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Abstract. Drug-Drug Interaction (DDI) prediction is crucial for var-
ious biomedical applications like polypharmacy. Recently, some graph
learning-based methods achieved promising performance in DDI pre-
diction. However, limited attention has been given to the integration
of substructure information and drug relationships to capture complex
DDI patterns using self-supervised learning techniques. To this end, we
propose a novel hierarchical cross-level graph contrastive learning frame-
work named HCC, aimed at capturing hierarchical structural informa-
tion and hidden DDI patterns. Firstly, we construct a drug-motif inter-
action graph to extract semantic motifs and model complex connections
among drugs and motifs. Then, we design motif- and molecule-level self-
supervised tasks. One task learns the motif-driven connectivity of the
drug-motif graph, while the other learns global similarity of molecular
graphs. Finally, a cross-level contrastive learning module is introduced to
align multi-view information. Extensive evaluation on real-world datasets
demonstrates that our method outperforms existing competitors.

Keywords: Drug-Drug Interaction · Graph Contrastive learning.

1 Introduction

Drug Drug Interactions (DDI) can occur when two or more drugs interact phar-
macologically in the human body. As shown in Figure 1(a), these interactions can
result in various biological consequences affecting drug efficacy. While polyphar-
macy is necessary for many medical applications, such as multiple health con-
ditions and cancer treatment [13], the attendant potential DDI problem may
raise serious risk of adverse effects [12]. Hence, it’s essential to identify drug
interactions to improve healthcare outcomes.

Efforts in DDI detection have intensified, as shown in Figure 1(b), with
traditional methods relying on costly wet chemical experiments [18], prompt-
ing increased attention toward automated computational DDI prediction. Early
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Fig. 1. (a) An example of DDI events. (b) Existing features and methods in DDI.

machine learning methods explored various drug similarities using heteroge-
neous features like fingerprint [16], assuming that structurally similar drugs
might share similar DDI. Recently, graph learning-based methods have emerged,
leveraging drug molecular graphs [17], knowledge graphs [10], and interaction
graphs [17] for DDI prediction. Despite these advancements, a compelling de-
mand remains for more accurate prediction. First, while self-supervised learning
methods have gained utilization for representation learning in molecular prop-
erty prediction [22], the development of specialized methods tailored to the abun-
dant relations and structural patterns for DDI prediction remains scarce. Second,
while internal chemical substructures and external drug relations have proven
effective, integrating both to improve hierarchical contrastive learning for DDI
prediction has received insufficient focus.

Therefore, in this work, we propose a novel Hierarchical Cross-level graph
Contrastive learning framework (HCC) for DDI prediction, aiming to handle
complex hidden DDI patterns through motif- and molecule-level self-supervised
learning tasks, along with a cross-level contrastive learning component. At the
molecule level, drugs are depicted as molecular graphs for detailed structure
modeling, with atoms as nodes and chemical bonds as edges. We utilize a global
similarity approximation task on these molecular graphs, leveraging enriched
structural and semantic domain knowledge. Simultaneously, we extract special
substructures called motifs and construct a drug-motif interaction graph at the
motif level as an augmentation perspective to facilitate comprehensive substruc-
ture modeling and relationship learning, where nodes represent drugs or motifs.
The motif-level task employs a motif-driven edge reconstruction strategy, in-
tegrating connectivity information from the graph. To ensure cohesive informa-
tion integration across various perspectives, we introduce a cross-level contrastive
learning component that maximizes mutual information between representations
from two perspectives of the same molecule. Finally, drug embeddings derived
from the well-pretrained model facilitate downstream DDI prediction. The key
contributions of our work are summarized as follows:

– We introduce a novel Hierarchical Cross-level graph Contrastive learning
framework (HCC) for DDI prediction, aiming to capture comprehensive in-
formation about drugs from diverse perspectives.



– The proposed cross-level contrastive learning not only enriches the repre-
sentation learning process but also enhances our ability to predict DDIs
accurately.

– Extensive experiments on different scale real-world datasets demonstrate the
effectiveness of the proposed HCC over state-of-the-art approaches.

2 Related Work

DDI prediction. The increase in biomedical data availability has catalyzed
early machine learning applications. DeepDDI [12] constructed a structural sim-
ilarity profile based on fingerprint, while DDIMDL [2] combined heterogeneous
drug features. Recently, graph neural networks (GNNs) have been pivotal in en-
hancing DDI prediction. CASTER [6] developed a deep auto-encoding method
to embed functional drug representations. SSI-DDI [11] utilized GNNs to identify
DDI through drug substructure interactions. MIRACLE [17] and DSN-DDI [9]
considered both inter- and intra-view information of drug molecules. MDNN [10]
collected drug-related entities to conduct drug knowledge graphs for learning.

Self-supervised Learning of molecular graphs. Self-supervised learning
techniques have been widely used for molecular representation learning, incor-
porating domain knowledge. Hu et al. [5] introduced multiple pretraining strate-
gies, i.e., context prediction and node masking for node-level and graph property
prediction for graph-level learning. Moreover, MGSSL [22] applied motif label
predictions task at the graph level. MoCL [14] proposed a substructure substi-
tution augmentation strategy, incorporating local and global domain knowledge
for richer representations. KCL [4] constructed a chemical element KG to guide
graph augmentation and enhance molecular graph contrastive learning.

3 Preliminaries

In this section, we introduce the notations and formulate the DDI problem.
Definition 1: Molecular Graph. Given a drug set D, we define each drug
molecular graph as Di = (A,B), where A denotes the atom set and B denotes
the chemical bonds set. Moreover, we extract meaningful subgraph as motif:M =
{AM ,BM}(AM ⊆ A,BM ⊆ B).

Definition 2: Drug-Motif Interaction Graph. We denote the constructed
drug-motif interaction graph as G(V, E). There are two types of nodes on this
graph: drug nodes VD = {vD1 , ..., vDm} and motif nodes VM = {vM1 , ..., vMn }, with
V = VD ∪VM . Each drug node vDi and motif node vMi are associated with their
graph structure Di and Mi. We will detail the construction in Section 4.1.

Problem: Drug-Drug Interaction Prediction. The DDI prediction task
aims to predict potential interactions between drug pairs. Given a DDI dataset
{(Di, Dj , r)k}Nk=1 and interaction types I = {Ii}Ci=1 where C is the number of
possible types, {Di, Dj} ∈ D denote a drug pair with interaction r of type Ii.
Our objective is to learn a model Mddi : D×D×I → yddi ∈ [0, 1] that predicts
the probability of a given interaction type occurring between input drug pairs.
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Fig. 2. Illustration of our proposed framework. Left: Inputs. Middle: The drug-motif
interaction graph. Right: The hierarchical cross-level contrastive learning strategy.

4 Model Framework

As illustrated in Figure 2, we introduce the hierarchical cross-level contrastive
learning framework for DDI prediction. At first, we construct a drug-motif in-
teraction graph, modeling interactive structural information between drugs and
motifs as an augmentation view to complement drug information. To capture
complex DDI patterns, we design hierarchical self-supervised tasks, including a
Motif-level substructure learning strategy and Molecule-level global similarity
matrix approximation, facilitating representation learning from diverse perspec-
tives. Moreover, we introduce a Cross-level contrastive learning module to fuse
representations, promoting the mutual supplementation of diverse information.

4.1 Drug-motif interaction graph construction

To construct the drug-motif interaction graph, we first extract meaningful motifs
to build a motif vocabulary, forming two types of nodes: drug and motif nodes.
Then, we establish three types of edges representing drug-drug, drug-motif, and
motif-motif interactions to capture various interactive relationships.

Motif extraction. We use a molecular fragmentation process to extract
motifs and generate motif vocabulary. To ensure the chemical validity of the
extracted motifs, we follow these steps based on chemical domain knowledge.
Firstly, for coordination compound molecules, we break coordination bonds and
add the ligand to the vocabulary, as ligands naturally function as effective mo-
tifs. Then, following [1], we apply the Breaking of Retrosynthetically Interesting
Chemical Substructures (BRICS) algorithm to decompose molecules into di-
verse high-quality motifs based on chemical reactions. Finally, we include post-
processing procedures from [22] to improve the occurrence frequency of motifs.

Graph construction. After creating the motif vocabulary, we construct
the node set of the graph. Then, we introduce three types of edges to model
diverse dependencies, including drug-motif inclusion relationships, motif-motif
structural similarity, and drug-drug structural similarity. The motivation for
building drug-motif edges is that different motifs can result in different reac-
tions between drugs [13], emphasizing the importance of modeling the motifs
contained within a drug. Formally, if a drug i contains a motif j, we add a drug-
motif edge to represent this inclusion relationship. Moreover, considering the



different importance of motifs to drug interactions, we follow [21] to compute
TF-IDF value between connected nodes as the edge weight. The inclusion edge
enhances the local connections and enables the capture of higher-order relations
indirectly. Additionally, to directly leverage global relationships between two
drugs or motifs, we establish drug-drug edges and motif-motif edges based on
their chemical structure similarity. Specifically, we first extract MACCS keys [3]
to represent molecular structure features. Then, we compute the similarity be-
tween each pair of drugs or motifs using the Tanimoto coefficient through their
MACCS keys, obtaining a similarity score. Next, drug or motif pairs with a sim-
ilarity score exceeding threshold γ will be linked by an edge, enhancing global
connections. The constructed drug-motif interaction graph effectively captures
diverse relationships, augmenting the molecular graph with additional informa-
tion, including internal meaningful motifs and external drug relationships.

4.2 Hierarchical cross-level contrastive learning

The hierarchical cross-level contrastive learning framework HCC aims to capture
DDI patterns from Motif-level, Molecule-level, and Cross-level perspectives.

Motif-level substructure learning. As the constructed drug-motif interac-
tion graph contains rich structural information, our main idea is to develop a
self-supervised task based on the motif-driven structural relations of different
nodes to exploit potential interactions. We introduce the edge masking task
focused on reconstructing motif-motif, motif-drug, and drug-motif edges. Ex-
plicitly learning the inclusion relations between drugs and motifs enables the
model to understand intrinsic structural characteristics and identify correlations
relevant to potential drug reactions, enhancing insight into local connectivity.
Implicitly reconstructing relationships among drugs involving multiple motifs
provides aggregation-level interactive dependencies, enhancing motif-view struc-
ture learning for DDI prediction and contributing to global connectivity learning.

Specifically, considering the drug-motif graph G = (V, E), we initially ran-
domly mask ne edges of three types to create the set EM ∈ E . Meanwhile, we
adopt a negative sampling strategy to select negative node pairs and obtain the
negative set EM = {(vi, vj)|vi, vj ∈ V, (vi, vj) /∈ E}. Formally, for node pairs
{vi, vj} in our sample set ẼM = EM ∪ EM , we employ a GNN encoder to gain
motif-view embeddings {hM

i , hM
j }. We then utilize a classifier to learn the exis-

tence of relationships between specific nodes, with binary cross-entropy loss:

Lmotif =
∑

−yelogMe((h
M
i , hM

j ))− (1− ye)log(1−Me((h
M
i , hM

j ))), (1)

where Me(·) denotes the classifier, a 2-layer Multi-Layer Perceptron (MLP).

Molecule-level global approximation. To complement our hierarchical pre-
training scheme, we further focus on the internal structure and semantics of
drug molecules from a global perspective. It is expected that structure-correlated



graphs that share similar semantics should be closer in the latent space [7]. To
integrate molecular-level chemical domain knowledge, we design a similarity ap-
proximation task, which guides the model to retain global semantic information
via pairwise comparisons, improving the ability to capture drug interrelations.

Specifically, we first leverage MACCS keys as inherent structural features of
molecular graphs and calculate the original global similarity matrix Y s through
Tanimoto coefficient to measure pairwise drug relevance. Formally, given graph
pair {Di,Dj}, we generate molecule-view embeddings {hA

i , h
A
j } via another GNN

encoder. The model Ms, combined with proximity loss, aligns estimated and
original global similarity matrices for molecular-level approximation as:

Lmole =
∑

(Ms((h
A
i , h

A
j ))− Y s

ij)
2
, (2)

where Y s
ij denotes the inherent global similarity between drugs i and j.

Cross-level contrastive learning for alignment. Considering the valuable
insights from both motif- and molecule-level information in modeling drug inter-
actions, integrating these cross-level embeddings is beneficial for DDI prediction.
The molecule-view drug embeddings, derived from molecular graphs, include raw
atom and bond attributes along with structural details. While the motif-view
drug embeddings obtained from the drug-motif graph encapsulate internal mean-
ingful motifs, external relationship information, and domain knowledge seman-
tics. On one hand, the representations of the same molecule in both views can
mutually enrich information from diverse perspectives. On the other hand, graph
convolution in the drug-motif graph may cause over-smoothing, while relying
solely on molecular graphs for drug representations risks overfitting to existing
knowledge. To address these challenges, we introduce graph contrastive learning
to integrate and balance information for multi-level representation alignment.

Formally, given drug molecular graphs and the drug-motif interaction graph,
we use different graph encoders to obtain multi-view drug representations {hA, hM}.
Then, we employ a contrastive objective that encourages the molecule-level rep-
resentations to align with the representations of positive samples while being
distinguishable from negative samples at the motif level, as follows:

lcross(h
A
i , h

M
i ) = −log

es(h
A
i ,hM

i )/τ

es(h
A
i ,hM

i )/τ +
∑m

i,j ̸=1 e
s(hA

i ,hM
j )/τ

, (3)

where s calculates cosine similarity, τ is the temperature parameter. Negative
samples include all other nodes from another view. The final contrastive learning
loss Lcross is the mean across all samples, enabling a greater scope of representing
rich but distinguished semantics for each drug molecule.

4.3 Pre-Training and Fine-tuning Framework

Pre-training. We combine the self-supervised pre-training tasks and the con-
trastive learning component to form the following overall objective function:

L = Lmotif + λ1Lmole + λ2Lcross, (4)



where λ1, λ2 are tuning parameters that control the importance.

Drug-drug interaction prediction. Given a DDI tuple (Di, Dj , r), we obtain
the drug pair embeddings {hi, hj} from well-pretrained graph encoder, the DDI
prediction can be represented as the probability as follows:

P (Di, Dj , r) = Mddi(hi, hj , Ri), (5)

where Mddi is the predictive model, specifically a logistic regression function,
and Ri is the learnable representation of the interaction r. The model is fine-
tuned by minimizing the cross-entropy loss, as expressed below:

Lddi = − 1

N

N∑
k=1

yddilog(pk) + (1− yddi)log(1− pk), (6)

where N is the tuple number, pk denotes the predicted probability of interaction
for a DDI tuple, yddi is the presence of interaction r between drug Di and Dj .

5 Experiments

We conduct extensive experiments on two DDI datasets to evaluate the effec-
tiveness of our model. The code of HCC is available at https://github.com/
PaddlePaddle/PaddleHelix/tree/dev/apps/drug_drug_interaction/HCC.

5.1 Experimental Settings

Datasets. We conducted evaluations on two kinds of datasets: a small-scale
dataset DeepDDI and a large-scale dataset DrugBankDDI. DeepDDI is re-
leased by [12] which contains 1,704 drugs and 191,511 pair-wise DDI across 86
interaction types, each described by a general sentence structure. DrugBankDDI
is crawled and parsed the verified DDI from DrugBank (V5.1.9) [19] by our-
selves. In preprocessing, we excluded drugs that can not be converted into graphs
from SMILES strings by RDKit1. After preprocessing, the dataset contains 3,643
drugs and 1,151,039 pairwise samples classified into 174 interaction types.

Baselines. We compare our framework with several comparative methods:
three GNN models (GCN [8], GAT [15], GIN [20]), four state-of-the-art (SOTA)
DDI prediction methods (SSP-MLP [12], SSI-DDI [11], MIRACLE [17], DSN-
DDI [9]), and four SOTA molecular representation learning methods (MoCL [14],
KCL [4], MGSSL [22] and HM-GNN [21]).

Experimental Configurations. We divided the dataset into training, vali-
dation, and test sets with a 6:2:2 ratio and repeated this process five times using
different random seeds. The similarity threshold γ was set to 0.7 for small-scale
and 0.65 for large-scale datasets. For pre-training, we used λ1 = 100, λ2 = 10
for small-scale datasets and λ1 = 10, λ2 = 1 for large-scale ones. We used ACC,
F1-score, and AUC metrics as evaluation metrics.
1 http://www.rdkit.org/



Table 1. Performance comparison on all datasets.

Method
DeepDDI DrugbankDDI

ACC F1 AUC ACC F1 AUC

GNN-based
Methods

GCN 0.782(.003) 0.800(.002) 0.862(.002) 0.769(.001) 0.792(.001) 0.862(.001)
GAT 0.811(.002) 0.819(.002) 0.883(.002) 0.802(.002) 0.813(.002) 0.887(.001)
GIN 0.840(.001) 0.848(.002) 0.909(.001) 0.866(.002) 0.872(.001) 0.939(.001)

DDI-based
Methods

SSP-MLP 0.802(.013) 0.811(.009) 0.885(.009) 0.876(.006) 0.880(.005) 0.939(.004)
SSI-DDI 0.844(.007) 0.851(.005) 0.920(.006) 0.882(.003) 0.885(.003) 0.945(.002)
MIRACLE 0.859(.009) 0.885(.013) 0.930(.006) 0.923(.002) 0.926(.001) 0.968(.001)
DSN-DDI 0.880(.012) 0.882(.013) 0.946(.010) 0.923(.008) 0.925(.008) 0.973(.005)

Molecule-based
Methods

MGSSL 0.859(.001) 0.865(.001) 0.921(.002) 0.934(.000) 0.936(.000) 0.967(.000)
MoCL 0.856(.002) 0.862(.003) 0.919(.002) 0.923(.001) 0.926(.001) 0.963(.000)
KCL 0.878(.005) 0.880(.004) 0.941(.004) 0.866(.002) 0.870(.002) 0.930(.001)
HM-GNN 0.872(.002) 0.878(.002) 0.934(.001) 0.927(.000) 0.930(.000) 0.966(.000)

HCC (Ours) 0.894(.002) 0.899(.002) 0.948(.001) 0.949(.001) 0.950(.001) 0.981(.001)

5.2 Performance Comparison

As shown in Table 1, our framework outperforms all baselines, demonstrating
the effectiveness of our strategies. Furthermore, we can draw more detailed con-
clusions: (1) MIRACLE and DSN-DDI excel by effectively integrating multi-view
information. (2) MGSSL achieves suboptimal results on DrugBankDDI, which
incorporates motif generation tasks, highlighting the significance of motif com-
positional information in molecular representation learning. (3) KCL outper-
forms MoCL on DeepDDI, while MoCL excels on DrugBankDDI. Both chemical
element and substructure information provide valuable enhancements for con-
trastive learning. Compared with these solutions, our framework performs the
best thanks to its following advantages: (1) HCC utilizes complex relationships
in drug-motif interaction graph, accessing rich contextual insight beyond single
drugs. (2) It maximizes the benefits of motifs to communicate different molecules,
beyond influencing the physicochemical properties within individual molecules.
(3) The multi-level self-supervised tasks effectively utilize semantic and connec-
tive information, improving hierarchical understanding. The contrastive learning
further enhances multi-view fusion and alignment for accurate DDI predictions.

5.3 Ablation Study

We conduct ablation studies to further validate the contributions of different
designs in our framework. We compare our proposed HCC with its following
variants: (i) w/o pretrain: w/o the pretaining process. (ii) w only motif-loss:
with only motif-level loss in Eq.1. (iii) w only mole-loss: with only molecule-
level loss in Eq.2; (iv) w/o cross-loss: w/o the contrastive learning loss in Eq.3.
As shown in Figure 3(a), each component plays a critical role in DDI prediction.

5.4 Hyper-parameter Sensitivity Analysis

In this section, we analyze the effect of loss coefficient λ1 and λ2 when varying
them from 0.01 to 100 on all datasets. As depicted in Figure 3(b), performance
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Fig. 3. (a) Comparison of HCC with its variants. (b) Parameter sensitivity analysis.

tends to increase with the higher values, while too large values may bring a slight
drop. Appropriate contrastive learning can assist the model in integrating and
balancing information of different levels and enhancing representation learning.

6 Conclusion

In this study, we proposed a hierarchical cross-level contrastive learning frame-
work HCC for DDI prediction. We first constructed a drug-motif interaction
graph, and then designed hierarchical self-supervised tasks from multi-level per-
spectives. Extensive experiments on real-world datasets demonstrated that our
HCC outperforms state-of-the-art methods. In future work, we will expand our
framework’s application to additional molecular graph contexts.
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