contributions:
• We significantly improve the scalability of the vector-based
map segmentation algorithm using the road network by
finding the leftmost vector recursively.

• We enhance the semantic level of the generated regions
through a new distance metric while clustering during graph
simplification.

• We release the first open-sourced system for region gener-
ation using the road network, and demonstrate its utility
using a real dataset.

2 SYSTEM OVERVIEW
This section clarifies our GENREGION system after we preprocess
the data into a list of road segments. It consists of three major
processing components to generate desired polygons: I) Simplifying
segments based on clustering; II) Generating closed polygons and
III) Polygons refinement.

2.1 Simplifying Segments Based on Clustering

(a) Interchangeable Roads (b) Curvy Roads

Figure 1: Intricate Road Network

The urban road network often has extraneous details that hinder
region generation. Interchangeable roads (Fig. 1a) can produce
redundant blocks, while curvy roads (Fig. 1b) or rings with many
sub-segments strain computations. To simplify the map, we use
a hierarchical clustering algorithm to decrease segment and node
counts.

The clustering algorithm groups nodes by location similarity.
Essentially, we simplify the graph by choosing each cluster’s center

as its representative point and then reconnecting these nodes to
restore segments. Zhao et al. [8] used this method, calculating
Euclidean distances between node pairs for segmentation. But, due
to vector-based geospatial primitives’ nature, this introduces bias.
The vector model represents curves with multiple straight lines,
meaning a zigzag road needs more nodes than a straight one of
similar length. If we cluster curved and straight roads based on
Euclidean distance, the weighted mean of their nodes will lean
more towards the curves than the straight paths (Fig. 2a).

To eliminate this bias, we adopt a new means to find represen-
tative points in a cluster and a novel distance metric to measure
spatial proximity. For each cluster, we record maximum and min-
imum x, y-coordinates of its members (we will call them MBRs
later) and generate a representative rectangle based on these values.
The new representative point of a cluster will be the center of its
representative rectangle, and it will no longer be influenced by the
number of nodes of a particularly curvy road type (Fig. 2b).

To directly measure the difference between MBRs of two clusters,
we redefine the distance metric for clustering nodes in the sameway
as finding the representative node. Eq. 1 and Fig. 2c demonstrate
our elaboration thoroughly. To obtain a simplified graph, we assign
each node as an initial cluster and hierarchically cluster nodes with
the well-defined distance metric. If the distance between two targets
is less than a given threshold, we combine sets of nodes in both
clusters and calculate the new MBR information.

By dividing themap into equal-sized grids and noting each node’s
location, we enhance algorithm efficiency. To identify mergeable
cluster candidates, there’s no need to sift through all clusters. We
only inspect clusters in the same or neighboring grids as the tar-
get cluster, as they’re the closest geographically. After merging
two clusters, we gather their connectivity data, assign grid info,
and remove them from consideration to avoid redundancy. The
hierarchical clustering ends when all cluster pairs exceed a dis-
tance threshold. Then, we simplify the road network by connecting
each group’s representative points using the retained connectivity
information.

(a) Original Center (b) MBR Center (c) Cluster Distance

Figure 2: Distance Metric

𝑑 (𝑐1, 𝑐2 ) =


∞ if 𝑐.𝑥 > T or 𝑐.𝑦 > T
(𝑐.𝑥 − 𝑐1.𝑥 ) + (𝑐.𝑦 − 𝑐1.𝑦) if 𝑐1.𝑥 + 𝑐1.𝑦 ≥ 𝑐2.𝑥 + 𝑐2.𝑦
(𝑐.𝑥 − 𝑐2.𝑥 ) + (𝑐.𝑦 − 𝑐2.𝑦) otherwise

(1)

2.2 Generating Closed Polygons
We adopt the same grid-based indexing technique to break seg-
ments into sub-segments by their intersections. This guarantees
that each road link only connects to others at its two end nodes.
After breaking those segments, we make each segment into two
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vectors which point in opposite directions, as a side can be used
twice at most by two adjacent regions. The invec (outvec) of a node
represents the vector that ends (starts) at it, and the invec (outvec)
of a vector stands for the vector that points to its start node (begins
at its end node). The leftness of a vector’s outvec is another new
concept. Ostensibly, we clarify that a left outvec of a vector sits at
its left side, and we also formally present a precise mathematical
definition for it (Eq. 2). Besides, we mark that an outvec is on the left
if it has the same direction as the vector. We also design a way to
calculate the value of the leftness with the help of the trigonometric
properties (Eq. 3), and the outvec with the smallest leftness value is
the leftmost outvec.

side(vec, outvec) =


left if 𝑠𝑖𝑛 (𝑣𝑒𝑐, 𝑜𝑢𝑡𝑣𝑒𝑐 ) > 0 or

𝑐𝑜𝑠 (𝑣𝑒𝑐, 𝑜𝑢𝑡𝑣𝑒𝑐 ) = 1
right otherwise

(2)

side = side(vec, outvec)
cos = cos(vec, outvec)

leftness = side * cos + (1 - side)
(3)

Our GENREGION system creates regions by continually identi-
fying the leftmost outvec for each vector. Every vector is used once,
and marked as "used" after forming part of a polygon. For every
untouched vector, we identify its leftmost outvec and continue this
for subsequent outvec until the end node of one aligns with the
original vector’s start node. This process defines a polygon’s bound-
ary, forming a region. This approach efficiently creates polygons,
ensuring the resulting polygon is the smallest to a vector’s left side.
By pinpointing every valid vector’s leftmost outvec, we swiftly
segment the map into a list of polygons.

2.3 Refining Polygons
Though usable polygons are generated in the previous step, there
are still two deficiencies needed to be improved, sub-polygons and
tiny/slender polygons. Sub-polygons represent areas already con-
tained in larger polygons, and a tiny polygon cannot characterize a
meaningful region solely. A slender polygon refers to a long and
narrow area which typically stands for a highway road.

The grid-based indexing technique catalyzes the computation
once more while searching for those unwanted polygons. Sub-
polygons can be detected by comparing their MBR information to
polygons in the same or nearby grids, and we will directly remove
them. Tiny and slender polygons are identified by thresholds of the
area and the width separately. We define the width of the polygon
as the ratio of its area to the perimeter, for the shape of a polygon
can be versatile. A tiny or slender polygon will generally melt with
the abutting region that shares the longest common segment. With
those undesired polygons handled, the ultimate output is delivered
to users as a list of well-defined Python Shapely polygons.

3 EVALUATION
A competent urban map segmentation algorithm should generate
regions with enough semantic information within a fair amount
of time. Therefore, we conduct experiments concerning these two
parts in the following paragraphs.

To measure the semantic level of the result, we use regions of
interest (ROI) for cities in China on Baidu Maps. These ROIs contain

boundary coordinates of important regions in a city, like hospitals,
shopping malls and schools. Thus, a high Jaccard similarity (ratio
of the intersection to the union) between a generated region to an
ROI indicates a meaningful segmentation. We compare the result
of our model to others using the road network of Beijing, Shanghai,
Shenzhen, Chengdu and Wuhan, located in the northeast, east,
southeast, southwest andmiddle of China, respectively.We replicate
the methods of Yuan et al. (mapseg) [6], Zhao et al. (shortpath) [8]
and grid-based segmentation in 100, 500 and 1000 meters separately.
Table 1 presents the evaluation result, and our system achieves the
best performance. Note that an average of 40% Jaccard Similarity
is comparatively high considering that ROIs does not contain the
portion of road. Compared to traditional grid-based methods, urban
map segmentation using the road network significantly improves
the semantic level of segmented regions.

Average Percent of Jaccard Similarity
Model Name Beijing Shanghai Shenzhen Wuhan Chengdu
GENREGION 41.0% 42.7% 41.1% 32.8% 38.4%
shortpath 39.3% 40.1% 38.8% 31.8% 37.0%
mapseg 33.4% 39.1% 30.9% 31.7% 37.5%
Grid-100 0.6% 0.3% 0.8% 0.5% 0.7%
Grid-500 11.8% 10.7% 10.9% 9.4% 10.4%
Grid-1000 8.2% 6.6% 6.3% 6.7% 6.3%
Table 1: Algorithms performances on different cities

Figure 3: Scalability

We also conduct experiments on the scalability of two vector-
based systems in road network with different levels of complexity.
The complexity of an urban road network is typically characterized
by the number of nodes or the number of segments. In Fig. 3, the left
graph shows the run time of GENREGION as the number of nodes
increases (same trend when using segments), and the right graph
compares the scalability of GENREGION and shortpath. We can see
that the extraordinary scalability of GENREGION outperforms the
scalability of shortpath.

4 DEMONSTRATION SCENARIO
Here we walk through an elaborate demonstration (Fig. 4) about
GENREGION. We show potential users the entire procedure of gen-
erating desired regions interactively.

Step 1. The data preprocessing step converts the raw road net-
work dataset to a list of segments. The road network dataset selected
in the demo is a public dataset of Beijing from Figshare.com [4].
The “preprocess” function takes the dataset path as the input. It ag-
gregates points that belong to the same road and generates 110,384
original road segments. In this demo, we also select a subset set of
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1. Data preprocessing

2. Simplification by Clustering

3. Generating Closed Polygons

4. Polygon Refinement

Figure 4: Demonstration of The Region Generation Process

4,297 road segments so that users can clearly understand what is
happening.

Step 2. The “simplification_by_clustering” function performs the
clustering process, taking original segments and cluster width as
input. The sampled network has 3,261 nodes, and our clustering
methods reduce the number of nodes to 907. In the graph, points
with different colors belong to distinct clusters, and their MBR
centers were used as the representation points. After reconnecting
segments to those new nodes, we reduced the number of segments
to 1,608.

Step 3. In this step, the “generating_closed_polygon" function
first breaks road segments by their intersections. Then, our algo-
rithm generates 858 polygons by recursively finding the leftmost
outvec for each vector.

Step 4. The final step calls “polygon_refinement" function, which
takes the input of the area threshold and the width threshold. Poly-
gons with area or width (ratio of the area to the perimeter) less
than the corresponding threshold will be merged into their neigh-
borhood. The function also remove sub-polygons to get rid of the
redundant information. Finally, we get 498 polygons from the cho-
sen Beijing road network and 12,813 total polygons from the entire
network.

Except for the step-by-step demonstration, we also prepare an
end-to-end function called “generate_regions” which aggregates
the last three steps and converts a processed road network to a list
of polygons directly in our Python package.

5 CONCLUSION
In this paper, we present an open-sourced scalable system to seg-
ment urban areas using road networks. We also demonstrate the
effectiveness and efficiency of our system.
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