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ABSTRACT

The recent advancements in Traffic Signal Control (TSC) have high-

lighted the potential of Reinforcement Learning (RL) as a promising

solution to alleviate traffic congestion. Current research in this area

primarily concentrates on either online or offline learning strategies,

aiming to create optimized policies for specific cities. Nevertheless,

the transferability of these policies to new cities is impeded by con-

straints such as the limited availability of high-quality data and the

expensive and risky exploration process. To this end, in this paper,

we present an innovative cross-city Traffic Signal Control (TSC)

paradigm called CrossLight. Our approach involves meta training

using offline data from source cities and adaptively fine-tuning in

the target city. This novel methodology aims to address the chal-

lenges of transferring TSC policies across different cities effectively.

In our proposed approach, we start by acquiring meta-decision

pattern knowledge through trajectory dynamics reconstruction via

pre-training in source cities. To address disparities in road network

topologies between cities, we dynamically construct city topologi-

cal structures based on the extracted meta-knowledge during the

offline meta-training phase. These structures are then used to dis-

till pattern-structure aware representations of decision trajectories

from the source cities. To identify effective initial parameters for
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the learnable components, we employ the Model-Agnostic Meta-

Learning (MAML) framework, a popular meta-learning approach.

During adaptive fine-tuning in the target city, we introduce a re-

play buffer that is iteratively updated using online interactions

with a rank and filter mechanism. This mechanism, along with a

carefully designed exploration strategy, ensures a balance between

exploitation and exploration, thereby fostering both the diversity

and quality of the trajectories for fine-tuning. Finally, extensive

experiments across four cities validate that CrossLight achieves

comparable performance in new cities with minimal fine-tuning

iterations, surpassing both existing online and offline methods. This

success underscores that our CrossLight framework emerges as

a groundbreaking and potent paradigm, offering a feasible and

effective solution to the intelligent transportation community.
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1 INTRODUCTION

The increasing urbanization and the growing number of vehicles

on the roadways have presented significant challenges such as

traffic congestion in many urban centers worldwide. This issue
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not only prolongs travel times for commuters but also negatively

impacts the environment and the economy [1, 21, 29]. As a result,

intelligent Traffic Signal Control (TSC) emerges as a pivotal solution

to this issue, serving as an indispensable mechanism to mitigate

congestion in urban cities [20, 26, 34].

Prior studies have attempted Reinforcement Learning (RL) based

methods for TSC [26, 29, 32]. These approaches, taking the traffic

system as the environment and the traffic signals as agents, and

leveraging the structural dependencies among traffic signals, have

consistently demonstrated superior performance over traditional

rule-based approaches. However, due to the nature of learning

from trail-and-errors, these RL methods require an extremely large

number of online exploration trails to gather sufficient samples

to learn a near-optimal policy. Moreover, such trial-and-errors are

highly risky as they could lead to severe congestion or accidents as

a sacrifice for model training, limiting their practical applications

in real-world scenarios due to safety concerns.

Taking these issues into account, offline RL has recently been

considered as an alternative solution for TSC [15, 34, 38]. These

algorithms, which utilize either batch RL [12] or sequential deci-

sion modeling [31], are designed to learn effective policies from

fixed datasets. These methods have demonstrated impressive per-

formance by mitigating the risks of online interactions. However, a

major limitation of offline RL is its dependency on previously col-

lected data from expert models, including records of states, actions,

and rewards. When considering the deployment of TSC systems in

new cities, the assumption of having such comprehensive trajectory

datasets readily available is often impractical.

The aforementioned limitations of the state-of-the-art online

and offline RL models for TSC hinder their adaption to new city

scenarios due to the necessity of costly explorations and the de-

ficiency of high-quality offline dataset. Hence, in this paper, we

propose a novel and feasible solution that fully leverages existing

offline datasets collected from readily deployed source cities to

train a generalized TSC policy and transfer it to the target city,

so-called Cross-City Transfer. However, direct cross-city transfer

possesses several challenges: (1) The trajectory dynamics of the

decision sequences differ significantly between the training and

adaptation scenarios, so the policy learnt from the source cities is

not generalizable to the target city. The distribution shift between

cities can render the strategy developed for source cities ineffective

when applied to a target city. (2) The spatial dependencies among

traffic signals vary across cities, leading to structural deviations

during policy transfer. Typical spatial message passing schemes

applied in RL-based TSC rely on the specific network structure of a

city, so they struggle to adapt when applied to a new city with an

unseen topology graph. (3) Furthermore, fine-tuning the learned

policy in the target city becomes challenging when there is a lack

of readily available trajectory data. Gathering such data through

online interactions can be costly and risky, so it is crucial to deter-

mine a strategy that utilizes a minimal amount of interactions data

for effective few-shot fine-tuning.

To address the aforementioned challenges for cross-city TSC

transfer, we design an offline-to-online meta-learning framework

that trains on the source cities offline data to obtain a transferable

meta knowledge and adaptively fine-tunes on the target city in

source cities
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Figure 1: Offline-to-Online Cross-City Transfer.

a few-shot manner through online interactions with the environ-

ment, as illustrated in Figure 1. Specifically, to derive a general-

ized decision-making pattern from the dynamic trajectories of the

source cities that could aid in extracting decision patterns in the

target city, we first pre-train a meta decision pattern extraction

encoder on the source cities. This process is aimed at distilling

meta decision pattern knowledge, facilitating the adaptation and

application of learned insights to the target city’s context. During

the meta-training stage, based on the node-level decision pattern

knowledge retrieved with the trajectories data, an adjacency graph

is constructed to tackle the city structure discrepancy among differ-

ent source cities. With the reconstructed structural relationships,

the pattern-structure aware representations are obtained, based on

which the TSC decisions are auto-regressively predicted through

a causal transformer decoder. During the adaptation stage, we de-

velop a novel online few-shot fine-tuning scheme to imitate real-

world deployment of TSC policies in a new city. Specifically, besides

an exploration strategy during online interactions, an adaptive re-

play buffer with a rank and filter scheme is designed to facilitate

efficient few-shot fine-tuning.

The major contributions of this paper are summarized as follows:

• To the best of our knowledge, we are among the first to

study the cross-city transfer problem in the traffic signal

control field, which can bridge the gap between RL-based

TSC approaches and their practical implementation in real-

world urban scenarios.

• We develop a novel framework that combines offline meta-

training with online adaptation to facilitate the transfer of

traffic signal control policies across cities, considering both

patterns in decision trajectory dynamics and structural de-

pendencies among signals, along with strategies for efficient

action exploration and trajectory filtering to ensure data

quality for effective fine-tuning.

• Extensive experiments on four city-level datasets demon-

strate the effectiveness of our model in terms of transferring

TSC policies from source cities to a target city, with a min-

imal amount of online data required for fine-tuning. Our

framework serves as a feasible solution for real-world de-

ployment of TSC in new urban scenarios.

2 RELATEDWORKS

2.1 Traffic Signal Control

Traffic signal control focuses on the strategic manipulation of traffic

signal phase plans to alleviate congestion. Traditional TSC meth-

ods adjust the phases based on traffic information collected in the

previous timestep [7, 22, 27]. For instance, MaxPressure [22] is a

rule-based scheme that dictates the subsequent phase based on the
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"pressure" from the preceding timestep, which is defined as the

difference in vehicular flows between incoming and outgoing lanes.

Recognizing the dynamic nature of traffic patterns, many studies

have formulated the TSC task as a RL problem and such models

have achieved superior performance compared to traditional meth-

ods [1, 5, 30, 44]. For instance, multi-agent RL models with Graph

Neural Networks are proposed to allow collaboration among neigh-

boring intersections [26, 29]. Although they have demonstrated

superior performance on multiple datasets, real-world deployment

of such models is infeasible due to the uncertainties introduced by

the trial-and-error process inherent in online RL training.

Driven by the limitations of online-RL methods, recent works

have shifted towards offline approaches [15, 34, 38]. These methods

derive decision-making strategies from pre-collected demonstration

trajectories without access to an online environment. For instance,

[15] and [38] introduce batch RL based methods that approximate a

policy from interaction datasets consisting of tuples of state, action,

and reward trajectories collected by training expert policies. [34]

employs a sequential decision modeling method for TSC, leveraging

the Decision Transformer architecture [6]. Results have shown that

such offline models can obtain convincing performance compared

to online models given sufficient high-quality data. However, the

key issue of these offline RL methods is the necessity of training an

online model in the target city to gather the demonstration dataset,

which is infeasible during real-world deployment. Moreover, the

performance of these methods is not only limited by the optimality

of the behavior policy employed to collect the data, but also sensitive

to shifts between the training and evaluation data distributions [14].

2.2 Reinforcement Learning from Offline to

Online

To address the aforementioned data distributional shifts, the RL

community has started to investigate methods that employ further

online interactions to finetune the pretrained offline RL models,

so-called Offline-to-Online(O2O) RL [11, 13, 19, 43]. Such methods

focus on finding out the way to best utilize the offline dataset to

minimize the number of online interactions for learning the optimal

policy [2, 24, 42]. For example, [11] studies an implicit Q-learning

algorithm for offline RL that demonstrates strong online finetun-

ing performance, [19] studies an offline pre-trained TD3-BC model

with online finetuning using TD3 with an online replay buffer,

[43] extends the sequential modeling based offline RL model by

incorporating an online replay buffer to further finetune the of-

fline Decision Transformer model and has demonstrated promising

performance improvement. Nonetheless, these methods primarily

investigate scenarios in which the trajectories encountered during

offline training originate from an environment identical to that ex-

perienced during online fine-tuning. The problem of cross-scenario

transfer remains an under-explored topic in the O2O literature.

2.3 Knowledge Transfer Across Cities

Recently, several works have started to investigate cross-scenario

transfer, i.e., knowledge transfer to tackle transfer learning from

data-rich scenarios to data-scarce scenarios, especially in the urban

computing domain [10, 17, 18, 25, 35]. For example, [10] introduces

the region correlation between the source cities and the target city

Phase 1 Phase 2 Phase 3 Phase 4

lane

Figure 2: Example of a four-phase intersection.

to accomplish the cross-city transfer for traffic forecasting. [18]

proposes a graph few-shot learning framework that generates the

parameters of spatio-temporal forecasting networks based on the

learnt meta-knowledge. [17] designs a cross-city few-shot traffic

forecasting framework by introducing a traffic pattern bank to

match similar traffic patterns across different cities. Nonetheless,

none of the existing studies on knowledge transfer across cities

have addressed the transfer of RL policies for traffic signal control.

3 PRELIMINARY

The goal of our task is to improve the travel efficiency in the tar-

get city with minimal online interactions by transferring the well-

trained offline TSC policy from pre-collected demonstration dataset

of existing source cities. In this section, we first define the TSC

task and the RL formulation for TSC, and then we introduce the

formulation of offline RL in terms of sequence modeling, lastly we

formulate our cross-city transfer problem.

3.1 RL for Traffic Signal Control

For TSC, we study the change in phase plan of traffic lights. As

shown in Figure 2, a green phase refers to a particular interval

during which traffic movements in specific directions are permitted.

Decision making in TSC either focuses on fixing the duration of

each phase and controlling the order of green phases, or maintain-

ing a predefined order of green phases and determining the time to

switch to the next phase, aiming at reducing congestion at the inter-

sections. In RL, the environment can be modeled as a Markov Deci-

sion Process (MDP) described by the tuple (S,A,P,R, 𝛾), where S
is the state space, A represents the action space, P stands for the

transition probability matrix, and R and 𝛾 are the reward function

and reward discount factor [21, 40]. For RL-based TSC, the state

space S is formulated by a combination of traffic features on differ-

ent incoming and outgoing lanes of the intersections. Actions A
dictate either the current phase duration given fixed phase plans,

or the subsequent green phase index, provided a minimum green

phase duration [26]. Reward metrics R are congestion indicators

such as total queue length in incoming directions, average travel

time, average waiting time, total throughput, etc [1, 30].

3.2 Offline RL via Sequence Modeling

Offline decision-making learns exclusively from a fixed dataset,

bypassing online interactions. The dataset consists of trajectories

composed of states 𝑠 , actions 𝑎, and rewards 𝑟 formatted as follows:

𝜏 = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . . , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 ), (1)

where 𝑇 is the predefined trajectory length, ranging from 1 to the

maximum episode length. In RL-based decision making, the objec-

tive is to formulate a decision policy that maximizes the expected re-

turn E[∑𝑇𝑡=1 𝑟𝑡 ] in an MDP. Recently, a few works have approached
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the offline decision making problem from the supervised learning

perspective, utilizing sequential models as opposed to policy gradi-

ents or Q-function learning. For instance, Decision Transformer [6]

introduces the concept of target return, i.e., 𝑟𝑡 =
∑𝐾
𝑡 ′=𝑡 𝑟𝑡 ′ , serving

to evaluate the cumulative reward from a specific timestep 𝑡 to the

trajectory end. Accordingly, the MDP tokens can be transformed

to the input sequence below:

𝜏 = (𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, ...𝑟𝐾 , 𝑠𝐾 , 𝑎𝐾 ) . (2)

On such basis, the objective then shifts to predicting the next

action 𝑎𝑡 based on the historical MDP tokens 𝜏1:𝑡 . Along this line,

sequence modeling techniques such as Transformers [23] can be

utilized to achieve effective offline decision-making.

3.3 Cross-City TSC Policy Transfer

A city traffic signal structure graph can be denoted as𝐺 = (𝑉 , E, 𝐴, 𝑋 ).
𝑉 is the set of traffic lights, E represents the set of edges, each de-

noted by 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ), 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of 𝐺 ,

where 𝑁 = |𝑉 |, and 𝑎𝑖 𝑗 = 1 indicates existence of a connection

between traffic signal 𝑣𝑖 and 𝑣 𝑗 . We denote𝑇 as the total number of

time steps, 𝑋 ∈ R𝑁×3𝐾 represents the node feature that contains

the trajectories data formatted in Equation 2.

Definition 1 (Cross-city Few-Shot Policy Transfer).

Given𝑀 source cities, i.e.,𝐺source = {𝐺1

source, . . . ,𝐺
𝑀
source} with exclu-

sive offline trajectories data and a target city 𝐺target with no existing
offline trajectories but limited access to interactions with the envi-
ronment, the goal of cross-city few-shot policy transfer is to learn a
model based on the available trajectories from 𝐺source and a minimal
amount of online few-shot trajectories from 𝐺target to generate TSC
actions that maximize the travel efficiency in 𝐺target.

4 METHODOLOGY

In this section, we introduce the technical details of our CrossLight

framework, which is illustated in Figure 4. Specifically, we first

describe the RL setup of our TSC task, and then introduce our de-

sign of the trajectory dynamics reconstruction module in which

a decision pattern extractor is pre-trained to obtain node-level

meta decision knowledge. We then describe the city structure con-

struction module that constructs the adjacency relationships from

the node-level meta decision knowledge, which is then utilized

to obtain the pattern-structure aware representations. Then we

introduce the causal transformer decoder for auto-regressive action

prediction based on the learnt representations. Lastly we introduce

the specific offline-to-online meta learning architecture design in

our framework that tackles few-shot online adaptation in the target

city with an exploration and trajectory rank and filter strategy.

4.1 Reinforcement Learning Setup

We first formulate the TSC task as a Markov Decision Process as

introduced in Section 3.1. Particularly, the state space contains the

number of approaching vehicles, queue length of stopped vehicles,

average speed of approaching vehicles, and pressure (difference

between total number of waiting vehicles in the upstream incom-

ing lanes and that in the downstream outgoing lanes [28]) in 12

total traffic flow directions i.e., N-S, N-W, N-E, S-N, S-W, S-E,W-N,
W-S, W-E, E-N, E-W, E-S, as well as the current phase encoding
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Figure 3: Trajectory Dynamics Reconstruction.

(one-hot vector indicating the current green phase in the phase

cycle). The action space is the set of non-conflicting directions to

be assigned green, in total there are six possible phase actions,

assuming the minimum green phase duration 𝑡𝐺 is fixed. For the

reward function, negative average waiting time at each intersection

is selected. Formally, the offline TSC problem for a city 𝑐 with a total

of 𝑁𝑐 intersections can be formulated as follows: given the offline

dataset collected from each intersection, the trajectory sequences

are formulated by global constructs represented by 𝜏𝑐
𝑅
∈ R𝐾×𝑁 𝑐×1

,

𝜏𝑐
𝑆
∈ R𝐾×𝑁 𝑐×𝐹𝑆

, and 𝜏𝑐
𝐴
∈ R𝐾×𝑁 𝑐×𝐹𝐴

, where 𝐾 denotes the length

of trajectory sequence, 𝐹𝑆 denotes the feature space dimension of

states, and 𝐹𝐴 represents the dimension of action space, given the

discrete actions are pre-processed into one-hot vectors.

4.2 Trajectory Dynamics Reconstruction

In order to extract a generalized decision pattern from the source

cities that could be transferred to the target city, we design a meta

decision pattern extractor that is pre-trained on the trajectories

data from the source cities with a masking pattern specifically de-

signed for the hetero-modal decision trajectories. Inspired by recent

progress in self-supervised pre-training with masked autoencod-

ing [3, 16, 33, 37], we adopt a random auto-regressive masking

pattern to align with offline decision sequence modeling. Partic-

ularly, we force at least one token in the masked sequence to be

auto-regressive, which means the token should be predicted based

only on previous tokens, with all future tokens masked. Particu-

larly, for each input trajectory 𝜏 we first randomly choose a modal-

ity 𝑚0 ∈ {𝑆,𝐴, 𝑅}, then a random index 𝑘𝑚0
∈ [1, 𝐾] is selected

for modality𝑚0. For tokens of modality𝑚0, those starting from

timestep 𝑘𝑚0
are masked, i.e., 𝜏

𝑘𝑚
0
:𝐾

𝑚0
are masked. Meanwhile, for

the other two modalities𝑚1 and𝑚2, trajectories 𝜏𝑚1
and 𝜏𝑚2

are

randomly masked, following a predefined masking ratio. An ex-

ample masking pattern is shown in Figure 3, where𝑚0 = 𝐴 and

𝑘𝑚0
= 1. With such masking pattern, the auto-encoder can learn the

underlying temporal dependencies across the tokens and perform

inference in an auto-regressive manner.

For the decision pattern extractor, we employ the commonly

adopted encoder-decoder architecture where both components are

bidirectional transformers [23]. Notably, given the diverse dimen-

sionalities of the input tokens 𝜏𝑐
𝑆
, 𝜏𝑐
𝐴
, 𝜏𝑐
𝑅
, we first attempt to map

these tokens into a unified representation space by employing fully

connected layers 𝑓𝑠 (·), 𝑓𝑎 (·), and 𝑓𝑟 (·) respectively, resulting in
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representations {𝐻𝑐
𝑆
, 𝐻𝑐
𝐴
, 𝐻𝑐
𝑅
} ∈ R𝐾×𝑁 𝑐×𝐷

. To enable the trans-

formers to differentiate between tokens with different modalities

at different timesteps in the sequence, we integrate a learnable

mode-specific encoding as well as a sinusoidal timestep encoding

on top of the input token encodings. The decoder is then trained to

reconstruct the original sequence, including the unmasked tokens,

using the MSE loss. The training objective for the self-supervised

pretraining for the trajectory dynamics reconstruction is thus:

max

𝜃
E

𝑇∑︁
𝑡=1

3∑︁
𝑚=1

log 𝑃𝜃 (𝑧𝑡𝑚 |𝜏masked
) (3)

where 𝜏
masked

is the masked trajectory sequence. In such way, the

decision pattern extractor is able to acquire effective representations

of the input trajectories which represents the generalized decision

pattern knowledge from the source cities.

4.3 City Structure Construction

Given the input trajectories 𝜏𝑐
𝑅
, 𝜏𝑐
𝑆
, 𝜏𝑐
𝐴
from the source city 𝑐 , we

query the pre-trained encoder in the decision pattern extractor

to obtain the pattern-aware representations, i.e., {𝑃𝑐
𝑅
, 𝑃𝑐
𝑆
, 𝑃𝑐
𝐴
} ∈

R𝐾×𝑁
𝑐×𝐷

where𝐷 is the hidden dimension of the output encoding

from the encoder. We then define the node-level pattern knowledge

by concatenating the representations from different modalities:

𝐻𝑐𝑀𝐾 = 𝑃𝑐𝑅 ∥ 𝑃
𝑐
𝑆 ∥ 𝑃

𝑐
𝐴, (4)

where ∥ represents the concatenation operation.

Besides decision patterns across timesteps, structural inter-signal

communications has also been shown a crucial factor in TSC in

many existing works [26, 29]. In order to express the structural

information of different city graphs and reduce the structural devi-

ations, we propose to reconstruct the adjacency relationship from

the node-level pattern knowledge 𝐻𝑀𝐾 . Specifically, we use 𝐻𝑀𝐾
to predict the probability of edge existence between each pair of

nodes (𝑛𝑖 , 𝑛 𝑗 ) ∈ G𝑐 . Formally, the constructed adjacency matrix

can be obtained by:

𝐴𝑐 = sigmoid

(
[𝐻𝑀𝐾 ]𝑇𝑊 · 𝐻𝑀𝐾

)
, (5)

where (·)𝑇 is the transpose operation, and𝑊 ∈ R𝐷×𝐷 is the learn-

able weight matrix. Given the reconstructed graph structure rela-

tionship driven from the hidden pattern knowledge from the source

cities, we further proceed to obtain structure-aware representations

leveraging spatial message passing among the intersections.

4.4 Structure Aware Representations

A conventional approach for spatial message passing is to employ

Graph Neural Networks (GNNs), such as GCN [39], on the pre-

defined road network to capture the inherent spatial patterns and

correlations. However, given that GNNs are primarily adept at

modeling local topological information, directly relying on adja-

cency relationships between nodes might not adequately capture

the dynamically changing spatial correlations among traffic signals.

Therefore, we adopt a transformer-like architecture to handle the

representations, without introducing additional inductive bias.

Specifically, we first introduce a learnable spatial position en-

coding tailored to each type of tokens. The encodings can be rep-

resented as {𝐸𝐶
𝑅
, 𝐸𝐶
𝑆
, 𝐸𝐶
𝐴
} ∈ R𝑁×𝑁 , which is initialized with the

road network adjacency matrix 𝐴𝑐 , where 𝑁 is the maximum num-

ber of nodes in the source cities. Subsequently, the encodings are

concatenated with the hidden token representations {𝐻𝑐
𝑆
, 𝐻𝑐
𝐴
, 𝐻𝑐
𝑅
}.

Formally, the encoded representations can be derived by:

�̃�𝑐𝑅,𝑆,𝐴 = 𝑓

(
𝐻𝑐𝑅,𝑆,𝐴 ∥ 𝐸

𝑐
𝑅,𝑆,𝐴

)
, (6)

where 𝑓 (·) stands for the linear mapping, and ∥ denotes the concate-
nation operation. Along this line, we further leverage a spatially-

oriented multi-head attention with residual connections to capture

the latent spatial dependencies among different traffic signals:

𝑍𝑐𝑅,𝑆,𝐴 = MHA

(
�̃�𝑐𝑅,𝑆,𝐴

)
+ �̃�𝑐𝑅,𝑆,𝐴, (7)

whereMHA(·) represents the well-known Multi-Head Attention

operation [23]. Parallelly, a multi-layer GCN with residual connec-

tions is applied on the hidden representations 𝐻𝑐
𝑅,𝑆,𝐴

to obtain the
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static spatially aggregated representations. The message propaga-

tion for layer ℓ + 1 within GCN is provided as follows:

𝐻 (ℓ+1) = 𝜎
(
𝐷𝑐
− 1

2𝐴𝑐𝐷𝑐
− 1

2𝐻 (ℓ )𝑊 (ℓ ) + 𝐻 (ℓ )
)
, (8)

where 𝐷𝑐 is the diagonal degree matrix of𝐴𝑐 ,𝑊 (ℓ ) is the learnable
weight matrix, 𝜎 is the activation function.

Denoting the spatially aggregated representation outputs from

GCN as 𝑍𝑐
𝑅,𝑆,𝐴

, the final structure-aware token representations can

be obtained by applying a gate mechanism with no bias, as follows:

𝑔 = 𝜎

(
˜𝑓

(
𝑍𝑐𝑅,𝑆,𝐴

)
+ ˆ𝑓

(
𝑍𝑐𝑅,𝑆,𝐴

))
,

𝑍𝑐𝑅,𝑆,𝐴 = 𝑔 ⊙ 𝑍𝑐𝑅,𝑆,𝐴 + (1 − 𝑔) ⊙ 𝑍
𝑐
𝑅,𝑆,𝐴,

(9)

where 𝜎 is the sigmoid activation function,
ˆ𝑓 and ˜𝑓 represent linear

mappings, and ⊙ denotes element-wise multiplication. On such

basis, we can adaptively uncover the intricate interconnections

inherent among the traffic signals in the hidden embeddings.

4.5 Pattern-Structure Aware Action Prediction

Then, the meta decision patterns and the structure-aware repre-

sentations 𝑍𝑐
𝑅
, 𝑍𝑐
𝑆
, 𝑍𝑐
𝐴
are combined to obtain the pattern-structure

auxiliary representations for decision prediction, as shown by:

Z𝑐𝑅,𝑆,𝐴 = 𝐻𝑐𝑅,𝑆,𝐴 ∥ 𝑍
𝑐
𝑅,𝑆,𝐴 . (10)

Then, the pattern-structure aware representationsZ𝑐
𝑅
,Z𝑐

𝑆
, and

Z𝑐
𝐴
are transformed into the following sequence:

𝜏𝑧 =

(
𝑧1𝑟 , 𝑧

1

𝑠 , 𝑧
1

𝑎, 𝑧
2

𝑟 , ..., 𝑧
𝑡
𝑟 , 𝑧

𝑡
𝑠 , 𝑧

𝑡
𝑎

)
, 𝑧𝑟,𝑠,𝑎 ∈ Z𝑐𝑅,𝑆,𝐴 . (11)

Given the success of Decision Transformer [6] in offline decision

sequence modeling, we adopt a similar transformer architecture

for causal action prediction. Based on the embedding sequence

re-ordered in the way that is readily available for return-guided de-

cision modeling, we apply a Transformer decoder architecture that

auto-regressively predicts the action probabilities 𝑝𝑐 at timestep 𝑡

based on previous tokens from timestep 1 up to 𝑡 :

𝑝𝑐𝑡 = TransformerDecoder(𝜏1:𝑡𝑧 ) . (12)

Accordingly, we employ the cross-entropy loss as the optimiza-

tion objective since the phase actions are discrete in our task, the

loss is defined as follows:

L = −
𝑇∑︁
𝑡=1

𝑃∑︁
𝑖=1

𝑝𝑐𝑡,𝑖 log

(
𝑎𝑐𝑡,𝑖

)
, (13)

where 𝑃 stands for the total number of phase actions.

4.6 Offline Meta-training and Online

Finetuning

To handle few-shot adaptation in the target city, we propose a

meta-learning framework, originating from Model-Agnostic Meta-

Learning(MAML) [8], which contains a meta-training process in the

source cities and an adaptation process in the target city. However,

different from traditional meta-learning scenarios where both the

training and adaptation stage require offline data, our task is special

since only the meta-training stage is purely offline, while no offline

trajectories are readily available in the adaptation stage for fine-

tuning. Tailored to this situation, we first define each source task

T𝑖 ∈ T that includes 𝐷𝑆 support set 𝜏𝑠𝑝𝑡 and 𝐷𝑄 query set 𝜏𝑞𝑟𝑦 ,

where 𝜏𝑠𝑝𝑡
⋂
𝜏𝑞𝑟𝑦 = ∅. With regard to training task T𝑖 , task-specific

model parameters 𝜃T𝑖 is updated by gradient descents for several

steps using the support set, as shown below:

𝜃 ′T𝑖 = 𝜃T𝑖 − 𝛼∇𝜃T𝑖 𝐿𝜏𝑠𝑝𝑡
(
𝑓𝜃T𝑖

)
. (14)

Then the model is evaluated on the query set, where the accumu-

lated gradients across the query sets over all tasks are used to train

the general model parameters 𝜃 :

𝜃 ← 𝜃 − 𝛽∇𝜃
∑︁
T𝑖
𝐿𝜏𝑞𝑟𝑦

(
𝑓𝜃 ′T𝑖

)
. (15)

Further, in the adaptation stage, to guarantee finetuning on the

target city where offline trajectories do not readily exist, we design

an iteratively updated replay buffer B that collects trajectories from

the target city while interacting with the environment. Since the

decision model F𝜃 is well-trained on the source cities trajectories

which are different from the target city in terms of data distribution,

directly applying F𝜃 to generate actions might lead to sub-optimal

trajectories that harm the model fine-tuning performance. Hence,

we propose an exploration strategy on the deterministic F𝜃 model,

particularly Boltzmann exploration [4]. Specifically, during online

finetuning and data collection, instead of deterministically selecting

the action with the maximum action probability, we sample the

action from a categorical distribution based on the action probability

output from F𝜃 , following:

𝑎𝑡 ∼ Categorical

(
F𝜃

(
𝜏1:𝑡𝑡𝑎𝑟𝑔𝑒𝑡

))
, (16)

where 𝜏𝑡𝑎𝑟𝑔𝑒𝑡 are the iterative trajectory segments from the tar-

get city. This design strikes a balance between exploration and

exploitation by making higher-valued actions more likely to be

chosen while still allowing lower-valued actions to be explored.

Moreover, to guarantee the quality of the target trajectories data,

we apply a trajectory filtering scheme that ranks the trajectories

in B by mean rewards of the sequences, and keep the highest 𝑘%

trajectories in B. Furthermore, based on the filtered trajectories, we

update the decision model F𝜃 by fine-tuning using samples from

B, following:
𝜃 = 𝜃 − 𝜆∇𝜃𝐿B (𝑓𝜃 ) . (17)

The entire offine-to-online training-finetuning procedure is shown

in Algorithm 1 in details.

5 EXPERIMENTS

5.1 Simulation and Datasets

We utilize SUMO
1
(Simulation of UrbanMObility), a widely adopted

microscopic multi-modal traffic simulator, to simulate traffic dy-

namics including phase changes of traffic signals and movements

of vehicles. We conduct experiments on four city-level data con-

sisting of road networks and traffic flow configurations, namely

Grid-4x4 [1], Jinan [20], Hangzhou [20], and Baoding [21]. The data

descriptions are provided in Table 1. To gather the demonstration

datasets, we train the representitive CoLight model [29] for 100

1
Website: https://www.eclipse.org/sumo/

https://www.eclipse.org/sumo/


CrossLight: Offline-to-Online Reinforcement Learning for Cross-City Traffic Signal Control KDD ’24, August 25–29, 2024, Barcelona, Spain

Algorithm 1:OfflineMeta-training and Online Fine-tuning

Input: decision model F𝜃 , pretrained decison pattern

extractor 𝑃𝜙 , source city data 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 , source tasks set T ,
replay buffer B, environment E.
Output: finetuned decision model parameters 𝜃 .

// Offline meta training on source city tasks

for epoch in range(1, meta_epochs) do
for T𝑖 ∈ T do

𝜃T𝑖 ← 𝜃 .

𝜏𝑠𝑝𝑡 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (T𝑖 , 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 ).
𝜏𝑞𝑟𝑦 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑄𝑢𝑒𝑟𝑦 (T𝑖 , 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 ).
Compute action prediction loss on the support set,

𝐿𝜏𝑠𝑝𝑡 (𝑓𝜃T𝑖 ) based on Equation (13).

Update the task model parameters with gradient

descent following Equation (14).

Evaluate the updated 𝜃 ′T𝑖 on the query set via

Equation (13).

Update 𝜃 based on Equation (15).

// Online few-shot finetuning in the target city
𝑒𝑛𝑣 ← 𝑆𝑒𝑡𝑢𝑝𝐸𝑛𝑣 (E)
for epoch in range(1, finetune_epochs) do

Rollout trajectory 𝜏𝑡𝑎𝑟𝑔𝑒𝑡 from 𝑒𝑛𝑣 using the decision

model F𝜃 following Equation (16).

Append the trajectories to the replay buffer:

B ← B ∪ {𝜏𝑡𝑎𝑟𝑔𝑒𝑡 }.
Filter B by the top 𝑘-percent rewards:

B ← 𝑅𝑎𝑛𝑘𝑎𝑛𝑑𝐹𝑖𝑙𝑡𝑒𝑟 (B, 𝑘).
Update F𝜃 using B via Equation (17).

epochs on the first hour(3600𝑠) traffic flow for all cities. We set

𝑡𝐺 = 10𝑠 , hence obtaining a total of 360 updates of states, actions,

and rewards within each epoch. We select trajectories from the final

50 epochs after carefully analyzing the model convergence curve

for all cities to ensure the quality of the demonstration datasets

while conserving trajectory dynamics.

5.2 Benchmark Methods

The compared baselines include the following: FixedTime, where

the traffic signal phase plan switches in the pre-defined order;Max-

Pressure [22], which adaptively selects the next phase based on cur-

rent intersection pressure; Colight [29], which uses a multi-agent

DQN model for neighbor-aware TSC; STMARL [26], which lever-

ages DQN for TSC considering the spatio-temporal dependencies

among intersections;MetaLight [36], which is a value-based meta-

reinforcement learning model for TSC; DataLight [38], which is a

conservative Q-learning model for offline TSC that trains the policy

from pre-collected trajectory datasets; TransformerLight [34]:

which is a shared Decision Transformer model for all traffic light

agents in the city network; DTLight [9]: which is a decentralized

Decision Transformer model with online fine-tuning on the specific

city networks; SO2 [41]: which is a smoothed O2O method that

improves the Q-value estimation by perturbing the target action

and improving the frequency of Q-value updates.

Table 1: Dataset Descriptions

Dataset Grid4x4 Hangzhou Jinan Baoding

Synthetic/Real Synthetic Real Real Real

Number of Intersections 16 16 12 21

Total Vehicle Flow 1,473 6,984 6,295 1,466

Expert Converge Epoch 42 44 52 48

Since none of the existing TSC models study cross-city transfer,

we train and evaluate the above-mentioned baselines on the tar-

get city. For our model implementation, we regard the city being

evaluated as the target city, while the other cities as source cities.

5.3 Experimental Settings

Evaluation Metrics Commonly used evaluation metrics for TSC

include vehicles’ average waiting time, average travel time, total

throughput, average queue lengths, etc [1, 20, 30]. In this paper,

we select three metrics to evaluate the performance, including

average delay (defined as 𝑡𝑟𝑒𝑎𝑙 − 𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , where 𝑡𝑟𝑒𝑎𝑙 is the actual
trip duration of a vehicle and 𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is the ideal trip time if the

vehicle travels at its maximum speed in the traffic network without

any traffic restrictions, e.g., traffic signals), average waiting time,
and average travel time.
Implementation Details In our experiments, we set the sequence

length to 4, hidden dimension to 256, mask ratio to 0.75, and batch

size is selected to be 256, meta training steps is 5, online finetuning

epochs is 30, and replay buffer filtering percentage is selected to be

50%, the learning rate is selected as 1𝑒−4. For performance evalua-

tion, we evaluate the models on the target city for 10 epochs and

report the average values.

5.4 Performance Evaluation

We report the comparative analysis between our CrossLight frame-

work and the baseline models including heuristic rule-based meth-

ods, online RL, and offline RL approaches in Table 2. The results

clearly demonstrate that CrossLight outperforms competing meth-

ods on the investigated datasets in terms of nearly all of the three

evaluation metrics measuring total traffic efficiency. Firstly, the

best-performing rule-based baseline MaxPressure is outperformed

by 51.02%, 44.11%, 28.53%, and 82.80% in terms of average delay,

on the four cities respectively. Both serving as feasible solutions

for real-world TSC deployment, our cross-city transfer framework

outperforms the best-performing rule-based baseline, showcasing

the promise of our solution. Moreover, our framework also out-

performs most online RL-based baselines. For example, comparing

with the structure-aware models CoLight and STMARL, our model

outperforms CoLight by 16.61% and 43.44% on Grid4x4 and Baoding
in terms of average waiting time, and 10.15% and 61.98% improve-

ments can be seen compared to STMARL in terms of average travel

time. Furthermore, our model outperforms the meta-learning based

baseline MetaLight by 9.03%, and 26.08% on Grid4x4 and Baoding
in terms of average travel time. Such results demonstrate that our

cross-city model is comparable to existing online models, indicating

the significance of our offline training and online finetuning design.

On the other hand, for offline RL baselines, our model achieves

1.71%, and 1.03% improvements on the Hangzhou dataset compared
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Table 2: The overall performance of different models on four city-level datasets, where AD denotes Average Delay, AWT denotes

Average Waiting Time, and ATT denotes Average Travel Time. All metrics are in seconds.

City Grid4x4 Hangzhou Jinan Baoding

Metrics AD AWT ATT AD AWT ATT AD AWT ATT AD AWT ATT

FixedTime 76.51 36.90 213.04 61.87 18.21 433.27 96.02 48.92 334.68 1027.33 1010.33 1148.12

MaxPressure 48.22 22.92 159.56 47.59 11.98 349.84 70.51 34.61 297.20 854.87 772.83 1004.79

CoLight 40.22 9.63 141.79 42.36 3.72 335.40 64.41 21.84 279.16 237.94 217.87 423.57

STMARL 38.28 10.05 143.28 40.91 4.12 332.48 63.15 22.01 279.54 232.10 209.54 378.46

MetaLight 42.68 12.98 141.51 45.79 6.76 342.78 64.37 21.98 280.41 168.54 149.76 194.67

DataLight 25.51 9.94 130.02 28.98 3.16 335.71 63.57 24.78 274.04 175.46 146.38 225.00

TransformerLight 30.16 10.18 141.75 29.62 3.18 333.42 62.65 27.50 289.73 181.88 144.23 229.26

DTLight 26.67 8.12 137.61 39.23 8.40 340.51 57.20 34.06 278.95 164.62 157.28 162.43

SO2 28.70 8.93 135.08 39.84 6.51 333.29 59.48 29.75 281.02 156.37 149.93 157.89

CrossLight 23.62 8.03 128.73 26.60 3.12 329.98 50.39 20.78 279.52 147.06 123.22 143.90

Table 3: Ablation performance of Average Delay.

City Grid4x4 Hangzhou Jinan Baoding

w/o pattern extraction 25.85 28.07 54.16 151.40

w/o structure construction 24.78 28.91 53.76 152.01

w/o spatial message passing 28.92 31.74 58.92 169.70

w/o online finetuning 46.97 52.28 81.73 560.91

CrossLight 23.62 26.60 50.39 147.06

to the batch RL based baseline DataLight and the sequential model-

ing driven model TransformerLight in terms of average travel time.

Moreover, compared to the offline-to-online baseline DTLight, our
model improves by 62.85% and 21.66% on Hangzhou and Baoding
in terms of average waiting time. These satisfactory results demon-

strate the effectiveness of cross-city meta knowledge learning from

the source cities and transfer to the target city. Such cross-city

transfer could potentially achieve similar or higher performance

than end-to-end training in the target city, which is often infeasible.

This demonstrates the effectiveness of meta-training on the source

cities that provides a good initialization for fine-tuning on the tar-

get city that guarantees performance. Such results are sufficient to

draw the conclusion that our cross-city transfer framework offers

a better solution that is both feasible in real-world settings and

well-performing in terms of travel efficiency maximization in the

target city.

In terms of ablation studies, we investigate the model perfor-

mance with removal of different modules in our framework, and we

provide the results in Table 3. The results demonstrate the effective-

ness of the sub-modules in our framework, specifically, the most

important component in our framework is the online finetuning

with real-time adaptations in the target city, resulting in 49.71% and

73.78% improvements on Grid4x4 and Baoding. Additionally, spatial
message passing is also an essential aspect, signified by 16.19% and

14.48% improvements on Hangzhou and Jinan.

5.5 Model Analysis

In this section, we evaluate CrossLight from various perspectives,

addressing the following research questions one by one:

RQ1: How does the scale and diversity of the source cities’ data
affect the cross-city transfer performance in the target city?

Figure 5: Model performance of Average Travel Time with

different source city trajectories composition.

In order to address this question, we conduct experiments with

different combinations of source cities to evaluate the impact of

different source cities on the effectiveness of cross-city transfer. The

results are visualized in Figure 5, in which the x-axis shows differ-

ent combinations of the source cities, where G stands for Grid4x4,
H represents Hangzhou, J stands for Jinan, and B is abbreviated for

Baoding. From Figure 5, for Grid4x4, Hangzhou+Baoding provides

the best source cities combination, followed by the three-cities

combination, this is potentially due to the similarity between the

traffic flow distributions between Grid4x4 and Baoding, which is

also validated by the fact that performance of transferring from

Grid4x4+Hangzhou results in the best performance when evalu-

ating on Baoding. For Hangzhou, the superior performance when

transferring from Grid4x4+Jinan can be explained by the similar

structural mappings between Grid4x4 and Hangzhou as well as the

similar traffic flow patterns between Jinan and Hangzhou.
RQ2: How robust is our framework to parameters selection such

as sequence length 𝐾?
In order to answer this research question, we conduct a pa-

rameter sensitivity analysis with different selections of sequence

length, and provide the results visualization on Grid4x4 in Figure
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Figure 6: Model performance with different sequence length.

6. From the results we can draw the conclusion that our model is

robust against different choices of sequence lengths, and the best-

performing option is 𝐾 = 4. Similar conclusion can be drawn from

the other datasets.

6 CONCLUSION

In this paper, we proposed CrossLight, a novel offline-to-online re-

inforcement learning framework for cross-city traffic signal control.

Particularly, we designed a meta-learning based framework that

meta-trains on the offline trajectories data from the source cities,

and fine-tunes on the target city with the online trajectories adap-

tively gathered through interactions with the environment. Starting

with pre-training a decision pattern extractor that is capable of ac-

quiring generalized pattern knowledge, we then meta-trained on

the source cities data while constructing the city structure graphs.

We then developed an online few-shot adaptation scheme with ex-

ploration and trajectories filtering strategies to facilitate fine-tuning

in the target city. Experimental results on four city-level datasets

have demonstrated the effectiveness of our framework. Overall, our

framework represents a significant step forward in bridging the

gap between RL-based TSC approaches and the practical implemen-

tation of TSC policies in new urban settings.
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