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SDWPF: A Dataset for Spatial 
Dynamic Wind Power Forecasting 
over a Large Turbine Array
Jingbo Zhou   1,7 ✉, Xinjiang Lu1,7, Yixiong Xiao   1,7, Jian Tang2,3,7, Jiantao Su2,7, Yu Li1, Ji Liu4, 
Junfu Lyu3, Yanjun Ma4 & Dejing Dou5,6

Wind power is a clean and renewable energy, yet it poses integration challenges to the grid due to its 
variable nature. Thus, Wind Power Forecasting (WPF) is crucial for its successful integration. However, 
existing WPF datasets often cover only a limited number of turbines and lack detailed information. To 
bridge this gap and advance WPF research, we introduce the Spatial Dynamic Wind Power Forecasting 
dataset (SDWPF). The SDWPF dataset not only provides information on power generation and wind 
speed but also details the spatial distribution of the wind turbines and dynamic contextual factors 
specific to each turbine. These factors include weather information and the internal status of each wind 
turbine, thereby enriching the dataset and improving its applicability for predictive analysis. Further 
leveraging the potential of SDWPF, we initiated the ACM KDD Cup 2022, a competition distinguished 
as the foremost annual event in data mining, renowned for presenting cutting-edge challenges and 
attracting top talent from academia and industry. Our event successfully draws registrations from over 
2400 teams around the globe.

Background & Summary
The estimation of wind power supply in advance, known as Wind Power Forecasting (WPF), can benefit diverse 
downstream applications, including power systems operations, maintenance scheduling, and profit maximiza-
tion for power traders. Wind power plays a leading role in electricity production in the renewable energy sector 
due to its high efficiency, affordability, and environmental friendliness1–3. However, fluctuations and uncer-
tainties in wind speed and direction pose significant obstacles to the increase of wind power penetration in the 
power grid. These fluctuations necessitate power substitution from other sources that might not be immediately 
available (e.g., it generally takes at least six hours to fire up a coal plant) to maintain the balance between electric-
ity generation and consumption. Therefore, WPF has been widely recognized as one of the most critical issues 
in wind power integration and operation4–7. Nevertheless, carrying out WPF with high prediction accuracy is 
always demanded to ensure grid stability and supply security. Over the last decade, wind power has become one 
of the fastest-growing renewable energy sources globally8. Additionally, numerous studies have investigated 
wind power forecasting problems in recent years9–15.

Most datasets that underlie WPF research are not publicly accessible due to confidentiality agreements, 
as noted by16. Publicly available wind power datasets are typically aggregated over spatial regions, lack-
ing turbine-level measurements and turbine-specific power output17. The Supervisory Control And Data 
Acquisition (SCADA) system is responsible for collecting turbine-level measurements, which reflect dynamic 
contextual factors for each turbine, such as temperature, weather, and turbine internal status. Previous stud-
ies16,18 have demonstrated that these turbine-level dynamic context factors, along with turbine locations, can 
help increase the accuracy of WPF models. Although SCADA data can be easily utilized by deployed WPF sys-
tems in the real world, non-confidential datasets with such information remain scarce. For instance, the popular 
Kaggle datasets19,20 only provide the information of one turbine, whose location and data origins are unknown. 
To the best of our knowledge, the dataset with the largest number of turbines is shown in21, which consists of 
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only 32 turbines. However, a typical wind farm may have hundreds of turbines. A discussion about the related 
work of wind power forecasting data can be found in Supplementary Section A.

The absence of a large-scale, real-world public benchmark dataset may impede progress in WPF research. A 
real-world benchmark dataset plays a vital role in assessing the limits of existing methodologies, fostering tech-
nological advancements, and enhancing educational efforts in this domain. The significance of such a dataset can 
be detailed through three main aspects: (1) Model Verification: Public benchmark datasets establish evaluation 
standards for forecasting models, offering definitive guidelines for model selection and deployment. This stand-
ardization is essential for ensuring the accuracy and comparability of WPF methods. (2) Research Advancement: 
Benchmark datasets act as a proving ground for identifying and evaluating promising new technologies and 
models dedicated to WPF. By encouraging a competitive environment, these datasets drive research innova-
tion and spotlight areas ripe for breakthroughs. (3) Educational Value: Benchmark datasets are also educational 
resources that equip new researchers and students with a deeper understanding of wind power forecasting and 
the complexities of model development. Thus, the availability of a WPF benchmark dataset is instrumental in 
advancing wind power forecasting, contributing to a sustainable energy future.

In this paper, we introduce a novel dataset for Spatial Dynamic Wind Power Forecasting, denoted as SDWPF. 
This dataset includes the spatial distribution of wind turbines, along with dynamic contextual factors derived 
from the SCADA system. SDWPF is constructed based on the data of a real-world wind power farm belonging 
to China Longyuan Power Group Corp. Ltd., the largest wind power producer in China and Asia. Compared 
to the previously available datasets, SDWPF has two distinct features: (1) Spatial distribution: it includes the 
relative location and elevation of all wind turbines in a wind farm to model the spatial correlation among them. 
(2) Dynamic context: The dataset provides weather information and the internal status of each wind turbine, as 
detected by the SCADA system, to facilitate the forecasting task.

In the SDWPF dataset, the wind farm’s turbine array consists of 134 wind turbines, representing a notable 
enlargement in array size compared to the existing largest dataset, which contains merely 32 wind turbines. The 
SDWPF dataset encompasses wind power production records sourced from the wind farm’s SCADA system. The 
dataset covers 24 months and contains more than 11.4 million historical entries detailing wind, temperature, 
and the internal status of each turbine. These records are collected at a 10-minute resolution from each turbine 
within the turbine array of the wind farm. We also detail the data collection process, explore the characteristics 
in-depth, and discuss potential caveats associated with using this data. Additionally, we conducted an ablation 
study to demonstrate the effectiveness of several data features.

To explore the performance limits of existing WPF methods and to promote research in wind power tech-
nology using machine learning techniques, we utilize the SDWPF dataset to launch the ACM KDD Cup 2022 
Challenge, which has been the most prestigious annual data mining competition held in conjunction with the 
ACM SIGKDD conference. The information about the challenge is briefly introduced in Supplementary Section 
C.4 and is also available on the official website of the Baidu KDD Cup 202222. The Baidu KDD Cup attracted over 
2400 registration teams from around the world, some of which submitted cutting-edge models that produced 
significant improvements over our official baseline. It is our hope that the SDWPF dataset will foster the devel-
opment of wind power forecasting research, contributing to a sustainable energy future.

Methods
The SDWPF dataset is collected from the Supervisory Control and Data Acquisition (SCADA) system of a wind 
farm. Each wind turbine can generate wind power Patvi separately, and the outcome power of the wind farm is 
the sum of all the wind turbines. In other words, at time t, the output power of the wind farm is P Patvi

i= ∑ . 
An illustration of a wind farm’s turbine array is shown in Fig. 1(a).

Here we describe the turbine characteristics used to generate the SDWPF dataset. The data is derived from 
the SL1500/82 turbine type, produced by Sinovel Wind Group Co., Ltd. This turbine type utilizes reliable 

Fig. 1  Illustration of a turbine array and its spatial distribution. (a) An illustration of a wind farm’s turbine array 
and its output power. (b) Spatial distribution of wind turbines (x and y are with the meter unit) in the SDWPF 
dataset.
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doubly-fed power generation technology, with a rotor diameter of 82 meters and a hub height of 70 meters. It 
features three blades, each measuring 40.25 meters in length. For further information on the SL1500 series tur-
bines, please refer to the manufacturer’s official website23. More information about the turbine is also presented 
in Supplementary Section B.1 with Table S1.

Aside from the SCADA data, we also included the weather data such as relative humidity, wind speed, wind 
direction, etc. collected from the fifth generation of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Atmospheric Reanalyses of the global climate (ERA5)24. The decision to utilize meteorological data 
from ERA5 is driven by the need to isolate errors stemming from Numerical Weather Prediction (NWP) from 
those inherent to the WPF challenge. ERA5 seamlessly integrates past observations with contemporary numer-
ical models, yielding a consistent dataset spanning extensive temporal horizons. Its objective is to emulate real 
atmospheric conditions for each respective time step to the fullest extent feasible. In contrast, in practical appli-
cations, the accessible data primarily originates from NWP models, which anticipate the atmospheric state 
for a specific location and future time, leveraging both current and historical observational data. Although 
contemporary NWP models exhibit increasing precision, they inherently carry uncertainties, which become 
more pronounced for extended forecast durations. Using a reanalysis dataset such as ERA5 helps to mitigate the 
cumulative error inherent in NWP models, effectively decoupling the wind power forecasting problem from the 
challenges of weather prediction.

The relative position of all wind turbines in the wind turbine array is released to characterize the spatial cor-
relation among wind turbines. An illustration of the spatial distribution of the total 134 wind turbines is shown 
in Fig. 1(b). All turbines are of the same type and have identical hub heights (defined as the distance from the 
turbine platform to the rotor, excluding the length of the blades25). The units of x and y are meters. In addition 
to the relative position, the elevation of each wind turbine is also provided in the dataset based on the Terra 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 
(GDEM) Version 3 (ASTGTM)26.

Data Records
The SDWPF dataset spans from January 2020 to December 2021. It comprises SCADA data collected every 
10 minutes from each of the 134 wind turbines in the wind farm. The 10-minute record data represents average 
values over each 10-minute interval, derived from high-frequency (1 Hz) sampling by the SCADA system. The 
SDWPF dataset can be accessed through the Figshare repository27. The key statistics and details of the SDWPF 
dataset are provided in Table 1.

An introduction to the main attributes of the data in Table 2. The dataset includes critical external features, 
e.g., wind speed, wind direction, and external temperature, as well as essential internal features, e.g., the inside 
temperature, nacelle direction, and pitch angle of blades. The external features influence the wind power gener-
ation, while the internal features can indicate the operating status of each wind turbine.

We have released the dataset on the Figshare repository27. For easier utilization, we have divided the data-
set into two parts: sdwpf_kddcup and sdwpf_full. The sdwpf_kddcup comprises the original dataset used for 
the Baidu KDD Cup 2022, including both training and test datasets. The sdwpf_full provides a more extensive 
collection, featuring additional data not previously available during the KDD Cup, such as weather conditions, 
dates, and elevation. The sdwpf_full dataset contains three files, where sdwpf_turb_location_elevation.csv details 
the relative positions and elevations of all wind turbines within the dataset; sdwpf_2001_2112_full.csv includes 
data collected two years from the wind farm containing 134 wind turbines, spanning from Jan. 2020 to Dec. 
2021; and sdwpf_2001_2112_full.parquet is identical to sdwpf_2001_2112_full.csv, but in a different data format. 
sdwpf_full offers comprehensive enhancements over the sdwpf_kddcup including extend time span, enriched 
weather information, and expanded temporal details. A detailed comparison between sdwpf_full and sdwpf_
kddcup can be found in Supplementary Section B.2.

Technical Validation
In this section, we begin with an ablation study to examine the features of the SDWPF dataset. Additionally, we 
discuss some of the results from the KDD Cup 2022, which is recognized as one of the most prestigious competi-
tions in data science. More information about the experimental setting and evaluation experiment on the dataset 
can be found in Supplementary Section C.

Ablation study of features.  We conducted an ablation study to show the effectiveness of the additional 
features of SDWPF which is shown in Fig. 2. Here we use the Informer model to demonstrate this ablation study. 
W/Weather means to include the weather forecast features (in the future 48 days) that relate to the surrounding 
environment of the wind farm collected from ERA5 into the prediction model. W/o Wind means to remove the 
historical features of Wspd and Wdir from the input, W/o Temp means to remove the historical features of Etmp 
and Itmp from the input, and W/o Pos means to remove the historical features of Ndir, Pab1, Pab2, and Pab3 
from the input.

At first, this study showcases the effectiveness of weather forecast information for WPF. As we can see from 
Fig. 2, if putting the weather forecast data into the model, the RMSE of the Informer can significantly decline 

Time range Interval # of columns # of turbines # of records

Jan. 2020 to Dec. 2021 10 mins 19 134 11,361,191

Table 1.  Statistics of the SDWPF data.
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from 49.368 to 19.828; and its MAE decline from 31.862 to 13.268. This assessment reveals that weather forecast 
data can substantially enhance the accuracy of WPF predictions.

Second, the ablation study also verifies that the dynamic context features are helpful for WPF. The MAE of 
Informer based on historical dynamic context features is 31.862. If removing the Temp context features, the 
MAE becomes 35.004; if removing the Wind context feature, the MAE becomes 37.562; and if removing the Pos 
context features, the MAE becomes 34.684. This demonstrates shows the effectiveness of adding the dynamic 
context features into the model for accuracy improvement.

Evaluation on KDD Cup 2022.  In the KDD Cup 2022 challenge, an evaluation score that considers both 
MAE and RMSE has been adopted to assess the performance of all participating teams. The specific evaluation 
setting details are in Supplementary Section C.4. It should be noted that the selection of an evaluation metric can 
differentially affect the rank of the competing methods utilized by the teams. For instance, the RMSE places more 
emphasis on large errors, resulting in a substantial penalty in situations where such errors are undesirable. To 
strike a balance between penalizing large errors and minimizing errors, we utilize the average of MAE and RMSE 
to assess the participating teams in the challenge.

Figure 3 presents the evaluation scores of the top ten teams that participated in the KDD Cup 2022 chal-
lenge. Additionally, we compared all teams to a native baseline, namely the GRU. Note that the setting of Baidu 
KDD Cup 2022 is to forecast wind power solely based on historical information. Notably, we observed a sub-
stantial difference in prediction performance between the participating teams and the GRU baseline. The best 
evaluation score obtained by a team (HIK) was 44.917, where the baseline GRU score was 47.850 (as shown in 

Fig. 2  Ablation study of variables (weather forecast and dynamic context features) in the SDWPF dataset w.r.t. 
the wind power forecasting performance of the Informer model.

Column Column Name Specification Note

1 TurbID Wind turbine ID

2 Day Day of the record

3 Tmstamp Created time of the record Time zone UTC + 08:00

4 Wspd (m/s) The wind speed at the top of the turbine Recorded by mechanical anemometer

5 Wdir(°) Relative wind direction, which is the angle between the 
wind direction and the the turbine nacelle direction

Wind direction and nacelle direction are in degrees 
from true north

6 Etmp (°C) Temperature of the surrounding environment Measured outer surface of the nacelle

7 Itmp (°C) Temperature inside the turbine nacelle

8 Ndir (°) Nacelle direction, the yaw angle of the nacelle In degree from true north

9 Pab1 (°) Pitch angle of blade 1 The angle between the chord line and the rotation 
plane of the blade

10 Pab2 (°) Pitch angle of blade 2 Same as above

11 Pab3 (°) Pitch angle of blade 3 Same as above

12 Prtv (kW) Reactive power

13 T2m (°C) Temperature at 2 m above surface (ERA5)

14 Sp (Pa) Surface pressure from ERA5

15 RelH Relative humidity Derived based on 2 m dew point temperature and 
2m temperature using Python Package metpy

16 Wspd_w (m/s) Wind speed from ERA5 At height of 10 m

17 Wdir_w (°) Wind direction from ERA5 At height of 10 m

18 Tp (m) Total precipitation from ERA5

19 Patv (kW) Active power, the wind power produced by a wind turbine 
at a time stamp.

Table 2.  Column names and their specifications of the SDWPF data.
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Fig. 3). Therefore, the top-performing team reduced the prediction error (in terms of score in this setting) from 
the baseline GRU by 6.130%. It is worth noting that the improvement in evaluation score from the 10th team 
(SlienceGTeam) to the 1st team (HIK) was only 0.906% (SlienceGTeam vs. HIK: 45.327 vs. 44.917). This result 
highlights the high level of competitiveness in the KDD Cup challenge. Most of the top-performing teams have 
made their code open-source and published their technical reports on the official challenge website22. Thus, we 
expect to be able to evaluate future methods against these top-performing methods that deposited predictions 
in the Baidu KDD Cup 2022 challenge and therefore monitor the progress of wind power forecasting over time.

Usage Notes
We introduce a few caveats about when to use this data to train and evaluate the models. Attention needs to be 
paid to these caveats since there are always some outliers and missing values in the data due to data collection, 
system maintenance, and equipment failures. It is important to note that we did not apply any of the following 
described corrections to the released dataset. The processing method introduced is only a suggestion, and the 
actual application of these methods is up to the dataset users.

Zero values.  For a wind turbine, some active and reactive power readings might be noted as slightly negative 
values. This phenomenon is often associated with specific components like the control system and sensors, which 
draw power even when the turbine is not producing electricity. We can treat all the values which are smaller than 
0 as 0, i.e., if Patv < 0, then Patv = 0.

Missing values.  Note that due to some reasons, such as system maintenance and equipment failures, some 
sensor values at some time of a turbine are not collected from the SCADA system. These missing values will not 
be used for evaluating the prediction model. In other word, when Patvt j0+  is a missing value, we set 

− =+ +Patv Patv 0t j t j0 0
� �  regardless of the actual predicted value of Patvt j0+ .

Unknown values.  Sometimes, the wind turbines are stopped from generating power by external reasons 
such as wind turbine renovation and/or actively scheduling the powering to avoid overloading the grid. In these 
cases, the actual generated power of the wind turbine is unknown. These unknown values should also not be used 
for evaluating the prediction model. Similarly with the missing values, if Patvt j0+  is an unknown value, we always 
set − =+ +� �Patv Patv 0t j t j0 0

. Here we introduce two conditions to determine whether the target variable is 
unknown:

•	 When Patv≤0, and Wspd > 2.5 at time t, the actual active power Patv of this wind turbine at time t is 
unknown (since the wind speed is large enough to generate the power, the only reason that Patv≤0 is this 
turbine is stopped);

•	 When Pab1 > 89° or Pab2 > 89° or Pab3 > 89° (Pab1, Pab2, and Pab3 always have the same values) at time t, 
the actual active power Patv of this wind turbine at time t should be unknown (since no matter at then how 
large the wind speed is, the wind turbine is at rest in this situation).

Abnormal values.  There are some abnormal values collected from the SCADA system. If a data record has 
an abnormal value in any column, these values also should not be used for evaluating the model. Formally, if a 

Fig. 3  Performance evaluation on KDD Cup 2022. The X-axis shows the top ten participating teams in KDD 
Cup 2022 as well as the GRU baseline method. The evaluation score is a negatively oriented metric, signifying 
that lower values indicate better performance.

https://doi.org/10.1038/s41597-024-03427-5


6Scientific Data |          (2024) 11:649  | https://doi.org/10.1038/s41597-024-03427-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

wind turbine has an abnormal value at time t0 + j in any column, we always set � �− =+ +Patv Patv 0t j t j0 0
. Here 

we define two rules to identify abnormal values:

•	 The reasonable range for Ndir is [−720°, 720°], as the turbine system allows the nacelle to turn at most two 
rounds in one direction and would force the nacelle to return to the original position otherwise. Therefore, 
records beyond the range can be seen as outliers caused by the recording system. Thus, if at time t, there are 
Nidir > 720° or Nidir < −720°, then the recorded values of this wind turbine at time t is abnormal.

•	 The reasonable range for Wdir is [−180°, 180°]. Records beyond this range can be seen as outliers caused by 
the recording system. When there are Widr > 180° or Widr < −180° at time t, then the recorded values of this 
wind turbine at time t is abnormal.

In Table 3, we present statistics regarding the number of zero values, missing values, unknown values, and 
abnormal values (in the sdwpf_full data file). It is important to note that there is a significant overlap between 
zero values and unknown values. This overlap often arises because both can result from intentional adjustments, 
such as power scheduling to prevent grid overloading.

Code availability
The code to process the data and run baselines can be found in: https://github.com/PaddlePaddle/PaddleSpatial/
tree/main/apps/wpf_baseline_gru.
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