
ReFound: Crafting a Foundation Model for Urban Region
Understanding upon Language and Visual Foundations

Congxi Xiao†
School of Computer Science and

Technology, University of Science and
Technology of China

Hefei, China
xiaocongxi@mail.ustc.edu.cn

Jingbo Zhou∗
Business Intelligence Lab,

Baidu Research
Beijing, China

zhoujingbo@baidu.com

Yixiong Xiao
Business Intelligence Lab,

Baidu Research
Beijing, China

xiaoyixiong@baidu.com

Jizhou Huang
Baidu Inc.

Beijing, China
huangjizhou01@baidu.com

Hui Xiong∗
Thrust of Artificial Intelligence, The
Hong Kong University of Science and

Technology (Guangzhou)
Guangzhou, China

Department of Computer Science and
Engineering, The Hong Kong

University of Science and Technology
Hong Kong SAR, China

xionghui@ust.hk

ABSTRACT
Understanding urban regional characteristics is pivotal in driving
critical insights for urban planning and management. We have wit-
nessed the successful application of pre-trained Foundation Models
(FMs) in generating universal representations for various down-
stream tasks. However, applying this principle to the geospatial
domain remains challenging, primarily due to the difficulty of gath-
ering extensive data for developing a dedicated urban foundation
model. Though there have been some attempts to empower the ex-
isting FMs with urban data, most of them focus on single-modality
FMs without considering the multi-modality nature of urban region
understanding tasks. To address this gap, we introduce ReFound –
a novel framework for Re-training a Foundation model for urban
region understanding, harnessing the strengths of both language
and visual FMs. In this framework, we first invent a Mixture-of-
Geospatial-Expert (MoGE) Transformer, to effectively integrate the
embedding of multi-source geospatial data. Building on this, Re-
Found is enhanced by jointly distilling knowledge from language,
visual, and visual-language FMs respectively, thus augmenting its
generalization capabilities. Meanwhile, we design a masked geospa-
tial data modeling approach alongside a cross-modal spatial align-
ment mechanism, to enhance the spatial knowledge of ReFound
∗Corresponding authors. †This work was done when the first author was an intern at
Baidu Research under the supervision of Jingbo Zhou.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671992

derived from geospatial data. Extensive experiments conducted on
six real-world datasets over three urban region understanding tasks
demonstrate the superior performance of our framework.
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1 INTRODUCTION
Urban region understanding, aimed to quantitatively explore urban
regions’ specific characteristics, is essential for generating insights
crucial to informed, scientifically-based urban planning and man-
agement. Urban regions, fundamental to city life where people live,
work, and entertain, are becoming increasingly complex and diverse
due to accelerated urbanization. Consequently, leveraging publicly
available urban data and machine learning methods to infer regions’
attributes has gained significant research interest, encompassing
tasks like urban village detection [9, 59], population prediction
[3, 29], house price prediction [22, 49, 50, 54], community vibrancy
estimation [51] and socioeconomic forecasting [1, 14, 30, 53, 66].
These problems usually require special domain expertise, enough
labeled training data, and task-specific model designs.

In light of the successful application of Foundation Models (FMs)
in Natural Language Processing (NLP) and Computer Vision (CV),
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a promising direction is to apply the pre-training paradigm for
urban region understanding. This approach aims to develop an
FM that can generate universal region representation, applicable
to various downstream applications. However, general-purpose
FMs, such as GPT-3 [7], ViT [15], and CLIP [40], are mainly trained
with plain text and images, leading to underperformance in urban
tasks due to a lack of spatial domain knowledge [36]. A practical
necessity exists for developing specialized FMs tailored to urban
region understanding.

However, it is challenging to effectively build an FM for urban
region understanding, primarily due to the difficulty of acquiring
the vast amount of corpus to pre-train an urban FM, in contrast
to the general-purpose FMs. The ability of FMs, particularly large,
state-of-the-art transformer-based models, to generalize effectively
hinges on pre-training with extensive data. For instance, the GPT-3
[7] is trained with about 570 GB plaintext (45 TB before filtering).
Similarly, ImageNet-21k [11] and JFT [44] datasets, which are com-
monly used for pre-training visual FMs, encompass over 14 million
and 300 million images, respectively. Additionally, the CLIP model
was trained by Radford et al. [40] using a vast collection of 400
million image-text pairs.

In contrast, the volume of available urban data is significantly
less than that used to pre-train general-purpose FMs. An urban
area (i.e., a city) is usually segmented into only a few thousand to
tens of thousands of regions [3, 22]. Even if collecting data from
multiple cities, it remains insufficient compared to the datasets used
for general-purpose FM pre-training. This disparity necessitates
developing a pre-training strategy that allows our model to achieve
a comparable level of generality as FMs, but in a more data-efficient
manner. Consequently, a compelling approach is to incorporate spa-
tial knowledge of limited urban data, as well as the well-established
FMs to craft an FM for urban region understanding.

While there have been some pioneering attempts to incorpo-
rate spatial knowledge into pre-trained FMs for urban applications,
these studies typically focus on a single FM and have limited ca-
pacity to exploit multi-modal information for various urban tasks.
A few studies have explored pre-training or post-training FMs
using POI data with a language FM. For instance, SpaBERT [32]
pre-trains a BERT model that encodes POIs, taking into account
their relative positions, and GeoBERT [18] introduces a position
embedding to reflect the distance of each POI to the region center.
A recent study has pre-trained an FM from scratch using spatial
entities from OpenStreetMap [4]. Another category of approaches
construct geospatial visual FMs [37], using satellite imagery and
based on a general-purpose visual FM pre-trained on ImageNet.

Our motivation stems from the premise that leveraging multiple
well-established FMs with multi-modal urban data could be more
advantageous than relying on a single FM. In other words, rather
than depending solely on a language or a visual FM for training
an urban FM, our goal is to combine several FMs into a cohesive
framework. It would harness the textual data understanding ca-
pabilities of large language models, the image data understanding
skills of visual FMs (such as ViT [15]), and the cross-modal data
comprehension of visual-language FMs (e.g., CLIP [40]), to address
the multi-modal nature of region understanding tasks. Recent sur-
veys [36, 67] also highlight the necessity of combining and aligning
different modalities, like POIs and satellite images, each containing
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Figure 1: An illustration of the advantages of ReFound.

unique geospatial knowledge. It is identified as a significant chal-
lenge in developing FMs for urban applications. Consequently, there
is a clear need to design a framework capable of effectively inte-
grating multi-modal data (POIs and satellite images) and extracting
generalized knowledge from different FMs.

In this paper, we present a framework that can craft Re-training
a Foundation model for urban region understanding, termed as
ReFound, based on existing language FMs, visual FMs, and visual-
language FMs. As shown in Figure 1, we develop a tailored model
architecture, which learns in-domain knowledge from multi-modal
geospatial data while also leveraging the strong generality of exist-
ing FMs via knowledge distillation. This model is empowered with
both general and specific domain knowledge, thereby capable of
addressing a wide range of urban region understanding tasks.

Specifically, we propose to employ two primary data sources,
which are POI and satellite image data. These data types are readily
accessible via the Internet, which is a factor that greatly facilitates
their use in both the pre-training phase and various downstream
tasks. While other data types, such as human mobility [17, 64]
and street-view data [8, 24], may also be useful but have limited
coverage (e.g., difficulty in collection and privacy restrictions [26]).

To adapt to these geospatial data, we devise amulti-modal geospa-
tial data embedding layer. It integrates the textual and visual content
from POI and satellite image data within their respective spatial
contexts. Subsequently, we employ a Mixture-of-Geospatial-Expert
(MoGE) Transformer encoder. This encoder is specifically tailored
to adapt to the unique characteristics of both types of urban data
and facilitates a deep fusion between them. Upon this architecture,
we formulate three distinct distillation objectives. These objectives
are designed to transfer the extensive knowledge and generaliza-
tion capabilities from well-established pre-trained language FM,
visual FM, and visual-language FM, thereby augmenting ReFound’s
effectiveness. This approach also enables continual improvement
of our model by leveraging advancements in general-purpose FMs.
Additionally, to capture the nuances of the geospatial domain, we
introduce two self-supervised learning tasks specifically tailored
to urban data. The first is a unified objective for masking both
POI and satellite image data; the second involves a cross-modal
spatial alignment task, designed to align the semantics of the two
modalities based on their spatial relationships.

We conducted comprehensive evaluations of our framework
on three urban region understanding tasks across two cities. The
experimental results demonstrate that our framework achieves sig-
nificant improvements compared to other state-of-the-art methods.
The major contributions of this paper are summarized as follows.

• We present a novel framework, termed as ReFound, marking
the first endeavor to construct a special FM with multi-modal
urban data as input for urban region understanding. This
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model leverages well-established language and visual FMs,
and harnesses publicly available multi-modal urban data.

• To effectively build this model, we have carefully developed
several novel components, including the multi-modal geospa-
tial data embedding, the MoGE transformer, a distillation
approach from FMs, masked geospatial data modeling, and a
cross-modal spatial alignment mechanism.

• Comprehensive experimental evaluations have been conducted
to validate the effectiveness of ReFound, demonstrating its
superiority over state-of-the-art methods.

2 RELATEDWORK
Foundation Models. In recent years, foundation models (FMs)
have achieved great success across domains. Thanks to the powerful
Transformer model [48] and self-supervised learning techniques,
pre-trained FMs, e.g., BERT [12], GPT [41] and LLaMA [47], can
capture the universal knowledge underlyingmassive unlabeled data,
which can be employed in various tasks. Similarly, researchers in
CV domain also build large-scale visual FMs competent in diverse
vision tasks, where ViT [15], MAE [20] and BEiT [5] are well-known
examples. Multi-modal FMs, such as CLIP [40], BLIP [27], BEiT-3
[52] and GPT-4 [2] have brought widespread attention.

In particular, some specific FMs are developed for geospatial
domains. For example, SatMAE [10] and GFM [37] use masked
image modeling on satellite images to pre-train FMs for geospatial
applications. Some other studies also explore pre-training FMs for
geo-entities or urban space representation with POI-related data,
such as POI names [32], POI tags [18], map search history [21], ge-
ographic objects [13] and knowledge entities from OpenStreetMap
[4]. Especially, CityFM [4] aims to pre-train a model from scratch
to produce representations for different types of geo-entities. But
it is not designed to consider the satellite image data. These FMs
are mainly capable of modeling unimodal data, which cannot adapt
to diverse urban region understanding. More recently, UrbanCLIP
[60] combines multi-modal satellite images and LLM-generated
textual descriptions for urban region profiling, however, it directly
adopts the component trained for general language tasks, unlike
our specially designed architecture which can effectively model
the geographic data like POIs and capture its spatial characteristics.
There is a recent survey [65] comprehensively summarizing the
research efforts to constructing specific FMs for geospatial tasks. It
also highlights the critical role of integrating multi-modal urban
data and handling their spatial properties in building an FM for a
wide array of urban applications.

Urban Region Embedding. Studies of urban region embed-
ding, which focus on learning general urban region representation
in a self-supervised manner, can be also viewed as applying the
pre-training paradigm to obtain a model transferred to downstream
urban region understanding tasks. Basically, these approaches first
leverage uni-modal or multi-modal urban data to construct an ur-
ban region’s attributes (e.g., POI categories [22], satellite image
features [3], street views [30] and building groups [31]), and to char-
acterize dependencies among regions (e.g., human mobility [57],
functionality similarity [64], spatial proximity [31] and multiple
relationships upon an urban knowledge graph [34]) from differ-
ent views. Then, the region embeddings are learned by preserving

certain region attributes and inter-region correlations, such as de-
veloping region relation reconstruction tasks and designing related
contrastive learning objectives [63]. However, the typical practice
of these methods is to train a specific model for an individual city
without considering how to utilize the well-established FMs, which
is hard to obtain high generalization ability like FMs.

3 PRELIMINARIES
In this section, we first introduce the basic concepts and data used
in this study, then clarify the goal of our work.

Region. Regions refer to the geographical divisions of an urban
area (e.g., a city) under a certain partition strategy. Different regions
present different characteristics. In our work, without loss of gen-
erality, we obtain the region set R = {𝑅1, 𝑅2, ..., 𝑅𝑛} by partitioning
the urban area into non-overlapping grids of size 𝐿𝑟𝑚 × 𝐿𝑟𝑚.

Point of Interest. Points of interest (POIs) are venues offering
a variety of services, such as restaurants and hospitals. Within a
region 𝑅𝑖 , there are usually a set of POIs P𝑖 = {𝑃𝑖1, 𝑃𝑖2, ..., 𝑃𝑖𝑚𝑖

},
where𝑚𝑖 denotes the number of POIs. Each POI has three attributes:
textual name, category-id, and location (e.g., longitude and latitude),
denoted as 𝑛𝑎𝑚𝑒𝑖 𝑗 , 𝑐𝑖 𝑗 and 𝑙𝑜𝑐𝑖 𝑗 , respectively. These attributes pro-
vide rich functional and spatial information of POIs, which help
characterize potential human activities within the region.

Satellite Image. Each region 𝑅𝑖 is covered by a satellite image
𝑆𝑖 that captures its visual appearance from the over-head view. It
contains rich geospatial information, such as spatial distributions
of buildings and roads, as well as land-use types, which have been
shown to be helpful in diverse region understanding tasks [25, 30].

The goal of this work is to pre-train a multi-modal foundation
model for urban region understanding, based on existing FMs and
urban data including POIs and satellite images. This model is ex-
pected to derive region representations with rich semantics to gen-
erally address various urban region understanding tasks.

4 METHODOLOGY
In this section, we detail our ReFound framework.We first introduce
the model architecture design of ReFound. Then upon the model
architecture, we propose how to empower ReFound with the ability
to learn universal urban region representation with pre-training.

4.1 Architecture Design of the Framework
For the model architecture design, our ReFound mainly consists
of two parts. First, we propose a Multi-modal Geospatial Data
Embedding to transform POI data and satellite image data into
a unified embedding sequence, which comprehensively integrates
the textual, visual, and geospatial information within these data.
Then, a Mixture-of-Geospatial-Experts Transformer performs the
deep interaction and fusion among them to produce contextual-
ized representations. For simplicity, we omit the subscript 𝑖 , using
P = {𝑃1, 𝑃2, ..., 𝑃𝑚} and 𝑆 to denote the POI and satellite image
data in region 𝑅𝑖 if without confusion.

4.1.1 Multi-modal Geospatial Data Embedding. This mod-
ule converts the raw POI and satellite image data into compact
embedding with considering their geospatial context.
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Figure 2: The architecture and pre-training framework of ReFound.

POI Embedding. To derive the POI embedding of a region, we
propose a joint encoding that integrates Word Embedding, Geo-
Aware Position Embedding, and Category Embedding of all POIs
in the region. The resulted embedding can effectively capture not
only the textual toponym knowledge of POIs, but also their spatial
distribution. Specifically, we first organize the names of POIs in
the region into a pseudo sentence, making it compatible with the
Transformer’s input, and then encode this textual data intoWord
Embedding. Second, to consider the positional relation between
words, we design a Geo-Aware Position Embedding to replace the
conventional one as used in BERT [12] and GPT [41]. This is because
words in this pseudo sentence come from names of different POIs,
which are irregularly distributed in an urban region. They do not
follow the rules in human language (e.g., grammar and discourse
structures), but instead possess spatial relationships according to
the geographical distribution of POIs, which hampers the use of
the original sequence position embedding method. Our Geo-Aware
Position Embedding is specially designed to handle such complex
relationships without sacrificing the geospatial information. Third,
the POI category id is further encoded by Category Embedding, as it
embodies valuable functional semantics of a venue, whose benefits
of characterizing an urban region have been extensively validated
in previous studies [25, 64]. We formally define them as follows:

Word Embedding. For POIs P = {𝑃1, 𝑃2, ..., 𝑃𝑚} in a region,
they are first organized into the name sequence (pseudo sentence):
𝑛𝑎𝑚𝑒1 𝑛𝑎𝑚𝑒2 ... 𝑛𝑎𝑚𝑒𝑚 . Then, we tokenize it and use [SEP] token
to separate name tokens between different POIs:

𝑡11 𝑡12 ... 𝑡1𝑛1 [SEP] t21 t22 ... t2n2 [SEP] ... tm1 tm2 ... tmnm ,

where 𝑡 𝑗𝑘 denotes 𝑘-th token of 𝑃 𝑗 ’s name. Next, a word embedding
table 𝐸𝑤 (·) maps them into embedding space by: 𝐸𝑤 (𝑡 𝑗𝑘 ) ∈ R𝑑 .

Geo-Aware Position Embedding. We encode complex sequential
and spatial relationships among POI name tokens into our model
via carefully designed position embeddings from three levels:
• Word-level. For each POI 𝑃 𝑗 in the region, a word-level sequence
position embedding is adopted to represent the token order

within its name, which is same as the original position encoding
in BERT [32]. We use 𝐸𝑤𝑝 (𝑘) to denote this embedding for token
𝑡 𝑗𝑘 in 𝑛𝑎𝑚𝑒 𝑗 , derived by embedding function 𝐸𝑤𝑝 (·).

• POI-level. The POI-level position embedding is designed to ac-
count for the positional relationships of name tokens for different
POIs in geographical space. Motivated by Tobler’s First Law of
Geography [46] that nearby things are more related, we encode
the relative distance between POIs by serializing them based on
geographic proximity, ensuring geographically closer ones are
positioned nearer to each other. The serialization is achieved by
Z-ordering strategy [39], a commonly used method to project
2-D geographical points into one dimension while preserving
original locality [28]. Specifically, given a region, we rasterize it
into 1𝑚 × 1𝑚 fine-grained units. Each unit is associated with a
Z-value yielded by Z-ordering function, and closer values indi-
cate closer spatial distance between two units. Then, this value is
assigned to POIs located in the corresponding unit, and thus, con-
necting POIs in order of their Z-values can produce the expected
POI sequence for a region. Note that for those very close POIs
in the same unit, we randomly set the order between them. As-
suming that subscript 𝑗 of 𝑃 𝑗 denotes POI’s order in the resulted
sequence, name token 𝑡 𝑗𝑘 from 𝑛𝑎𝑚𝑒 𝑗 will obtain the position
embedding according to order 𝑗 in the sequence: 𝐸𝑝𝑝 ( 𝑗) ∈ R𝑑 ,
where 𝐸𝑝𝑝 (·) is the POI-level position embedding function.

• Grid-level. In addition to the distance between POIs, we further
consider their 2D spatial distribution in the region, since this
information is indicative of region’s functionality [4, 36]. To ac-
complish this, we first discretize the region into non-overlapping
grids, and assigned learnable embeddings to represent grids’ rela-
tive positions. Then, the 2D position of a POI is defined as the grid
it locates in. Formally, we split the region into𝐺 = 𝐿2𝑟 /𝐿2𝑔 uniform
grids with size of 𝐿𝑔 m × 𝐿𝑔 m, and index them by 𝑔 = 1, 2, ...,𝐺 .
Then, the grid-level position embedding 𝐸𝑔𝑝 (𝑔) ∈ R𝑑 is produced
for name tokens from POIs in grid 𝑔.

Overall, the geo-aware position embedding is finally obtained by
the combination of three levels: 𝐸𝑝 (𝑡 𝑗𝑘 ) = 𝐸𝑤𝑝 (𝑘)+𝐸𝑝𝑝 ( 𝑗)+𝐸𝑔𝑝 (𝑔).
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Category Embedding. For each POI 𝑃 𝑗 , a trainable embedding
table 𝐸𝑐 (·) maps its category-id into category embedding 𝐸𝑐 (𝑐 𝑗 ),
which is shared to every name token 𝑡 𝑗𝑘 of this POI.

Finally, we encode POI data by summing up the word embed-
ding, geo-aware position embedding, category embedding and an
additional modality embedding 𝐸𝑚 (𝑃):

𝐸𝑃 (𝑡 𝑗𝑘 ) = 𝐸𝑤 (𝑡 𝑗𝑘 ) + 𝐸𝑝 (𝑡 𝑗𝑘 ) + 𝐸𝑐 (𝑐 𝑗 ) + 𝐸𝑚 (𝑃) (1)

The resulted POI embedding sequence can be denoted by: 𝑿𝑃 =

{𝒙 [P] , 𝒙𝑃1 , 𝒙
𝑃
2 , ..., 𝒙

𝑃
𝐿𝑃 −1}, where 𝒙

𝑃
𝑖
is computed based on Eq.(1). 𝐿𝑃

denotes the max sequence length, and 𝒙 [P] is the embedding of the
CLS token [P] inserted to the head of sequence.

Satellite Image Embedding. Following ViT [15] and a recent
geospatial FM [37], we represent the satellite image by directly
splitting it into patches and encoding the patches with linear pro-
jection. Formally, satellite image 𝑆 ∈ R𝐻×𝑊 ×3 is reshaped into a
sequence of 𝑠 × 𝑠 patches with length 𝐿𝑆 = 𝐻𝑊 /𝑠2, which are
linearly projected into 𝑑-dimensional patch embeddings. Then,
we prepend a learnable CLS token [S] to sequence, and insert
learnable 1D position embeddings by 𝐸1𝐷 (·) and modality em-
bedding 𝐸𝑚 (𝑆) to each patch to get the satellite image embedding:
𝑿𝑆 = {𝒙 [S] , 𝒙𝑆1 , 𝒙

𝑆
2 , ..., 𝒙

𝑆
𝐿𝑆

}.
Finally, sequences of POIs and satellite image embeddings are

concatenated to obtain the unified multi-modal embedding se-
quence of a region: 𝑿 = [𝑿𝑃 ;𝑿𝑆 ], whose length is 𝐿 = 𝐿𝑃 + 𝐿𝑆 + 1.

4.1.2 Mixture-of-Geospatial-Experts Transformer. After the
embedding module, we propose a Mixture-of-Geospatial-Experts
(MoGE) Transformer encoder that generates the contextualized
region representation upon multi-modal inputs. Following the mul-
tiway transformer approach [6, 52], the core concept of MoGE
transformer is applying specialized sub-networks to adapt to dif-
ferent types of geospatial data. This strategy effectively addresses
both modality-specific patterns and the complex cross-modal de-
pendencies observed in POIs and satellite images of regions.

As shown in Figure 2(b), the MoGE Transformer replaces the
single feed-forward network (FFN) of the standard Transformer[48]
with a collection of sub-networks, each possessing distinct parame-
ters. These are designated as geography experts and are specifically
designed to process different data types: POI data (P-FFN), satellite
image data (S-FFN), and both data types (PL-FFN). As indicated
in previous work, different forms of geospatial data exhibit spe-
cial structures and unique characters [36]. It’s hard for a single
network to effectively represent them. Whereas, when applying
MoGE Transformer, different parts of the input sequence are routed
to corresponding specialized experts, according to their modality.
These expert sub-networks can adjust to different modalities to
handle their specific patterns.

Moreover, the MoGE Transformer adopts a one-tower architec-
ture with multi-head self-attention (MSA) shared across modalities
at each layer. It enables the deep fusion between POI and satellite
image data, as well as their spatial information. The shared parame-
ters foster the semantics alignment [6] and knowledge transfer [38]
across modalities, which are critical for multi-modal region rep-
resentation learning as highlighted by extensive research [59, 64].
Note that at the top-two layers, we also use PL-FFN for both POI
and satellite image data to facilitate the modality fusion.

Taking multi-modal embedding 𝑿 as input, the MoGE Trans-
former produces contextualized representations𝑯 = {𝒉0,𝒉1, ...,𝒉𝐿},
where 𝒉 [P] = 𝒉0 and 𝒉 [S] = 𝒉𝐿𝑃 correspond to two CLS tokens
that pool the POI and satellite image representation, respectively.

4.2 Pre-training Objectives
Upon the above architecture designs, we pre-train ReFound with
two series of objectives. At first, we propose three objectives that
jointly distill abundant knowledge from multiple general-purpose
pre-trained FMs. This transfers existing FMs’ generalization capac-
ities to ReFound for addressing diverse tasks. Second, as spatial
domain knowledge is essential for urban region understanding, we
design two self-supervised learning tasks, to capture in-domain
feature from multi-modal geospatial data.

4.2.1 Joint Knowledge Distillation from Generic FMs. To
empower ReFound with universal effectiveness in diverse tasks,
we acquire strong representing ability from pre-trained FMs. As
ReFound is expected to effectively handle multi-modal information,
including textual (POI name) and visual data (satellite image), we
design three distilling objectives to enhance it by simultaneously
taking advantage of the abundant knowledge of language founda-
tion models (LFMs), the representing power of visual foundation
models (VFMs), as well as the semantic alignment ability of visual-
language foundation models (VLFMs). Basically, the knowledge
distillation follows the teacher-student paradigm, where the stu-
dent model ReFound is jointly guided by three teacher models: LFM,
VFM and VLFM. An illustration is shown in Figure 2(c).
Distillation of Language Foundation Model (DLFM). We first
distill large language models (LLMs, which are definitely LFMs) to
enhance ReFound’s understanding of region functionalities based
on POI data, from a natural language perspective. Trained on exten-
sive datasets, LLMs possess rich real-world knowledge and powerful
reasoning capabilities [56]. They can provide valuable insights not
originally captured in POI data, such as the availability of life ser-
vices and potential resident activities within an area. To leverage
this, we propose prompting the LLM to generate supplemental de-
scriptions of a region’s functionality based on the POI data. The
knowledge from the LLM teacher is then encoded into an LLM-
feature, guiding ReFound in capturing functional semantics from
POI data through feature-based distillation [19].

In detail, given POIs P of a region, we derive textual prompt P
based on POI names. The procedure of generating and encoding
LLM-based region function description can be expressed as:

𝒖𝑃 = 𝑆𝑒𝑛𝐸𝑚𝑏 (P), P = 𝐿𝐿𝑀 (P) (2)

where P denotes region’s function description based on POI data,
generated by 𝐿𝐿𝑀 (·), and 𝒖𝑃 is the LLM-feature obtained by sen-
tence embedding model 𝑆𝑒𝑛𝐸𝑚𝑏 (·). A specific example of this aug-
mentation is provided in Appendix A.4. Then, to infuse the rich
semantic information within LLM-feature into ReFound, the knowl-
edge distillation objective is formed with the cosine similarity be-
tween 𝒖𝑃 and POI representation derived by our model:

L𝐷𝐿𝐹𝑀 = −𝐶𝑜𝑠 ( 𝜎𝑃𝑂𝐼 (𝒉 [P] ), 𝒖𝑃 ), (3)

where 𝐶𝑜𝑠 (𝒂, 𝒃) = 𝒂 · 𝒃/(| |𝒂 | |2·| |𝒃 | |2) denotes the cosine similarity
between two vectors 𝒂 and 𝒃 , 𝒉 [P] is the pooled POI representation
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derived from CLS token [P], and 𝜎𝑃𝑂𝐼 (·) denotes a linear to trans-
form it into LLM-feature space. This objective enables our model
to capture the functionality semantics of regions from POIs, under
the guidance of the informative LLM-feature.
Distillation of Visual Foundation Model (DVFM). We enhance
ReFound’s semantic representation capability for satellite images by
distilling visual foundation models (VFMs). Trained on expansive
datasets like ImageNet-22k [11], VFMs possess exceptional image
representation capabilities. Prior studies have highlighted VFMs’
superior performance in certain geospatial tasks over models pre-
trained exclusively on satellite imagery [10, 37].

Specifically, given the satellite image 𝑆 of a region, we adopt the
pre-trained visual foundation model 𝑉𝐹𝑀 (·) as teacher model to
extract its semantic feature by: 𝒖𝑆 = 𝑉𝐹𝑀 (𝑆). Then, this feature
guides the satellite image representation of our student model, via
the cosine similarity objectives:

L𝐷𝑉𝐹𝑀 = −𝐶𝑜𝑠 ( 𝜎𝑆𝑎𝑡𝑒 (𝒉 [S] ), 𝒖𝑆 ), (4)

where 𝒉 [S] is the pooled satellite image representation learned by
our ReFound model, and 𝜎𝑆𝑎𝑡𝑒 (·) denotes the linear projection head
for this distillation task. In this way, ReFound learns from VFM
about how to extract semantic features from satellite images.
Distillation of Visual-Language Foundation Model (DVLFM).
As noted in recent studies [25], encoding multi-modal geospatial
data into a semantically aligned space is essential for consistently
commendable performance across various region understanding
tasks. Accordingly, we further enhance ReFound’s semantic align-
ment between text-based POI and satellite image data, via a knowl-
edge distillation of visual-language foundation models (VLFMs),
since they have demonstrated impressive power to jointly under-
stand text and image contents in a range of general [27, 40] and
domain-specific [43, 55] applications.

Following [45], we accomplish this by matching the POI-satellite
image cross-modal cosine similarity matrix from ReFound with that
derived from a VLFM teacher. Recent VLFMs (e.g., CLIP [40]) are
typically pre-trained to be able to compare the semantic similarity
between samples from different modalities, using cosine similarity
in the latent space. Thus, the cosine similarity matrix, formed by
a batch of POI and satellite image representations from VLFMs,
reflects their semantic comparison relationships. Building on this
idea, if the matrix generated by ReFound matches the one derived
from VLFMs, we can transfer the VLFMs’ powerful cross-modal
alignment ability to our model.

Specifically, given a batch of regions {𝑅𝑖 }𝐵𝑖=1 with batch size 𝐵,
we use a VLFM teacher model to encode their POI and satellite im-
age data into semantic representations: {𝒗𝑖

𝑃
}𝐵
𝑖=1 and {𝒗

𝑖
𝑆
}𝐵
𝑖=1, which

form the cosine similarity 𝑀 ∈ R𝐵×𝐵 , where 𝑀𝑖, 𝑗 = 𝐶𝑜𝑠 (𝒗𝑖
𝑃
, 𝒗 𝑗

𝑆
).

In this matrix, the 𝑖-th row (column) reflects the semantic relation-
ships between POIs (satellite image) of region𝑅𝑖 and satellite images
(POIs) of all regions in the batch. Then, ourmodel also generates rep-
resentation vectors {𝒉𝑖[P] }

𝐵
𝑖=1 and {𝒉

𝑖
[S] }

𝐵
𝑖=1 for two modalities, and

calculate the matrix 𝑀 with 𝑀𝑖 𝑗 = 𝐶𝑜𝑠 (𝜇𝑃𝑂𝐼 (𝒉𝑖[P] ), 𝜇𝑆𝑎𝑡𝑒 (𝒉
𝑗

[S] )),
where 𝜇𝑃𝑂𝐼 and 𝜇𝑆𝑎𝑡𝑒 are linear projection heads for twomodalities.
The knowledge distillation from VLFM to ReFound (i.e. matching
𝑀 to 𝑀) is achieved by minimizing the KL-divergence of every

corresponding row and column between these two matrices:

L𝐷𝑉𝐿𝐹𝑀 =
∑︁

1≤𝑖≤𝐵
𝐾𝐿(𝜌 (𝑀𝑖 ) | |𝜌 (𝑀𝑖 ))+

∑︁
1≤ 𝑗≤𝐵

𝐾𝐿(𝜌 (𝑀𝑇
𝑗 ) | |𝜌 (𝑀𝑇

𝑗 )) (5)

where 𝜌 denotes the softmax function that transforms the row and
column of cosine similarity matrix into a probability distribution.

Note that in practice, for the VLFM teacher model side, we use
its satellite image embeddings as pseudo POI embeddings to form
the matrix𝑀 , i.e.𝑀𝑖, 𝑗 = 𝐶𝑜𝑠 (𝒗𝑖𝑆 , 𝒗

𝑗

𝑆
), rather than directly applying

its text encoder on POI data. This is because VLFMs’ text encoder
are generally pre-trained on visually-grounded text, such as the
caption of the paired image. While for POI name sequence that
does not directly describe the satellite image content, VLFMs’ text
encoder may be unreliable in aligning its semantics to the paired
satellite image. As indicated in [45], embedding 𝒗𝑖

𝑆
of the satellite

image, can be also viewed as the embedding 𝒛𝑖
𝑃
whose semantic is

perfectly aligned with 𝒗𝑖
𝑆
in VLFMs’ latent space: 𝒛𝑖

𝑃
= 𝒗𝑖

𝑆
. Thus,

it’s reasonable to replace 𝒗𝑖
𝑃
with 𝒗𝑖

𝑆
to guarantee capturing correct

semantic relationships in𝑀 for effective knowledge distillation.

4.2.2 Self-Supervised Learning on Geospatial Data. To learn
in-domain features underlying two kinds of geospatial data, we
pre-trained ReFound with two objectives: Masked Geospatial Data
Modeling and Cross-modal Spatial Alignment. They allow ReFound
to understand the semantics of POI and satellite image data, and
align two modalities via their spatial relationships in the region.

Masked Geospatial Data Modeling (MGDM). The mask-then-
predict paradigm has shown promising performance in pre-training
FMs to learn semantic representation for texts [12], images [5], and
multi-modal (e.g., text-image pairs) data [52]. Following this line,
we pre-train ReFound via a masked prediction objective on multi-
modal geospatial data. Basically, it first performs a unified masking
of both POI and satellite image input, and then asks ReFound to
recover them based on the joint understanding of remaining textual
and visual content, as well as their geospatial relationships. As
shown in Figure 2(d), for POI side, we randomly mask 15% of POI
name tokens with a special token [M], and ReFound learns how
to complete these POI names. While for the satellite image, we
follow BEiT [5] to replace a portion of patches (40%) with a mask
embedding, and predict the discrete visual tokens at these positions,
which are obtained by a publicly available image tokenizer [42].

Formally, denoting positions of masked POI name tokens and
satellite image patches asM𝑃 andM𝑆 respectively, the input se-
quence, corrupted at these positions, is encoded by the model de-
scribed in Section 4.1 into contextualized representation vectors
𝑯 . Then, the training objective is to minimize the negative log-
likelihood of the original POI name tokens at positionsM𝑃 , as well
as the correct visual tokens atM𝑆 :

L𝑀𝐺𝐷𝑀 = −
∑︁

𝑖∈M𝑃

𝑙𝑜𝑔 𝑝 (𝑦𝑃𝑖 |𝒉𝑖 ) −
∑︁

𝑖∈M𝑆

𝑙𝑜𝑔 𝑝 (𝑦𝑆𝑖 |𝒉𝑖 ) (6)

where 𝑝 (𝑦𝑃
𝑖
|𝒉𝑖 ) in the first term represents the predicted probability

to the correct POI name token 𝑦𝑃
𝑖
, based on the encoded vectors

at masked positions {𝒉𝑖 : 𝑖 ∈ M𝑃 }. This prediction is made by a 2-
layerMulti-Layer Perceptron (MLP) classifier with softmax function.
Similarly, 𝑝 (𝑦𝑆

𝑖
|𝒉𝑖 ) in the second term denotes the probability of

predicting the correct image tokens 𝑦𝑆
𝑖
at positions M𝑆 . In this
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process, we only mask POI names and satellite image patches, while
keeping the geo-aware position embedding unchanged. It facilitates
the model to consider spatial contexts when representing these data.

Cross-Modal Spatial Alignment (CMSA). Though POIs and
the satellite image describe a region from very different views,
their geospatial relationships serve as a connection between these
two modalities, because each POI corresponds to a venue in the
satellite image. A previous study [36] also suggests the possibility
to bridge the gap between multi-modal geographical data via the
spatial relationship. In view of this, the goal of CMSA task is to
make the model aware of which POIs correspond to which parts of
visual content in the satellite image, thereby further facilitating the
alignment of semantic information between two modalities.

Inspired by the alignment task in [23], this objective asks the
model to determine whether a POI is located in an area that is
masked in the satellite image. As shown in Figure 2(d) we perform
a binary classification on representation vectors at the POI side,
and optimize the model with binary cross-entropy loss. Note that
positions of masked POI name tokensM𝑃 are not included in the
loss calculation, to avoid the trivial solution that simply maps [M]
token to the positive class. It can be expressed by:

L𝐶𝑀𝑆𝐴 =
∑︁

1≤𝑖<𝐿𝑃∧𝑖∉M𝑃

−𝑦𝑖𝑙𝑜𝑔 𝑝 (𝑦𝑖 |𝒉𝑖 ) − (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑝 (𝑦𝑖 |𝒉𝑖 )) (7)

where binary label 𝑦𝑖 indicates whether this position is included in
the POI that locates at masked image patches (𝑦𝑖 = 1) or not (𝑦𝑖 = 0),
and 𝑝 (𝑦𝑖 |𝒉𝑖 ) is the output probability of a sigmoid classifier.

4.3 Usage of ReFound
Based on POI and satellite image data of urban regions collected
from multiple cities, ReFound is jointly pre-trained with three
knowledge distillation objectives in Section 4.2.1 and two self-
supervised learning objectives in Section 4.2.2. The overall loss
function is:L = L𝐷𝐿𝐹𝑀 +L𝐷𝑉𝐹𝑀 +L𝐷𝑉𝐿𝐹𝑀 +L𝑀𝐺𝐷𝑀 +L𝐶𝑀𝑆𝐴 .

After pre-training ReFound, we propose to obtain the final region
representation by merging POI and satellite image representations
𝒉 [P] and 𝒉 [S] , through averaging or attentional fusion [58]. Then,
the pre-trained ReFound can be transferred to solve downstream
urban region understanding tasks in the following two ways: (1)
Fine-tuning introduces minimal task-specific parameters (e.g., a
linear regression layer) following the pre-trained ReFound back-
bone, and the whole model is optimized together in the downstream
tasks. (2) Feature-based Prediction only trained the task-specific
layers, which take ReFound’s region representations as inputs.

5 EXPERIMENTS
In this section, we conduct extensive experiments on six real-world
datasets of three downstream urban region understanding tasks in
two cities, to evaluate the effectiveness of ReFound. We provide an
implementation of ReFound at: https://github.com/PaddlePaddle/
PaddleSpatial/tree/main/research/ReFound.

5.1 Experimental Settings
We first briefly introduce the settings including data collection for
pre-training, as well as downstream tasks, baselines and metrics
for evaluation. Detailed setup is provided in Appendix A.2.

5.1.1 Pre-training Corpora. We collect POI and satellite image data
of urban regions from five cities in China to pre-train ReFound,
which are Beijing, Guangzhou, Shenzhen, Shanghai, and Suzhou.
Firstly, following many previous studies that divide cities into re-
gion grids for urban region understanding tasks [33, 59], we create
the region set by partitioning these five cities into 256𝑚 × 256𝑚
grids, which results in approximately 171K regions in total. Then,
for each region, we collect POI and satellite image data updated
in June 2020, from Baidu Maps. The POI data comprises a POI’s
textual name, a category-id from 128 categories and coordinates.
The satellite image data are 3-channel 256 × 256 RGB images with
the spatial resolution of 1.0𝑚.

5.1.2 Downstream Tasks. Our model is evaluated on three urban
region understanding tasks in Beijing and Shenzhen. We briefly
introduce how to build real-world datasets for these tasks.

Urban Village Detection (UVD). This is a binary classifica-
tion task aimed at identifying whether a region is contained by or
overlaps with an urban village (UV) area. The ground-truth UV
area data for dataset construction are obtained by crowdsourcing
in June 2023. Firstly, we source news reports and official documents
from the Internet, to collect potential UVs for verification. These
candidate areas are uploaded to an online platform embedded with
a map service, where the geographic coordinates, satellite images
and street views of these areas can be accessed. Then, we enlist
professional participants to select ground-truth UV areas on the
platform. To ensure data reliability, each potential area is assigned
to three participants, and will be labeled as UV only if all three
participants reach a consensus. Following [59], regions overlapping
with ground-truth UV areas by more than 20% of their area are
labeled as positive samples, while we randomly select five times
amount of regions from remaining areas of the city as negative
samples. As a result, we construct two datasets with 882 and 552
samples in Shenzhen and Beijing.

Commercial Activeness Prediction (CAP). In this regression
task, we follow previous studies to count the number of map users’
comments to all POIs in a region, as an indicator of this region’s
commercial activeness. We also collect the number of comments
per POI in Beijing and Shenzhen city from June 2019 to April 2020,
with the same map service platform. Then, these counts are aggre-
gated by regions according to POI locations, to obtain the regional
commercial activeness data. The Shenzhen and Beijing datasets
contain 4196 and 8789 samples, respectively.

Population Prediction (POP). It’s also a regression task which
predicts the population of regions. The real-world datasets are built
based on WorldPop statistics (www.worldpop.org/) for 2020, at a
resolution of approximately 100 𝑚. For each region, its popula-
tion value is contributed by values from several statistical units it
overlaps with, according to its overlapping areas to each unit. We
randomly sample 10,000 regions in each city for evaluation.

To select the best hyper-parameters for all comparing methods
in downstream tasks, we randomly split each dataset into three
parts with equal sizes for training, validation and test.

5.1.3 Baselines. We compare our model with two categories of
state-of-the-art (SOTA) baselines under different settings. (1) Foun-
dation Model (FM) + Fine-tuning.We compare fine-tuning perfor-
mance between ReFound and three representative general-purpose

https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/ReFound
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/ReFound
www.worldpop.org/
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Table 1: Performance comparison in three downstream tasks on Shenzhen dataset.
Urban Village Detection Commercial Activeness Prediction Population Prediction

Usage Methods AUC ↑ F1-score ↑ RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑

Fine-tuning

BERT 0.73 ± 0.01 0.40 ± 0.09 17.31 ± 0.34 8.64 ± 0.24 0.44 ± 0.02 361.60 ± 2.11 266.99 ± 2.92 0.60 ± 0.00
ViT 0.71 ± 0.01 0.39 ± 0.01 21.77 ± 0.19 10.95 ± 0.39 0.12 ± 0.02 338.23 ± 2.94 246.92 ± 2.90 0.65 ± 0.01

CN-CLIP 0.74 ± 0.01 0.41 ± 0.03 18.39 ± 0.30 8.70 ± 0.11 0.37 ± 0.02 303.61 ± 5.35 220.79 ± 4.87 0.72 ± 0.01
CN-CLIP-I 0.73 ± 0.02 0.38 ± 0.03 22.22 ± 0.19 11.63 ± 0.53 0.08 ± 0.02 337.68 ± 12.01 244.92 ± 8.20 0.65 ± 0.03
SpaBERT 0.65 ± 0.02 0.31 ± 0.02 19.45 ± 0.35 10.26 ± 0.32 0.30 ± 0.03 389.93 ± 4.24 296.28 ± 1.45 0.53 ± 0.01
GFM 0.76 ± 0.01 0.44 ± 0.03 21.43 ± 0.31 11.38 ± 0.45 0.15 ± 0.02 325.36 ± 4.81 237.47 ± 4.66 0.67 ± 0.01

ReFound 0.82 ± 0.02 0.44 ± 0.03 14.85 ± 0.16 7.57 ± 0.15 0.59 ± 0.01 286.10 ± 4.37 203.42 ± 3.39 0.75 ± 0.01

Feature-based
Prediction

HGI 0.57 ± 0.00 0.28 ± 0.01 20.18 ± 0.01 11.52 ± 0.03 0.24 ± 0.00 347.47 ± 2.09 263.69 ± 1.88 0.63 ± 0.00
MMGR 0.70 ± 0.00 0.37 ± 0.02 21.86 ± 0.06 12.22 ± 0.22 0.11 ± 0.00 370.79 ± 0.38 279.34 ± 0.92 0.58 ± 0.00

PG-SimCLR 0.68 ± 0.01 0.35 ± 0.03 21.70 ± 0.07 11.61 ± 0.21 0.13 ± 0.01 403.02 ± 0.99 303.82 ± 0.90 0.50 ± 0.00
ReFound 0.77 ± 0.00 0.44 ± 0.01 17.28 ± 0.20 9.96 ± 0.23 0.45 ± 0.01 308.45 ± 1.21 224.97 ± 0.87 0.71 ± 0.00

Table 2: Performance comparison in three downstream tasks in Beijing dataset.
Urban Village Detection Commercial Activeness Prediction Population Prediction

Usage Methods AUC ↑ F1-score ↑ RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑

Fine-tuning

BERT 0.79 ± 0.02 0.48 ± 0.04 16.80 ± 0.28 7.73 ± 0.10 0.48 ± 0.02 193.64 ± 9.12 140.73 ± 10.82 0.57 ± 0.04
ViT 0.88 ± 0.02 0.71 ± 0.03 21.16 ± 0.15 10.76 ± 0.10 0.17 ± 0.01 149.39 ± 1.69 102.90 ± 1.08 0.74 ± 0.01

CN-CLIP 0.92 ± 0.01 0.74 ± 0.02 16.52 ± 0.19 7.78 ± 0.18 0.50 ± 0.01 138.55 ± 2.14 98.35 ± 2.14 0.78 ± 0.01
CN-CLIP-I 0.94 ± 0.01 0.73 ± 0.05 22.10 ± 0.14 11.04 ± 0.08 0.10 ± 0.01 141.62 ± 2.00 99.58 ± 1.97 0.77 ± 0.01
SpaBERT 0.77 ± 0.03 0.46 ± 0.07 18.18 ± 0.07 8.82 ± 0.15 0.39 ± 0.00 212.47 ± 0.72 160.01 ± 1.39 0.48 ± 0.00
GFM 0.94 ± 0.01 0.69 ± 0.02 20.32 ± 0.07 10.29 ± 0.13 0.24 ± 0.01 139.20 ± 0.39 97.13 ± 0.60 0.78 ± 0.00

ReFound 0.97 ± 0.00 0.80 ± 0.02 13.56 ± 0.34 6.61 ± 0.05 0.66 ± 0.02 140.62 ± 1.32 97.26 ± 0.69 0.77 ± 0.00

Feature-based
Prediction

HGI 0.86 ± 0.01 0.54 ± 0.02 19.89 ± 0.02 10.30 ± 0.01 0.27 ± 0.00 181.36 ± 1.88 136.24 ± 1.55 0.62 ± 0.01
MMGR 0.90 ± 0.00 0.66 ± 0.02 20.75 ± 0.13 10.99 ± 0.31 0.21 ± 0.01 185.37 ± 0.31 140.49 ± 0.70 0.61 ± 0.00

PG-SimCLR 0.84 ± 0.00 0.56 ± 0.01 21.84 ± 0.04 11.35 ± 0.19 0.12 ± 0.00 226.49 ± 0.92 172.20 ± 1.33 0.41 ± 0.00
ReFound 0.94 ± 0.00 0.67 ± 0.05 15.09 ± 0.17 8.17 ± 0.06 0.58 ± 0.01 143.89 ± 0.24 104.02 ± 0.46 0.76 ± 0.00

FMs (BERT[12], ViT [15] and CN-CLIP [61]), and two recent FMs
in geospatial domain (SpaBERT [32] and GFM [37]). Among these
models, text-based BERT and SpaBERT use POI data as inputs,
while ViT and GFM work with satellite images. For CN-CLIP, we
implement it in two ways: CN-CLIP makes use of both POI and
satellite data, while CN-CLIP-I only encodes satellite images.
(2) Region Embedding Model + Feature-based Prediction. To evaluate
ReFound’s performance in extracting region representations for
feature-based prediction, we compare it with three SOTA region
embedding methods (HGI [22],MMGR [3] and PG-SimCLR [58])
based on POI and satellite image data. Detailed descriptions of these
two categories of baselines are introduced in Appendix A.1.

5.1.4 Evaluation Metrics. Evaluation metrics for two regression
tasks include Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and coefficient of determination (R2). For the binary
classification task, we use Area Under Curve (AUC) and F1-score.

5.2 Performance Evaluation
5.2.1 Overall Performance. The performance comparison across
three downstream tasks in two cities is presented in Table 1 and
Table 2, with mean and standard deviation of all metrics derived
from five random runs. As we can see, ReFound achieves outstand-
ing performance in all three tasks. In the fine-tuning setting, it
brings average performance gains of 5.5% on AUC in urban village
detection (UVD), as well as 16.1% and 2.1% on RMSE in commercial
activeness prediction (CAP) and population prediction (POP), re-
spectively, over the most competitive baseline of each task. When
performing feature-based prediction, ReFound can achieve 7.2%,
19.3% and 15.9% average improvements UVD, CAP and POP tasks
respectively. Moreover, we have the following observations:

• A model’s performance is greatly affected by the geospatial infor-
mation it considers. To be specific, the image-based ViT, CN-CLIP-I
and GFM are inferior in CAP task, because they cannot leverage
the information of region functionality and human activities re-
flected in POI data. While BERT and SpaBERT get better results
in CAP task based on POI data, they perform worse in UVD and
POP tasks, due to the inability to capture the spatial distribution of
buildings from satellite images, such as building density and height.
Compared with CN-CLIP-I, CN-CLIP which incorporates both POI
and satellite image data evidently performs better in three tasks,
highlighting the importance of integrating multi-modal data for a
variety of downstream tasks.

• Region embedding baselines that make feature-based prediction
generally have lower performance than fine-tuned models, as only
a small amount of parameters are optimized for specific tasks. In
contrast, when ReFound also performs feature-based prediction
as a region embedding model without fine-tuning, it still achieves
promising performance, even surpassing the majority of fine-tuned
baselines. This indicates that ReFound is capable of more effectively
capturing and integrating the unique properties of POI and satellite
image data, thereby improving its understanding of regions.

5.2.2 Ablation study. To verify the effectiveness of each design
in this work, we further compare ReFound with its seven variants:
• w/o MoGE replaces the MoGE Transformer with the vanilla one
where a shared feed-forward network is used in each layer.

• w/oDLFM,w/oVLFM andw/oDVLFM each remove the knowl-
edge distillation from language, visual and visual-language foun-
dation model, while w/o Dist removes all of them.

• w/o MGDM removes masked geospatial data modeling. Mean-
while, cross-modal spatial alignment is also disused, as it relies
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Figure 3: Ablation study.

on masked satellite image patches. In contrast, w/o CMSA only
removes the cross-modal spatial alignment task.

As shown in Figure 3, our designs can generally improve ReFound’s
performance in various downstream tasks. Specifically, removing
MoGE Transformer (w/o MoGE) worsens performance. It indicates
the importance of such an architecture that can not only adjust
to unique characteristics of POI and satellite image data, but also
deeply fuse them for comprehensive urban region understanding.
Additionally, the notable performance decline of w/o Dist high-
lights the advantage of harnessing knowledge from multiple FMs
to improve ReFound’s versatility. The three distilling objectives
contribute to the improvement in different downstream tasks in
varying degrees (w/o DLFM, w/o DVFM and, w/o DVLFM). Further-
more, performance evidently degrades without the self-supervised
MGDM task (w/o MGDM) in most cases, which verifies the impor-
tance to learn in-domain feature from geospatial data for region
understanding. CMSA task also benefits ReFound a lot, as it facili-
tates the semantic alignment of two modalities (w/o CMSA).

5.2.3 Visualization of Cross-Modal Spatial Alignment. To
further explain the advantage of cross-modal semantic alignment
brought by CMSA objective, we compare the attention maps be-
tween POIs and satellite image patches, produced by ReFound and
its variants w/o CMSA. Specifically, Figure 4(a) shows the distribu-
tion of convenience stores in a region. For each token from these
five stores, we use ReFound and w/o CMSA variant to respectively
calculate its normalized attention scores in the last Transformer
layer to different satellite image patches. The obtained score vectors
are averaged among these tokens and visualized in Figure 4(b)-(c),
where each square tile represents a patch. As observed, when using
ReFound trained with CMSA objectives, these POIs (convenience
stores) attend more to patches they locates in. It suggests that our
model is able to align the semantics between two modalities, which
facilitates the more accurate characterization of the region.

(a) Locations of stores (b) w/o CMSA (c) ReFound

Figure 4: Visualization of cross-modal spatial alignment.

5.2.4 Efficiency Evaluation. We also conduct an experiment on
the population prediction dataset in Shenzhen to evaluate the effi-
ciency of our framework. To be specific, we compare our ReFound

Table 3: Training (s/epoch) and inference (s/instance) time.
BERT ViT CN-CLIP CN-CLIP-I SpaBERT GFM ReFound

Training 270.1 265.7 451.6 236.0 276.0 520.6 340.8
Inference 0.013 0.015 0.023 0.012 0.013 0.027 0.016

and the foundation model baselines, in terms of the average time
to fine-tune for one epoch on more than 3300 training samples and
the average inference time per instance. For a fair comparison, the
batch size is uniformly set to 1 for all models in this experiment. As
shown in Table 3, the time costs of ReFound to fine-tune one epoch
and to infer one instance are less than the time costs of the most
competitive baseline (CN-CLIP). It indicates that our framework
can achieve superior performance while keeping good efficiency,
and is practical for real-world scenarios.

Figure 5: Population prediction performance in Shenzhen
with sampling different ratios of training data.

5.2.5 Analysis on Downstream Training Data Scale. Addi-
tionally, we further investigate ReFound’s performance in the case
when the labeled data available for adapting the pre-trained model
to the downstream task is limited. This evaluation is also conducted
on the population prediction dataset in Shenzhen. To achieve this,
we randomly sample 75%, 50%, 25% and 10% of training data, to grad-
ually reduce the data scale for fine-tuning the pre-trained model.
Figure 5 presents the prediction error of our framework and the
most competitive baseline (CN-CLIP). As we can see, ReFound con-
sistently outperforms CN-CLIP under different sampling ratios,
which demonstrates that our model has potential to better solve
the downstream urban tasks with limited training data.

6 CONCLUSION
In this paper, we propose a novel framework to pre-train a foun-
dation model for urban region understanding, that harnesses the
strength of well-established language and visual FMs to enhance its
generality. An important advantage of this framework is the ability
to sustainably leverage advancements in language and visual FMs.
As these general domains continues to evolve and release more
powerful FMs, we believe that our framework can produce stronger
FMs for better urban region understanding in the future.
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A APPENDIX
A.1 Baseline Descriptions
Following Foundation Model + Fine-tuning paradigm, we compare
ReFound with five SOTA FMs.

• BERT [12] is a pre-trained language FM. Similar to our model, we
use BERT to encode the POI name sequence to produce the region
representation. Since POI names in this work are in Chinese, we
utilize “bert-base-chinese” pre-trained on Chinese corpora.

• ViT [15] is a visual FM pre-trained on ImageNet-21k [11], which
can address region understanding tasks based on satellite images.
We select “ViT-Base” model for comparison, and perform 2D
position embedding interpolation to fit 256× 256 satellite images
during the fine-tuning stage, as suggested by [15].

• CN-CLIP [61] is a contrastive language-image pre-trainingmodel
for Chinese image-text pairs, excelling in joint understanding of
Chinese text and image data. We use CN-CLIP to encode both
POI names and satellite images, then average them to obtain
the region representation for downstream tasks. In our experi-
ments, the selected version uses “ViT-Base” as the image encoder

and “RoBERTa-wwm-Base” as the text encoder. The position
embedding interpolation is also applied during fine-tuning.

• CN-CLIP-I [61] is a variant of CN-CLIP that makes prediction
solely based on satellite images with the image encoder.

• SpaBERT [32] is a language FM pre-trained to represent POIs,
which can jointly consider POIs’ name and spatial distances. We
use “SpaBERT-Base” to encode the POI sequence organized by
Z-order for region representation. Specifically, we select the first
POI in the sequence as the “pivot”, and derive its contextual-
ized representation that aggregates information from all POIs
in the region. Since this model is pre-trained on English texts,
we translate the Chinese POI names into English using an open
translation service: https://api.fanyi.baidu.com/.

• GFM [37] is a recent visual FM that achieves SOTA performance
in geospatial applications. It is pre-trained by masked image
modeling on satellite images, with an auxiliary distilling objective
from Swin-B model [35] pre-trained on ImageNet-22k [11].
We also compare with three SOTA region embedding models

under Region Embedding Model + Feature-based Prediction setting.
• HGI [22] learns region representations based on POI data and
hierarchical spatial information. It constructs a POI-level spatial
graph to encoder the relative distance between POIs, and build a
region-level adjacency graph to allow spatial interactions among
regions. The model is trained with hierarchical Graph Infomax
at both levels in a self-supervised manner.

• MMGR [3] is a multi-modal region embedding model. It design
two encoders to encode POI categories and satellite images into
two views of region representations, and adopts a cross-modal
contrastive learning strategy to fuse them.

• PG-SimCLR [58] trains an image encoder via contrastive learn-
ing to generate region representations based on satellite image
data. It uses spatial proximity and the POI category distribution
as two metrics to measure the similarity between regions, for
constructing contrastive samples.

A.2 Experimental Settings
A.2.1 Pre-training Setup. Our model adopts 12-layer Transformer
blocks with 768 hidden size, 3,072 intermediate size of feed-forward
networks, and 12 attention heads. For POIs in a region, we serialize
them into the name sequence by Z-ordering strategy [39], and
then tokenize it using BERT-Chinese tokenizer [12] with maximum
length 𝐿𝑃 = 512. For those sequences whose lengths are larger
than 𝐿𝑃 , we random exclude some POIs to meet the length limit,
while sequences shorter than 𝐿𝑃 will be appended [PAD] tokens.
To obtain grid-level geo-aware position embedding 𝐸𝑔𝑝 described
in Section 4.1.1, we partition the 256𝑚 × 256𝑚 region into 16 × 16
grids with size of 16𝑚 × 16𝑚.

For tasks (DLFM, DVFM and DVLFM) of joint knowledge distil-
lation from multiple pre-trained FMs, we select ChatGLM [16, 62]
and CN-CLIP [61] as teacher models. In DLFM task, with the textual
prompt derived based on POI names P, we employ “ChatGLM-6B”
to generate the description of region functionality P, and apply sen-
tence embedding model “M3E-Base” (https://huggingface.co/moka-
ai/m3e-base) to encode it into LLM-features 𝒖𝑃 . For the generated
description longer than the maximum input length of sentence

https://api.fanyi.baidu.com/
https://huggingface.co/moka-ai/m3e-base
https://huggingface.co/moka-ai/m3e-base
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Table 4: Population prediction performance comparison on Guangzhou, Shanghai and Suzhou dataset.
Guangzhou Shanghai Suzhou

RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑
BERT 255.10 ± 2.20 179.49 ± 1.39 0.60 ± 0.01 354.77 ± 2.47 239.70 ± 2.49 0.60 ± 0.01 90.14 ± 0.73 64.21 ± 1.10 0.43 ± 0.01
ViT 216.34 ± 4.64 152.07 ± 5.08 0.71 ± 0.01 315.52 ± 6.43 202.24 ± 8.38 0.68 ± 0.01 72.12 ± 0.30 48.43 ± 0.37 0.64 ± 0.00

CN-CLIP-I 215.51 ± 2.55 149.40 ± 1.68 0.72 ± 0.01 323.30 ± 8.14 205.06 ± 4.62 0.67 ± 0.02 71.02 ± 0.45 47.75 ± 0.28 0.65 ± 0.00
CN-CLIP 205.10 ± 2.94 142.83 ± 1.93 0.74 ± 0.01 295.97 ± 9.61 194.30 ± 4.77 0.72 ± 0.02 71.25 ± 0.75 49.31 ± 0.64 0.64 ± 0.01
SpaBERT 273.90 ± 3.40 194.84 ± 1.39 0.54 ± 0.01 416.63 ± 8.05 274.25 ± 5.85 0.45 ± 0.02 92.99 ± 0.41 65.91 ± 0.77 0.39 ± 0.01
GFM 203.53 ± 1.15 141.78 ± 0.98 0.75 ± 0.00 319.94 ± 4.55 199.16 ± 1.87 0.68 ± 0.01 70.92 ± 1.94 48.36 ± 1.02 0.65 ± 0.02

ReFound 193.31 ± 2.64 133.55 ± 1.27 0.77 ± 0.01 276.77 ± 2.66 179.28 ± 2.76 0.76 ± 0.00 69.95 ± 0.62 47.47 ± 0.33 0.66 ± 0.01

embedding model, we divide it into chunks and embed each chunk
individually, then combine them with averaging weighted by the
size of each chunk. In DVFM task, we adopt “ViT-L/14” image
encoder of CN-CLIP as the VFM to extract feature-based knowl-
edge 𝒖𝑆 for distillation. For DVLFM task, we also derive the cosine
similarity matrix 𝑀 using this image encoder. 𝑀 is scaled by a
temperature parameter set to 0.07, before being normalized into a
probability distribution via the softmax function.

In masked geospatial data modeling (MGDA) task, for the POI
side, we randomly mask 15% of name tokens for prediction, where
these masked tokens are replaced with [M] 80% of the time, a
random token 10% of the time, and an unchanged token 10% of
the time. For satellite image patches, we mask 40% of them. When
deriving target visual tokens, the satellite image is resized into
224 × 224 so as to ensure the same number of tokens and patches
of an image. We directly use the publicly available image tokenizer
[42] whose vocabulary size is 8192.

We pre-train ReFound using AdamW optimizer with a batch size
of 80 for 300 epochs. The weight decay is set to 0.01 and (𝛽1, 𝛽2) =
(0.9, 0.999). We set a peak learning rate of 5e-5 with linear warm-up
over the first 5 epochs, and then a linear decay strategy is applied.

A.2.2 Fine-tuning Setup. We next introduce the setup for fine-
tuning our model. Without specification, the following settings are
applied to all three downstream tasks: 2-layer MLP is utilized to
make predictions, taking the region representation from ReFound
as inputs; we set batch size to 12, and use AdamW optimizer with
(𝛽1, 𝛽2) = (0.9, 0.999) and weight decay 0.01 during fine-tuning;
the 3-epoch linear warm-up and linear decay scheduler on learning
rate (lr) are adopted; following [5, 20], a layer-wise lr decay with a
ratio 0.75 is further applied to Transformer model. Other specific
settings for different datasets are listed in Table 5, where “Fusion” is
the way to merge the POI and satellite image representation, which
includes average and attentional fusion (attention).

Table 5: Fine-tuning setup.
UVD CAP POP

Shenzhen
Epoch: 30
Peak lr: 1e-4
Fusion: attention

Epoch: 40
Peak lr: 1e-4
Fusion: average

Epoch: 40
Peak lr: 1e-4
Fusion: attention

Beijing
Epoch: 30
Peak lr: 1e-5
Fusion: average

Epoch: 40
Peak lr: 1e-4
Fusion: attention

Epoch: 40
Peak lr: 1e-4
Fusion: average

A.2.3 Feature-based Prediction Setup. In addition, we evaluate Re-
Found ’s performance for feature-based prediction. The shared
setting for different datasets are as follows: the task-specific pre-
dictor is implemented by 2-layer MLP; we set batch size to 12,
and use AdamW optimizer, with the weight decay set to 0.01 and
(𝛽1, 𝛽2) = (0.9, 0.999); the learning rate (lr) is linearly warmed up
during the first 3 epochs and then controlled by the linear decay

scheduler. Note that only the predictor will be trained in down-
stream tasks. Other dataset-specific settings are listed in Table 6.

Table 6: Feature-based prediction setup.
UVD CAP POP

Shenzhen
Epoch: 40
Peak lr: 5e-4
Fusion: average

Epoch: 40
Peak lr: 5e-4
Fusion: attention

Epoch: 40
Peak lr: 5e-4
Fusion: attention

Beijing
Epoch: 40
Peak lr: 5e-5
Fusion: attention

Epoch: 40
Peak lr: 5e-4
Fusion: attention

Epoch: 40
Peak lr: 1e-4
Fusion: attention

A.3 Additional Experimental Results
To demonstrate the effectiveness of ReFound across more diverse
cities, we further evaluate it in other three cities: Guangzhou, Shang-
hai and Suzhou. This evaluation is conducted on the population
prediction task, as the population data is public available and can be
used to construct these datasets. The dataset construction process is
consistent with that of Shenzhen and Beijing datasets described in
Section 5.1.2. We compare the fine-tuning performance of ReFound
and the FM baselines, with the results presented in Table 4. As we
can see, our model also consistently outperforms other approaches
across these cities, which shows ReFound’s good generalizability.

区域中有下列设施：雅点联体开关、名科门窗、纱艺纺纱窗、卡诺亚定制家居、…、一零八
汽车维修有限公司、有家公寓。请推断这个区域的功能，以及可能的居民活动。

这个区域的功能可能是一个家居建材市场，居民可能会有购买家居建材、定制家具、窗帘、衣
柜、陶瓷、门窗、监控、净水器等产品的需求。居民可能会有装修房屋、家居装饰的需求，也
可能会需要进行维修、保养等服务。这个区域的居民活动可能包括在商场内逛街购物、选购产
品、观看家居装饰和装修相关的节目、参加家居装饰和装修相关的讲座、与商家和工作人员交
流、购买商品和接受服务等等。此外，居民也可能会在商场内休息、娱乐、用餐等。

Prompt based on POI data:

LLM generation:

English Translation: The functionality of this region is likely to be a home furnishing and building
materials market. Residents may have needs for purchasing home building materials, custom
furniture, curtains, wardrobes, ceramics, doors and windows, surveillance equipment, water purifiers,
and other products. Residents may also have demands for home renovation, interior decoration, as
well as services like repair and maintenance. Activities of residents in this area may include shopping,
product selection, watching programs related to home decoration and renovation, attending lectures
on home decoration and renovation, interacting with merchants and staff, buying goods, and
receiving services. Additionally, residents may also engage in activities such as resting, entertainment,
and dining within the shopping mall.

English Translation: There are the following facilities in the region: Yadian Union Switch, Mingke
Doors and Windows, Shayi Textile Screen Windows, Canoya Customized Home Furnishings, …,
108 Automotive Maintenance Co., Ltd., Youjia Apartment. Please infer the functionality of this
region and potential residential activities.

Figure 6: An example of prompting LLM based on POI data.

A.4 LLM Generation Example
In DLFM task, we prompt LLM based on POI data, to generate a sup-
plemental description related to region’s functionality. An example
is shown in Figure 6. As we can see, LLM is able to summarize a
region’s functionality, and infer potential resident activities within
the region. Distilling such LLM knowledge can boost our model
capturing the functionality semantics underlying POI data.
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