IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 1

A Unified Framework for User Identification
across Online and Offline Data

Tianyi Hao, Jingbo Zhou, Yunsheng Cheng, Longbo Huang and Haishan Wu

Abstract—User identification across multiple datasets has a wide range of applications and there has been an increasing set of
research works on this topic during recent years. However, most of existing works focus on user identification with a single input data
type, e.g., (I) identifying a user across multiple social networks with online data and (ll) detecting a single user from heterogeneous
trajectory datasets with offline data. Different from previous works, in this paper, we propose a framework on user identification
between online and offline datasets. We build connections between these two types of data by a mapping from IP addresses to
physical locations. To solve this problem, we propose a novel framework consisting of three steps. First, we use a clustering method
based on locations of IP addresses to map IP addresses into specific physical location distributions. Second, we propose a novel
pairwise index to reduce space cost and running time for computing the co-occurrence. Lastly, we apply a learning-to-rank method to
merge the effect of multiple features we get in the first two steps. Based on our framework, we design experiments to demonstrate the
efficiency (in time and space) of our framework, together with the precision and recall of our approach compared to other methods.

Index Terms—User identification, spatial data mining, heterogeneous data, spatial index.

1 INTRODUCTION

During recent years, the usage of mobile devices has
been increasing at a tremendous speed, and the online and
offline data produced by these devices has drawn a lot of
attention of researchers. Online data records various kinds
of user activities on websites, such as search engines, social
networks and E-commerce sites. Offline data records several
kinds of offline activities of users such as offline mobility
and check-in data of shops and hotels. There have been
some previous works on user identification across multi-
ple sources of online or offline data. For instance, several
problems of user identification on online data have been
investigated, e.g., in [1], [2], [3], [4], [5], [6], while those on
offline data have also been studied, e.g., in [7], [8], [9].

In this paper, we aim to perform user identification
across online and offline datasets, instead of working only
on one type of data as previous works. The intuition is
that, although there exist several kinds of online and offline
data, they often share similar features. For online data, since
it is generated from online activities, it usually contains
IP addresses from mobile devices. For offline data, there
is often offline location information of users. By working
on them, we identify and merge heterogeneous online and
offline data from the same user, and get a set of enriched

e T. Hao and L. Huang are with the Institute for Interdisciplinary Infor-
mation Sciences, Tsinghua University, China. This work was done when
T. Hao was an intern at the Baidu Research. The work of T. Hao and
L. Huang is supported in part by the National Natural Science Founda-
tion of China Grant 61672316, the Zhongguancun Haihua Institute for
Frontier Information Technology and the Turing Al Institute of Nanjing.
E-mail: {haoty14@mails longbohuang@mail}.tsinghua.edu.cn

e | Zhou is with the Business Intelligence Lab, Baidu Research, and
National Engineering Laboratory of Deep Learning Technology and Ap-
plication, China. E-mail: zhoujingbo@baidu.com

o Y. Cheng and H. Wu are with the Big Data Lab, Baidu Research, China.
E-mail: {chengyunsheng01,wuhaishan}@baidu.com

o J. Zhou and L. Huang are the corrersponding authors.

Manuscript received April XX, 20XX; revised August XX, 20XX.

data for users and a better understanding on their activities.

& Tsinghua University

A wE ME mE WE

Tsinghua University

Search query data

Trajectory data
Belong to the same user?

Fig. 1: User identification: linking users from online data
and the offline data

The key of our work is to build connections be-
tween carefully chosen datasets. Specifically, we choose two
datasets with these two representative online and offline fea-
tures. For online data, we use mobile query log data, which
is generated from searching activities on search engines with
a mobile browser. From this data, we obtain cookie IDs as
the user IDs. For offline data, we use user trajectory data,
which is generated from location-based service applications
from mobile apps. From this data, we have the mobile
device IDs as the user IDs. We then identify and connect
different user IDs belonging to the same users across online
and offline data. As shown in [10], our results can ben-
efit many user-based applications, such as recommender
systems. For instance, if the online shopping data on e-
commerce sites and the offline check-in data in restaurants
and supermarkets can be merged together for the same
users, we can have a better understanding on the behavior
of the users and provide more rational recommendations for
them. We illustrate a motivation example in Fig. 1.

According to our observation, there exist many IP ad-
dresses, which usually appear in several relative stable
physical areas, e.g., a campus, a community or a shopping
mall. Our intuitive insight for tackling this problem is that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 2

for a device ID and a cookie ID, if trajectory points always
appear in the areas as IP addresses of search queries, it
is high likely that these IDs belong to the same user. In
fact, this intuition has rigorous theoretical background that
human mobility has high uniqueness [11], [12], [13]. There-
fore, computing the co-occurrences of trajectory points in
the location distribution areas of IP addresses can help us
connect the same user in online and offline data. In addition,
the online and offline data generated by the same user may
share many common features such as operation systems
and mobile phone models. It is also desirable to utilize this
information to improve the identification accuracy.

In this paper, based on the above insights, we propose a
novel and practical user identification framework between
online and offline data, called UIONE, for linking users in
heterogeneous online and offline datasets. The flowchart of
UIONF is shown in Fig. 2, which consists of three key steps.

Step 2: compute
co-occurance with
T inverted index

Trajectory data

Search query data /—v‘

Step 1: 1P ‘ Step 3: learning-to-rank

locationlization

Best-matched
(cookie ID, device ID)
pair

Fig. 2: Flowchart of the UIONF framework

The first step is IP localization. We propose a method to
differentiate the IP addresses distributed in a set of relative
stable and small location areas. After obtaining the IP loca-
tions, we can infer several possible locations for each search
query, together with the believability of each location. The
second step is to compute the co-occurrences between tra-
jectory points and IP locations, for selecting candidate pairs
for the ID linkage. We propose a Term Frequency-Inverse
Document Frequency (TF-IDF) model based metric [14] to
measure the co-occurrence similarity. Since the computation
of the co-occurrence similarities has a huge complexity of
O(n?) in both time and space, we design a novel pairwise-
index with graph-based optimization algorithm based on
the Map-Reduce framework. In this step, for each cookie ID
in the search query dataset, we obtain the top-K matched
device IDs from the trajectory dataset. Finally, in the last
step, for all candidate cookie-device ID pairs, we employ
a learning-to-rank (LTR) [15] model on the top-K matched
device IDs for each cookie ID, to obtain a finalized best-
match pair between a cookie ID and a device ID. This
LTR model can utilize all user features shared between
online and offline data, including location-based features,
e.g., spatial similarity, and other related features, e.g., mobile
operation system and mobile phone models.

In summary, our main research contributions include:

o We first study the user identification problem be-
tween online and offline data. Specifically, we inves-
tigate the problem on mobile query log data and
trajectory data, which are typical human behavior
data in online and offline scenes, respectively. We
design a novel approach by IP-location clustering to
build a connection between online and offline data.

o We propose a novel and practical framework, called
UIONEF, to solve the user identification problem be-

tween online and offline data. The framework can
efficiently process real-world large datasets on the
Map-Reduce platform. In the framework, we invent
a novel pairwise index with graph-based optimiza-
tion algorithm to compute the similarities between
pairs of users, by which we can efficiently process a
very large dataset in a short time with significantly
reduced space cost.

e We apply a learning-to-rank method to generate the
best-matched ID pairs. As far as we know, there is
no existing works using learning-to-rank method to
deal with user identification problem.

e We conduct extensive evaluations on real-world
datasets to demonstrate the effectiveness and effi-
ciency of our framework. Our experiments demon-
strate that our framework can process the data from
megacity like Beijing with more than 10 million user
IDs in acceptable time and space cost.

Compared to our earlier work in [16], the improvements
include:

e In the IP clustering step, we replace the DBSCAN
method in [17] with a method based on the Gaussian
mixture model [18], which is a method where the
parameters can be fixed more automatically, and can
be used to make more accurate prediction.

e For the original inverted index, we propose a novel
pairwise-index to increase the efficiency of our
framework.

e We add a novel spatial-temporal-based index to
make full usage of the time information in our
datasets. We use the outputs of this model as new
features in the learning-to-rank step.

e We design several experiments to evaluate our
framework, and use a much larger dataset from
Beijing to show that our framework can efficiently
handle large-scale problems.

2 RELATED WORK

This paper is an extension of our previous work [16] on user
identification across cyber and physical spaces (UNICORN).
We make novel modifications to our original model to
improve its effectiveness. In addition, our work is closely
related to the topics of user identification and similarity
search based on user mobility data. The method for user
identification by matching similar user trajectories has been
introduced in [9], which uses multi-layer grid indexes in
filtering and co-occurrence signals in similarity computa-
tion. Authors in [8], [19], [20], [21] have described methods
for user identification based on similarity search among
trajectories. Our work differs from these works since we use
both the online and offline data.

There are also some other researches on the similarity
search of user trajectories, such as [22], which proposed the
idea of attaining lower bounds of similarities during the
similarity searching process. As our algorithm for comput-
ing similarities is based on the inverted spatial index, it is
also related to works on spatial indexing, such as [23].

Another related topic is user identification within online
data. So far, the most popular problem is how to link and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 3

identify users from multiple social networks, e.g., [1], [2],
[3], [4], [5], [6]. However, the proposed methods cannot be
directly extended to our problem and dataset.

There are also some works on lockstep behaviors. In
[24], they proposed a framework CopyCatch in order to
detect fake page-likes in Facebook for detecting the lockstep
behavior of users. The algorithm in this work is based on
local clustering and subspace clustering, together with a
MapReduce-compatible algorithm to ensure its scalability.
The authors in [25] proposed an algorithm to figure out
the lockstep behavior in graphs, such that a group of users
who follow the same set of users or items in a network. In
this work, the technique of singular value decomposition is
applied to detect the lockstep behavior. In [26], the authors
proposed an algorithm to identify the crowd frauds on the
Internet by analyzing the behaviors of the users, in which a
non-parametric clustering algorithm is used. In these works,
they developed methods to analyze the commonalities of
user behaviors, in order to find similar users in social
networks, which have some similar ideas to our work. There
are several differences between their works [24], [25], [26]
and ours. First of all, in the works about lockstep behavior
[24], [25], [26], they are more commonly using cluster-based
algorithms, while in our work, we concentrate on pairing
user IDs by computing the similarity levels of their features.
The clustering method is not compatible with our work,
since we concentrate on making exact matching across user
IDs, instead of finding a group user with similar activities.
Second, in their works, they pay more attention to the user-
to-item or user-to-user relationships, while in our works we
pay more attention to the spatial-temporal features of users.
Third, they mainly focus on analyzing the online behaviors
of users, while our work aims to build a connection between
the online and offline activities of users.

In addition, since our results are based on computing
similarities between TF-IDF vectors, the topic for all-pair
similarity searching is also related to our work. The authors
in [27] have proposed an optimization algorithm for all-pair
similarity searching. However, this algorithm is not suitable
for distributed systems, which means it is not compatible
with large datasets in our work. Metwally et al. [28] have
proposed a “V-SMART-Join” framework, which can run on
a Map-Reduce system. However, in our problem, the step
of matching pairs of IDs in the same inverted index will
process too much output data, and simply dropping big
indexes in the classical way will cause serious information
loss, which has negative influence on the prediction effect.

3 PROBLEM STATEMENT

Our main purpose is to identify corresponding users from
two different datasets: the online and offline data. As we
have explained, in practice, we will use trajectories as the
offline data and mobile query logs as the online data.
Formally, the input data we use in this paper includes:

o Offline data: The trajectory data is defined as a set .Sy,
of user trajectories, which can be represented as

St = {(id; {pi1,- - Piena}) |1 =1,2,-}.

Here id% is the device ID of the i-th user. There is
usually one unique ID related to a mobile device. p; ;

is the j-th node in the trajectory of id}’, and each node
has the form p; ; = (xkj, yZLJ , t%’j), where :L'g‘)j, ylLJ are
the coordinates, and t{j j is the timestamp.

e Online data: The mobile query log data is the collec-
tion of query records from the search box of a search
engine generated on mobile phones. For online data,
we have a collection Sq of all the IDs and the sets of

query records related to them:
Sq = {<Zd?7 {rig, riena}) [1=1,2,---}.

Here idf2 is the cookie ID of the i-th user using the
mobile browser. There may be multiple cookie IDs
related to the same user since cookie IDs may change.
Each record r; ; belongs to one search query sent by
user id2, and 7;; = (IP%,t%, s%). IP?J is the IP
address, and t% is the timestamp. s;”; is made up of
some extra information, such as the query string, the
operation system of the mobile device and the mobile

phone model. For some queries, sZ—Qj may also contain

the location where the query was sent, i.e. (sc%, ygj),

but different from the trajectory data, this location
information may be invalid, since the location is not
essential for search queries.

For each pair of user IDs from these two datasets, say id>
and idg, our goal is to find whether they belong to the same
user. To achieve this, we propose a metric to measure the
weighted co-occurrence between the spatial and temporal
distribution of id and idg. In spite of this, there are still
several challenges that are unsolved.

e A large part of query records do not have exact
location coordinates, but all the records have detailed
IP addresses. Since IP addresses and locations are
related, it is necessary to predict the location distribu-
tions of the users based on the data of IP addresses.

o There are different features helpful for measuring the
co-occurrence of the users, e.g., the weight of location
distributions of each IP address, the frequency distri-
bution that one user visits different places and the
visiting popularity of all the possible places.

e Since calculating similarities between pairs of IDs
takes an O(n?) time and space complexity, it is nec-
essary to do optimization to reduce the complexity.

Our solution to this problem consist of three parts.

e In Section 4, we show how to model the location
distribution of IP addresses and use it to enrich the
mobile query data of users.

e In Section 5, we introduce the algorithm to compute
the most similar device IDs to particular cookie IDs.
In this step, we will use the TF-IDF metric to measure
the co-occurrence similarities between users. We in-
vent a technique called the pairwise-index to speed
up the computation process, since it would take a lot
of time to match up all pairs of IDs and compute the
similarities for a large dataset.

o After obtaining several similar device IDs for one
cookie ID, in Section 6, we use a learning-to-rank
(LTR) approach to considering more features in
depth to get a more accurate prediction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 4

4 EXTENDING IP ADDRESSES TO LOCATIONS

In each search box query record, several information entries
can be found typically, including: (1) Cookie ID of the user,
(2) Timestamp when the query was made, (3) IP address
which the query was sent from, (4) Extra information, such
as location coordinates, operation system and mobile phone
model. Despite the fact that there exists a timestamp and
an IP address for each search query record, a large part of
them is not attached with location coordinates. In order to
link the mobile query data and the trajectory data, our idea
is to find out the location distribution for each available IP
address, and then predict the location where a query was
sent by the IP address if there was no location coordinates
attached to the query record.

(@) (b)

Fig. 3: Wide-ranged distribution (a) and centralized distri-
bution (b) for IP locations.

After visualizing and analyzing the location distribu-
tions of some IP addresses, we find that there are two kinds
of distributions for an IP address, as shown in Fig. 3:

e Centralized distribution: The locations of the IP ad-
dress are distributed in one or several small central
areas, the radiuses of which are usually no more than
hundreds of meters, and usually only tens of meters.

o Wide-ranged distribution: The locations of the IP
address are distributed widely in a large area with
a size of several kilometers, and sometimes this area
could spread over one or even several cities.

Then it can be figured out that if an IP address follows a
centralized distribution, then the locations of the users with
this IP address can predicted as the centers of these central
areas. To find out IP addresses with a centralized distribu-
tion, it is a natural idea to process a clustering on these
locations which share the same IP address. In our previous
work in [16], we have used the DBSCAN algorithm [17] to
process the clustering. In this paper, we use the Gaussian
mixture model [18] instead, since it has such advantages:

o Parameters of the model can be better determined
with an automatic process.

o Itis more convenient to convert a Gaussian distribu-
tion into a grid-based distribution.

e According to our experiment, we can get a better
predicting accuracy by this method.

According to this, since the centralized distribution
usually has a center and a distributing radius, we as-
sume that the distribution of the IP locations follows a 2-
dimensional spherical Gaussian mixture distribution, which
means, for each IP address, there exist K center points

(Z1,91), -+, (Tk,¥Yr), and for each center point p; =
(%, J;), there is a weight w; and a variance 2. Then for each
IP address, its location (z, y) follows such a distribution:

K
(z,y) ~ Zwi/\/(ui,af) =0k,
i=1

where AN (p;,0?) is a 2-dimensional spherical Gaussian dis-
tribution with the center point of u; and the variance of 7.

For a fixed center point number of K, with N given
samples for this IP address, we can compute the parameters
w;, p; and o; of the GMM by the expectation-maximization
method [29]. However, since we do not know the number
K of clusters a-priori, we still need to fix the value of K
before applying the EM-GMM method. In order to decide
the value of K, we use the Bayesian information criterion
(BIC) [30], which is defined for a distribution G as:

1
BIC(gK) = iKlogN - logp(nlv e 7nN|gK)7

where G is the Gaussian mixture distribution generated
by the EM-GMM algorithm with K components, and
ny,- -+ ,ny are the coordinates of the N samples. The
smaller the value of this criterion is, the more likely we will
use this distribution. Then, we estimate the value of K as:

BIC(Gk),

K* =arg min
1<K <Kmax
where we set an upper bound Kyax for K to prevent the
value of K to be too large and that means it is more likely
that the IP address distributes as a wide-ranged distribution.
After taking K = K™, we have found the best-matched
Gaussian mixture distribution for the locations of the IP
addresses. Then we need to convert the IP location distri-
butions into grid distributions in order to continue with the
grid-based index algorithm in Section 5.2. Given a distribu-
tion G = {(Z4, ¥i, wi, 0;)|1 < i < K} with the parameters
fixed, for each square grid g = (za, b, Ya, Yb), We compute
the weight of the IP address in g as:

w(g) = //g Gk (z,y)dS

Ty Yov K
_ / dx / > wil (s, 02) (2, y)dy

Ya =1

K .
= Zwl/ N (z;,02)(z)dx
i=1 Ta

which is a weighted sum of products of two Gaussian
integrals.

According to this formula, we can compute the weights
of IP addresses in each grid for a centralized distribution.
In order to get rid of the influence of wide-ranged distribu-
tions, we ignore grids with a weight of no more than 0.1.
That is because, for a wide-ranged distribution, the weights
w; for the center points are usually small, and the variances
0, is usually large, which brings only a small weight to each
grid. That means that we only need to remove all small-
weighted grids to exclude the wide-ranged distributions.

Following this approach, for a mobile query record
without precise location information, we can predict several
possible grids for it by IP clustering, together with the

Yv
N(yu 012)(y)dya

Ya

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 5

prediction confidence for these locations. In this way, we can
successfully build a connection between IP addresses from
the online data and location points from the offline data.

5 COMPUTING SIMILARITIES

In order to match user IDs from the two datasets, in this
section, we propose to use a TF-IDF-based metric to com-
pute weighted co-occurrence similarities between each pair
of these cookie IDs and device IDs. The challenge here is that
the computation of all user similarities takes a complexity of
O(n?), which brings up a huge computation cost for a large
dataset. To tackle this problem, we devise a pairwise index
based on the Map-Reduce framework to retrieve the top-K
similar device IDs for each cookie ID efficiently.

5.1 Stay Points Extraction

1: function GETSTAYPOINTS(T)

2 Pstay%{pl}apcur%{}

3 fori =2 — |T| do

4: Vil \/(wz'—wi:_)ii(f/z:—yq:flp
5: if v;_1 < Umax then

6 if P.,; = {} then

7 Pitay.add(p;)

8 else

9 Pcur.add(p,;)
10: else
11: if Py # {} then
12: if Poy[Peyr-len].t — Pey[1].8 > timin then
13: Pitay.concentrate(Peyr)
14: P+ {}
15: P.y.add(p;)
16: Pitay.concentrate(Peyr)
17 return Py

Fig. 4: Stay points extraction

Although trajectories are important data, they are not
appropriate to be used directly. As described in [9], [31],
there are usually a large number of moving points and noise
points in the trajectories, making less effective information
and causing a waste of computation resources. Due to these
reasons, an approach to finding stay points has been de-
scribed in these papers by partitioning the trajectories based
on spatial and temporal distances. In our work, since there
is no need for trajectory simplification at the stay points,
we use an approach different with [9], [31], under which
moving or noise points are removed by the speed of users.

Recall that the trajectory 7" of a user is:

T= {(xhylvtl)a (x27y27t2)a R (:L'cnda ycnd»tcnd)};

where the nodes p; = (2;,y;,t;) are sorted in time order
such that t; <ty < --- < {tenq. For the trajectory T', in order
to extract stay points, we have the following definitions:

e Edge: An edge is a pair of adjacent nodes e; =
(pispit1) fori =1,2,--- |T|—1. The time of an edge
is defined as At(e;) = t;11 — t;, and the speed of an

V(@1 =)+ (yj+19;)?

tip1—ts :

edge is defined as v(e;) =

o Sequence: A sequence of nodesis S; ; = (pi, Pit1,- -+,
p;), and the duration of a sequence is At(S; ;) =t; —
t;. A sequence S; ; contains several edges {e;, e; 11,

ej-1}

o Stationary sequence: A sequence S; ; is called a sta-
tionary sequence iff the speeds of all edges are less
than a threshold, i.e., Ve, < Umax, fors <k <j—1.

e Maximum stationary sequence: A stationary sequence
S; ; is called a maximum stationary sequence iff there
does not exist another stationary sequence S/ j such
that Si’,j/ D) Si,jr ie., v <7, j/ > and j/ - > j—1.

e Stay sequence: A maximum stationary sequence S; ; is
called a stay sequence iff the duration of this sequence
is no shorter than some threshold, ie., A(S; ;) >
tmin, While at the same time this sequence is not at
the head or tail of the trajectory, ie., i =1 or j = |T].

Our goal in this step is to find all nodes that belong
to some stay sequences. We start by scanning the speeds
of all edges in the trajectory in time order. We use Py to
denote the target set in which we place the stay nodes. We
also maintain a sequence P to keep track of the current
stationary sequence, and update them as follows. After we
encounter an “overspeeding edge” on which the travelling
speed of the user exceeds vmax, we check if the current
stationary sequence P, has a duration of at least ¢n. If
it has, we place all the nodes in the sequence into Fiay.
Then, we empty Py and continue with the scanning in the
same way, until reaching the end of the trajectory. At last we
return the target sequence Fy,y, which is the set of all stay
points. The pseudo-code of the algorithm is in Fig. 4.

Following this algorithm, the moving points and noise
points will be placed into the maximum stationary se-
quences with durations shorter than ¢i,, and will not be
in the target sequence Fiay-

5.2 TF-IDF Vectors Generating

In our framework, the co-occurrence similarities between
trajectories and mobile query records are different from the
similarity computations between trajectories in [8], [32]. In
our case, we compute the similarities between spatial and
temporal distributions, rather than that between trajectory
sequences. The main reason is that our input data comes
from two different resources. As explained in Section 4,
there is no exact location information for some of the query
records, and we use the IP location distributions instead.
This brings difficulty in building exact trajectory sequences
for users, making it not a good idea to directly calculate
the similarities between trajectory sequences. Thus, we in-
stead use the location and time distribution. It will be
more appropriate to transfer the trajectories and IP address
distributions into vectors, and to use the cosine similarities
to stand for the co-occurrence similarities of users.

To turn the location records into vectors, we use the TF-
IDF model [14], which is usually used in natural language
processing. We adopt the model and extend it to represent
properties of location distribution. Different from [16], we
build two different indexes, the spatial index and the spatial-
temporal index. This is because the temporal information
also have some relationship with user similarities. For ex-
ample, if the trajectories of two user IDs appear at the same

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 6

1: function GETTFIDFVECTOR(T)

2 A < EMPTYMAP

3 for (zy, yi, ti, wg) € T do

B wg e By, e 2] 4],
5: gst < (29, Yg, tg)

6: tp — |]

7 1f A does not have key t, then

8 Alty] < EMPTYMAP

9: if A[t,] does not have key g, then
10: Altpllgst] < 0
11: Altp]lgse] < Altpllgse] + wi
12: 1%, Ft «+ indexes with zero entries
13: fort, in the key set of A do
14: n¢, < number of distinct records in ¢,
15: for g, in the key set of A[t,] do
16: gs + the spatial index of gs;
17: S o fS 4 Altpllg]

v pet Al

18: PR P R T

19: for each spatial grid g5 do

20: tfy, < log(1+ f;.)

21: Ny, number of users appearing in g,
22: idfy, « m

23: vy, = thy, - idfy,

24: for each spatlal-temporal grid g, do

25: tfy,, < log(1+ 5:)

26 Ny, < number of users appearing in g,
27: idf,,, m

28: vt = thy,, -idfy,,

29: return (‘:’;H, Hz:i\l)

Fig. 5: TF-IDF vector generating

place in the same day, then the similarity of the two user IDs
should be stronger than the similarity when they appear at
the same place but in different days. To take full advantage
with this time-based information, we also propose spatial-
temporal indexes in this paper.

In our dataset, we split the whole city into small grids.
We map each spatial point (z,y) into a grid ([=], [Z]),
and map each spatial-temporal point (z,y,t) into a érid
(L& J | £ J | x7]), where s, is the size of the grids and
At'=T day is the length of time bins. Following this
approach, each grid g, (either a spatial-temporal grid or
a spatial grid) can be considered as a word, and each
trajectory T; can be considered as a document made up of
all grids (words) that a user has visited. The appearance of
a user in the grid g; can be regarded as the appearance of
the word in the document. Similar to the TF-IDF model in
document processing [14], we define the following notions.

o The term frequency (TF) of grid g; in trajectory T is:

tf(g;, T) = log(1 + fi;),
where f; ; is the frequency that g; appears in 7.
e The inverse document frequency (IDF) of grid g; is:
1

log(1 + [{i|fi; > O}])

idf(g;) =

Then, define the TF-IDF value for grid g; in trajectory 7;:
tf-idf(g;, T3) = tf(g;, T3) - idf(g)

Then, given trajectory 7;, we can represent it as a vector:
U() (tf—ldf(gla) tf—ldf(QZa)7 e 7tf—idf(g\G\7Ti))'

In practice, we can instead use the normalized vector:
* v(Ty)
V(1) = Foerr-

As we can see, if we want to calculate the vector for a
trajectory T;, the only thing we need to do it to estimate its
appearance frequency f; ; for all j, and then use the above
definition to calculate the vector v*(T;). In fact, for each
trajectory T;, we get two vectors in the same way, a spatial
vector v**(T;) and a spatial-temporal vector v**(T;).

The frequencies f; ; are calculated as follows. First, split
the whole time range into several 1-hour periods, and each
time ¢ is in a time period with ID L;TJ’ where s; = 1h.
Denote the set of time periods by G;. In a trajectory, for
each record (zy, Yk, tr), if it is the only record in the period
| & :], it makes a contribution of 1 to the frequency of the grid
(Lijj, _z’;J) and (L“J VZ:J | %). If there are n,, records
in a period, each record makes an equivalent contribution of

1 to its grid. Summing these contributions, the frequencies
fl ; for each grid j can be attained. For a predicted IP
location distribution with a confidence value (see Section
4), ie., (xg, Yk, tk, Wi), where wy, is the confidence value of
the prediction, it makes a contribution of wj, for the single
appearance in a period, and a contribution of ;‘;—’; for each
record for the n, multiple appearances in a period.

The complete TF-IDF generating algorithm is in Fig. 5.
Here we represent the exact location records (z, Yk, tx)
as location predictions with a confidence of 1, ie,
(g, Yk, tr, 1). After we compute the vectors for each user
ID in multiple spaces, we use it to compute the pairwise
similarities of users in the next step.

5.3 Computing with the Pairwise Index

In Section 5.2, we have proposed a way to transform tra-
jectories and search query records into a vector space. In
order to match similar distributions in datasets, we need to
compute the similarity between each pair of vectors from the
two datasets, and keep the ID pairs with high similarities.

This is in fact an all-pair similarity search problem,
which has been discussed, e.g., in [27], [28]. However,
these algorithms require a huge amount of calculation on
our datasets, which makes them incompatible to be used
directly for our problem. For example, in [28], the vectors are
transferred into inverted indexes, generating pairs of vectors
in each index, and merging the same pairs to get similarity
values. The step of enumerating all pairs of vectors with
the same index takes an O(n?) complexity. To resolve this
problem that existing methods are not applicable to our
large dataset, we have made an improvement by building
a pairwise index instead of indexes with single entries.

Next, we define the all-pair similarity problem formally.
Given the two sets of vectors generated in the last step, we
have the following.

o For the dataset of user trajectories, we have D =
{(vi,01"), (v3,05"), -, (vip). vip)}, where v} and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 7

v;! are nonnegative spatial and spatial-temporal vec-
tors representin, § the location and time distribution
for device ID dj.

o For the dataset of mobile search queries, we have
K= {(Ul, it) (u§7u§t)7 T (U|S}C\7uf)tq)}/ where uj
and u?t are the nonnegative spatial and spatial-
temporal vector representing for the location and
time distribution for cookie ID zd?

The goal of this step is that, for each cookie ID id?,
we want to find K different devices IDs such that they
have the top-K largest spatial cosine similarities with],
and compute the spatial and spatial-temporal similarities of
them with u$ and w5’

Note that vy, vi" and u}, uj" are usually sparse vectors
with only a few positive entries. We only store the positive
entries during computation. We represent v; and v}’ as:

{97 Vi)s (95,0 vk)s - b

) = {<glsztlavthl>a <g}SLt2aUIngh2>7 e }a

where vy ; ,vg ;.- are the nonzero entries in the trajec-
tory, and g7 ,g;,,--- are the grid IDs of these entries, and
the same is with v’. Similarly, we represent u$ and u" as

st
J

UZ = (vz,lvvz,% :) -

st __ st st
Vg = (%,1,1%,27'"

u;:(uil?u;,%“') {<9217 j21> <g7,27]12> }7
ujt (u;fla j‘f%"’):{<glsr,tl7uj‘,h1>v<g}iza ;t}12> }

Our improved algorithm is theoretically based on the
uniqueness bound of human mobility, which was discussed
in [12], [13]. According to [12], [13], taken several points
from a person’s trajectory, the probability that there exists
a unique trajectory which contains these points increases
with the number of selected points. Based on an analysis on
our dataset, the probability that a single point can be used
to identify a unique person is less than 10%. This means
that if two user IDs only have co-occurrences in a single
grid, it will be unlikely that they can be concluded to belong
to the same person. Furthermore, according to the analysis
on our dataset, for the user pairs in the ground truth, the
probability that two users have co-occurrences in a single
grid is 16.3% in Beijing, and 20.5% in Harbin, which is not
the majority in the ground truth dataset. Thus, we will only
consider the case that the two user IDs have co-occurrences
in at least two grids.

In the following, we only describe how to compute the
spatial similarities, and the spatial-temporal similarities can
be computed in almost the same way. The only difference is
that we will keep all the similarities in the spatial-temporal
computing, instead of only selecting the top-K similarities.

We build an index in which each key is a pair of grid
cells instead of a single grid cell. In this way, we can only
consider pairs of IDs who have appeared in at least two
different grid cells, and the total time and space requirement
can be reduced significantly in this way. The main idea of
the pairwise index is shown in Fig. 6.

Since the dataset is large within a city, our algorithm
runs in parallel in a Hadoop Map-Reduce framework. Our
algorithm consists of two steps. In the first step, we build
an inverted pairwise index from the vectors for the users.
In the mapper stage, for each pair of nonzero entries

2

Fig. 6: Pairwise index: building index for the pairwise co-
occurrences for the user ID pairs. User idY and idg both
appear in grid g and g5. Build a pairwise index with the
key of (g5, g5). Add id} and id2Q into the ID list of this index.

<gfp, Vi)5 95, Vi) %n vector v,sc, we generate a key-value
pair, where the key is the grid pairs (g; ,g;), and the
value is made up of the user ID id} and the entry weights
(vii,» Vi) In the reducer stage, we merge all values
(idk, (V},i,» Vi,i,)) into a set belonging to the same key (i.e.,
pairs of grids). The pseudo-code of this step is in Fig. 7.

1: function MAPPER1((id}, v}))

2 for (g; ,vi;). (95, Vi) € vi do

3 output (g; , g;), (idy, (vlsc,ipvvfc,iq»
4: function MAPPERZ((de u3))

5 for (giz, uj;), (95 v) € u; do

6
7:

Output (gz 7g7,) <Zd (]’Lp ’LL; iq)>
function REDUCER((g; , 95,) set((zd};, (V8. ip> Uk Zq)>)

set((zd (5, ,Uizq»))
s output ((g5,g,), set((id}, <vm Uk,)
set((zd (U5 quq»))

Fig. 7: Step One of similarity computation: generating the
pairwise indexes

In the second step, we compute the similarity between
pairs of IDs with at least two co-occurrences. For each cookie
ID, we keep the K device IDs with the largest similarities
with the cookie ID. Note that we have already obtained an
inverted list in Step 1, i.e.,

(93,95, set({idi, (v} 4,0} 5,))), set((id3, (w5, u35))))-
In the mapper stage, for each pair of grids (g;p7 gfq), we
match each item <zdk, (vk iy Uk,i,)) from the device ID set

and item <de’ (w5, 5,)> from the cookie ID set. The first

key of the output is zdj , the second key is id}, and the
value is made up of the grid IDs and the product of the
vector entries, i.e., (97 ,v;; uj;) and (g; ,vp; uj;).Inthe
reducer stage, we merge the items with the same pair of
user IDs (de id}), and sum all products of vector entries,
Le., vp i uf . for all p, to obtain similarities between these

Jrip
two user IDs, ie. Z v i Flnally, for each cookie ID

de we process a sortmg to all device IDs by similarities
w1th de and keep the top-K most similar IDs. The pseudo-
code of this step is in Fig. 8. In this way, we compute the
best matched device IDs for each cookie ID together with
similarities.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 8

1: function MAPPER({(g? 0 0 q) set((zd};, (vk iy VR Zq))),

set((zd U;,zq»»)
for (idy, (Uk i) Uk,)) do

for (zd (Ui s]zq)> do
output Zd dea <gzp Uk zpu; 1p>

(jlp7

output de idy, <g2q,vkﬂquj7lq>

function REDUCER(zd?, set((id%, set((g;, Vi i, v5.6,0))))
sim < EMPTYMAP
for (idk, set((g},vi ; u3))) do
sum < 0
for g7 v ; uj;, do
SUM 4= SUm + vj ; uj ;-
sim[idY] = ((de idY), sum)

13: output top-K from sim

_ =
=

—
N

Fig. 8: Step Two of similarity computation: getting the top-K
matched ID pairs

5.4

In section 5.2, we define the spatial-temporal index which
could be used to compute the co-occurrences of user trajec-
tories. However, in the temporal dimension of the index, we
have split the whole time period into small time intervals
of At = 1day, and in this way, there may be pairs of nodes
closed to each other, but not laying in the same time interval.
To tackle this problem, we introduce a novel variant of the
index, which is named as index with time drifts.

In the new index, we use At = %At as the new time
interval length. In the algorithm of Fig. 5, for each node