
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 1

A Unified Framework for User Identification
across Online and Offline Data

Tianyi Hao, Jingbo Zhou, Yunsheng Cheng, Longbo Huang and Haishan Wu

Abstract—User identification across multiple datasets has a wide range of applications and there has been an increasing set of
research works on this topic during recent years. However, most of existing works focus on user identification with a single input data
type, e.g., (I) identifying a user across multiple social networks with online data and (II) detecting a single user from heterogeneous
trajectory datasets with offline data. Different from previous works, in this paper, we propose a framework on user identification
between online and offline datasets. We build connections between these two types of data by a mapping from IP addresses to
physical locations. To solve this problem, we propose a novel framework consisting of three steps. First, we use a clustering method
based on locations of IP addresses to map IP addresses into specific physical location distributions. Second, we propose a novel
pairwise index to reduce space cost and running time for computing the co-occurrence. Lastly, we apply a learning-to-rank method to
merge the effect of multiple features we get in the first two steps. Based on our framework, we design experiments to demonstrate the
efficiency (in time and space) of our framework, together with the precision and recall of our approach compared to other methods.

Index Terms—User identification, spatial data mining, heterogeneous data, spatial index.

F

1 INTRODUCTION

During recent years, the usage of mobile devices has
been increasing at a tremendous speed, and the online and
offline data produced by these devices has drawn a lot of
attention of researchers. Online data records various kinds
of user activities on websites, such as search engines, social
networks and E-commerce sites. Offline data records several
kinds of offline activities of users such as offline mobility
and check-in data of shops and hotels. There have been
some previous works on user identification across multi-
ple sources of online or offline data. For instance, several
problems of user identification on online data have been
investigated, e.g., in [1], [2], [3], [4], [5], [6], while those on
offline data have also been studied, e.g., in [7], [8], [9].

In this paper, we aim to perform user identification
across online and offline datasets, instead of working only
on one type of data as previous works. The intuition is
that, although there exist several kinds of online and offline
data, they often share similar features. For online data, since
it is generated from online activities, it usually contains
IP addresses from mobile devices. For offline data, there
is often offline location information of users. By working
on them, we identify and merge heterogeneous online and
offline data from the same user, and get a set of enriched

• T. Hao and L. Huang are with the Institute for Interdisciplinary Infor-
mation Sciences, Tsinghua University, China. This work was done when
T. Hao was an intern at the Baidu Research. The work of T. Hao and
L. Huang is supported in part by the National Natural Science Founda-
tion of China Grant 61672316, the Zhongguancun Haihua Institute for
Frontier Information Technology and the Turing AI Institute of Nanjing.
E-mail: {haoty14@mails,longbohuang@mail}.tsinghua.edu.cn

• J. Zhou is with the Business Intelligence Lab, Baidu Research, and
National Engineering Laboratory of Deep Learning Technology and Ap-
plication, China. E-mail: zhoujingbo@baidu.com

• Y. Cheng and H. Wu are with the Big Data Lab, Baidu Research, China.
E-mail: {chengyunsheng01,wuhaishan}@baidu.com

• J. Zhou and L. Huang are the corrersponding authors.

Manuscript received April XX, 20XX; revised August XX, 20XX.

data for users and a better understanding on their activities.

Search query data Trajectory data

Belong to the same user?

Fig. 1: User identification: linking users from online data
and the offline data

The key of our work is to build connections be-
tween carefully chosen datasets. Specifically, we choose two
datasets with these two representative online and offline fea-
tures. For online data, we use mobile query log data, which
is generated from searching activities on search engines with
a mobile browser. From this data, we obtain cookie IDs as
the user IDs. For offline data, we use user trajectory data,
which is generated from location-based service applications
from mobile apps. From this data, we have the mobile
device IDs as the user IDs. We then identify and connect
different user IDs belonging to the same users across online
and offline data. As shown in [10], our results can ben-
efit many user-based applications, such as recommender
systems. For instance, if the online shopping data on e-
commerce sites and the offline check-in data in restaurants
and supermarkets can be merged together for the same
users, we can have a better understanding on the behavior
of the users and provide more rational recommendations for
them. We illustrate a motivation example in Fig. 1.

According to our observation, there exist many IP ad-
dresses, which usually appear in several relative stable
physical areas, e.g., a campus, a community or a shopping
mall. Our intuitive insight for tackling this problem is that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 2

for a device ID and a cookie ID, if trajectory points always
appear in the areas as IP addresses of search queries, it
is high likely that these IDs belong to the same user. In
fact, this intuition has rigorous theoretical background that
human mobility has high uniqueness [11], [12], [13]. There-
fore, computing the co-occurrences of trajectory points in
the location distribution areas of IP addresses can help us
connect the same user in online and offline data. In addition,
the online and offline data generated by the same user may
share many common features such as operation systems
and mobile phone models. It is also desirable to utilize this
information to improve the identification accuracy.

In this paper, based on the above insights, we propose a
novel and practical user identification framework between
online and offline data, called UIONF, for linking users in
heterogeneous online and offline datasets. The flowchart of
UIONF is shown in Fig. 2, which consists of three key steps.

Fig. 2: Flowchart of the UIONF framework

The first step is IP localization. We propose a method to
differentiate the IP addresses distributed in a set of relative
stable and small location areas. After obtaining the IP loca-
tions, we can infer several possible locations for each search
query, together with the believability of each location. The
second step is to compute the co-occurrences between tra-
jectory points and IP locations, for selecting candidate pairs
for the ID linkage. We propose a Term Frequency-Inverse
Document Frequency (TF-IDF) model based metric [14] to
measure the co-occurrence similarity. Since the computation
of the co-occurrence similarities has a huge complexity of
O(n2) in both time and space, we design a novel pairwise-
index with graph-based optimization algorithm based on
the Map-Reduce framework. In this step, for each cookie ID
in the search query dataset, we obtain the top-K matched
device IDs from the trajectory dataset. Finally, in the last
step, for all candidate cookie-device ID pairs, we employ
a learning-to-rank (LTR) [15] model on the top-K matched
device IDs for each cookie ID, to obtain a finalized best-
match pair between a cookie ID and a device ID. This
LTR model can utilize all user features shared between
online and offline data, including location-based features,
e.g., spatial similarity, and other related features, e.g., mobile
operation system and mobile phone models.

In summary, our main research contributions include:
• We first study the user identification problem be-

tween online and offline data. Specifically, we inves-
tigate the problem on mobile query log data and
trajectory data, which are typical human behavior
data in online and offline scenes, respectively. We
design a novel approach by IP-location clustering to
build a connection between online and offline data.

• We propose a novel and practical framework, called
UIONF, to solve the user identification problem be-

tween online and offline data. The framework can
efficiently process real-world large datasets on the
Map-Reduce platform. In the framework, we invent
a novel pairwise index with graph-based optimiza-
tion algorithm to compute the similarities between
pairs of users, by which we can efficiently process a
very large dataset in a short time with significantly
reduced space cost.

• We apply a learning-to-rank method to generate the
best-matched ID pairs. As far as we know, there is
no existing works using learning-to-rank method to
deal with user identification problem.

• We conduct extensive evaluations on real-world
datasets to demonstrate the effectiveness and effi-
ciency of our framework. Our experiments demon-
strate that our framework can process the data from
megacity like Beijing with more than 10 million user
IDs in acceptable time and space cost.

Compared to our earlier work in [16], the improvements
include:

• In the IP clustering step, we replace the DBSCAN
method in [17] with a method based on the Gaussian
mixture model [18], which is a method where the
parameters can be fixed more automatically, and can
be used to make more accurate prediction.

• For the original inverted index, we propose a novel
pairwise-index to increase the efficiency of our
framework.

• We add a novel spatial-temporal-based index to
make full usage of the time information in our
datasets. We use the outputs of this model as new
features in the learning-to-rank step.

• We design several experiments to evaluate our
framework, and use a much larger dataset from
Beijing to show that our framework can efficiently
handle large-scale problems.

2 RELATED WORK

This paper is an extension of our previous work [16] on user
identification across cyber and physical spaces (UNICORN).
We make novel modifications to our original model to
improve its effectiveness. In addition, our work is closely
related to the topics of user identification and similarity
search based on user mobility data. The method for user
identification by matching similar user trajectories has been
introduced in [9], which uses multi-layer grid indexes in
filtering and co-occurrence signals in similarity computa-
tion. Authors in [8], [19], [20], [21] have described methods
for user identification based on similarity search among
trajectories. Our work differs from these works since we use
both the online and offline data.

There are also some other researches on the similarity
search of user trajectories, such as [22], which proposed the
idea of attaining lower bounds of similarities during the
similarity searching process. As our algorithm for comput-
ing similarities is based on the inverted spatial index, it is
also related to works on spatial indexing, such as [23].

Another related topic is user identification within online
data. So far, the most popular problem is how to link and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 3

identify users from multiple social networks, e.g., [1], [2],
[3], [4], [5], [6]. However, the proposed methods cannot be
directly extended to our problem and dataset.

There are also some works on lockstep behaviors. In
[24], they proposed a framework CopyCatch in order to
detect fake page-likes in Facebook for detecting the lockstep
behavior of users. The algorithm in this work is based on
local clustering and subspace clustering, together with a
MapReduce-compatible algorithm to ensure its scalability.
The authors in [25] proposed an algorithm to figure out
the lockstep behavior in graphs, such that a group of users
who follow the same set of users or items in a network. In
this work, the technique of singular value decomposition is
applied to detect the lockstep behavior. In [26], the authors
proposed an algorithm to identify the crowd frauds on the
Internet by analyzing the behaviors of the users, in which a
non-parametric clustering algorithm is used. In these works,
they developed methods to analyze the commonalities of
user behaviors, in order to find similar users in social
networks, which have some similar ideas to our work. There
are several differences between their works [24], [25], [26]
and ours. First of all, in the works about lockstep behavior
[24], [25], [26], they are more commonly using cluster-based
algorithms, while in our work, we concentrate on pairing
user IDs by computing the similarity levels of their features.
The clustering method is not compatible with our work,
since we concentrate on making exact matching across user
IDs, instead of finding a group user with similar activities.
Second, in their works, they pay more attention to the user-
to-item or user-to-user relationships, while in our works we
pay more attention to the spatial-temporal features of users.
Third, they mainly focus on analyzing the online behaviors
of users, while our work aims to build a connection between
the online and offline activities of users.

In addition, since our results are based on computing
similarities between TF-IDF vectors, the topic for all-pair
similarity searching is also related to our work. The authors
in [27] have proposed an optimization algorithm for all-pair
similarity searching. However, this algorithm is not suitable
for distributed systems, which means it is not compatible
with large datasets in our work. Metwally et al. [28] have
proposed a “V-SMART-Join” framework, which can run on
a Map-Reduce system. However, in our problem, the step
of matching pairs of IDs in the same inverted index will
process too much output data, and simply dropping big
indexes in the classical way will cause serious information
loss, which has negative influence on the prediction effect.

3 PROBLEM STATEMENT

Our main purpose is to identify corresponding users from
two different datasets: the online and offline data. As we
have explained, in practice, we will use trajectories as the
offline data and mobile query logs as the online data.

Formally, the input data we use in this paper includes:

• Offline data: The trajectory data is defined as a set SL

of user trajectories, which can be represented as

SL = {〈idL
i , {pi,1, · · · , pi,end}〉 | i = 1, 2, · · · }.

Here idL
i is the device ID of the i-th user. There is

usually one unique ID related to a mobile device. pi,j

is the j-th node in the trajectory of idL
i , and each node

has the form pi,j = (xL
i,j , y

L
i,j , t

L
i,j), where xL

i,j , y
L
i,j are

the coordinates, and tLi,j is the timestamp.
• Online data: The mobile query log data is the collec-

tion of query records from the search box of a search
engine generated on mobile phones. For online data,
we have a collection SQ of all the IDs and the sets of
query records related to them:

SQ = {〈idQ
i , {ri,1, · · · , ri,end}〉 | i = 1, 2, · · · }.

Here idQ
i is the cookie ID of the i-th user using the

mobile browser. There may be multiple cookie IDs
related to the same user since cookie IDs may change.
Each record ri,j belongs to one search query sent by
user idQ

i , and ri,j = (IPQ
i,j , t

Q
i,j , s

Q
i,j). IPQ

i,j is the IP
address, and tQi,j is the timestamp. sQ

i,j is made up of
some extra information, such as the query string, the
operation system of the mobile device and the mobile
phone model. For some queries, sQ

i,j may also contain
the location where the query was sent, i.e. (xQ

i,j , y
Q
i,j),

but different from the trajectory data, this location
information may be invalid, since the location is not
essential for search queries.

For each pair of user IDs from these two datasets, say idL
i

and idQ
k , our goal is to find whether they belong to the same

user. To achieve this, we propose a metric to measure the
weighted co-occurrence between the spatial and temporal
distribution of idL

i and idQ
k . In spite of this, there are still

several challenges that are unsolved.

• A large part of query records do not have exact
location coordinates, but all the records have detailed
IP addresses. Since IP addresses and locations are
related, it is necessary to predict the location distribu-
tions of the users based on the data of IP addresses.

• There are different features helpful for measuring the
co-occurrence of the users, e.g., the weight of location
distributions of each IP address, the frequency distri-
bution that one user visits different places and the
visiting popularity of all the possible places.

• Since calculating similarities between pairs of IDs
takes an O(n2) time and space complexity, it is nec-
essary to do optimization to reduce the complexity.

Our solution to this problem consist of three parts.

• In Section 4, we show how to model the location
distribution of IP addresses and use it to enrich the
mobile query data of users.

• In Section 5, we introduce the algorithm to compute
the most similar device IDs to particular cookie IDs.
In this step, we will use the TF-IDF metric to measure
the co-occurrence similarities between users. We in-
vent a technique called the pairwise-index to speed
up the computation process, since it would take a lot
of time to match up all pairs of IDs and compute the
similarities for a large dataset.

• After obtaining several similar device IDs for one
cookie ID, in Section 6, we use a learning-to-rank
(LTR) approach to considering more features in
depth to get a more accurate prediction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 4

4 EXTENDING IP ADDRESSES TO LOCATIONS

In each search box query record, several information entries
can be found typically, including: (1) Cookie ID of the user,
(2) Timestamp when the query was made, (3) IP address
which the query was sent from, (4) Extra information, such
as location coordinates, operation system and mobile phone
model. Despite the fact that there exists a timestamp and
an IP address for each search query record, a large part of
them is not attached with location coordinates. In order to
link the mobile query data and the trajectory data, our idea
is to find out the location distribution for each available IP
address, and then predict the location where a query was
sent by the IP address if there was no location coordinates
attached to the query record.

(a) (b)

Fig. 3: Wide-ranged distribution (a) and centralized distri-
bution (b) for IP locations.

After visualizing and analyzing the location distribu-
tions of some IP addresses, we find that there are two kinds
of distributions for an IP address, as shown in Fig. 3:

• Centralized distribution: The locations of the IP ad-
dress are distributed in one or several small central
areas, the radiuses of which are usually no more than
hundreds of meters, and usually only tens of meters.

• Wide-ranged distribution: The locations of the IP
address are distributed widely in a large area with
a size of several kilometers, and sometimes this area
could spread over one or even several cities.

Then it can be figured out that if an IP address follows a
centralized distribution, then the locations of the users with
this IP address can predicted as the centers of these central
areas. To find out IP addresses with a centralized distribu-
tion, it is a natural idea to process a clustering on these
locations which share the same IP address. In our previous
work in [16], we have used the DBSCAN algorithm [17] to
process the clustering. In this paper, we use the Gaussian
mixture model [18] instead, since it has such advantages:

• Parameters of the model can be better determined
with an automatic process.

• It is more convenient to convert a Gaussian distribu-
tion into a grid-based distribution.

• According to our experiment, we can get a better
predicting accuracy by this method.

According to this, since the centralized distribution
usually has a center and a distributing radius, we as-
sume that the distribution of the IP locations follows a 2-
dimensional spherical Gaussian mixture distribution, which
means, for each IP address, there exist K center points

(x̄1, ȳ1), · · · , (x̄K , ȳK), and for each center point µi =
(x̄i, ȳi), there is a weight wi and a variance σ2

i . Then for each
IP address, its location (x, y) follows such a distribution:

(x, y) ∼
K∑
i=1

wiN (µi, σ
2
i) = GK ,

where N (µi, σ
2
i) is a 2-dimensional spherical Gaussian dis-

tribution with the center point of µi and the variance of σ2
i .

For a fixed center point number of K , with N given
samples for this IP address, we can compute the parameters
wi, µi and σi of the GMM by the expectation-maximization
method [29]. However, since we do not know the number
K of clusters a-priori, we still need to fix the value of K
before applying the EM-GMM method. In order to decide
the value of K , we use the Bayesian information criterion
(BIC) [30], which is defined for a distribution GK as:

BIC(GK) =
1

2
K logN − log p(n1, · · · , nN |GK),

where GK is the Gaussian mixture distribution generated
by the EM-GMM algorithm with K components, and
n1, · · · , nN are the coordinates of the N samples. The
smaller the value of this criterion is, the more likely we will
use this distribution. Then, we estimate the value of K as:

K∗ = arg min
1≤K≤Kmax

BIC(GK),

where we set an upper bound Kmax for K to prevent the
value of K to be too large and that means it is more likely
that the IP address distributes as a wide-ranged distribution.

After taking K = K∗, we have found the best-matched
Gaussian mixture distribution for the locations of the IP
addresses. Then we need to convert the IP location distri-
butions into grid distributions in order to continue with the
grid-based index algorithm in Section 5.2. Given a distribu-
tion GK = {(x̄i, ȳi, wi, σi)|1 ≤ i ≤ K} with the parameters
fixed, for each square grid g = (xa, xb, ya, yb), we compute
the weight of the IP address in g as:

w(g) =

∫∫
g

GK(x, y) dS

=

∫ xb

xa

dx

∫ yb

ya

K∑
i=1

wiN (µi, σ
2
i)(x, y)dy

=

K∑
i=1

wi

∫ xb

xa

N (x̄i, σ
2
i)(x)dx

∫ yb

ya

N (ȳi, σ
2
i)(y)dy,

which is a weighted sum of products of two Gaussian
integrals.

According to this formula, we can compute the weights
of IP addresses in each grid for a centralized distribution.
In order to get rid of the influence of wide-ranged distribu-
tions, we ignore grids with a weight of no more than 0.1.
That is because, for a wide-ranged distribution, the weights
wi for the center points are usually small, and the variances
σi is usually large, which brings only a small weight to each
grid. That means that we only need to remove all small-
weighted grids to exclude the wide-ranged distributions.

Following this approach, for a mobile query record
without precise location information, we can predict several
possible grids for it by IP clustering, together with the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 5

prediction confidence for these locations. In this way, we can
successfully build a connection between IP addresses from
the online data and location points from the offline data.

5 COMPUTING SIMILARITIES

In order to match user IDs from the two datasets, in this
section, we propose to use a TF-IDF-based metric to com-
pute weighted co-occurrence similarities between each pair
of these cookie IDs and device IDs. The challenge here is that
the computation of all user similarities takes a complexity of
O(n2), which brings up a huge computation cost for a large
dataset. To tackle this problem, we devise a pairwise index
based on the Map-Reduce framework to retrieve the top-K
similar device IDs for each cookie ID efficiently.

5.1 Stay Points Extraction

1: function GETSTAYPOINTS(T)
2: Pstay ← {p1}, Pcur ← {}
3: for i = 2→ |T | do

4: vi−1 ←
√

(xi−xi−1)2+(yi−yi−1)2

ti−ti−1

5: if vi−1 < vmax then
6: if Pcur = {} then
7: Pstay.add(pi)
8: else
9: Pcur.add(pi)

10: else
11: if Pcur 6= {} then
12: if Pcur[Pcur.len].t− Pcur[1].t ≥ tmin then
13: Pstay.concentrate(Pcur)

14: Pcur ← {}
15: Pcur.add(pi)

16: Pstay.concentrate(Pcur)
17: return Pstay

Fig. 4: Stay points extraction

Although trajectories are important data, they are not
appropriate to be used directly. As described in [9], [31],
there are usually a large number of moving points and noise
points in the trajectories, making less effective information
and causing a waste of computation resources. Due to these
reasons, an approach to finding stay points has been de-
scribed in these papers by partitioning the trajectories based
on spatial and temporal distances. In our work, since there
is no need for trajectory simplification at the stay points,
we use an approach different with [9], [31], under which
moving or noise points are removed by the speed of users.

Recall that the trajectory T of a user is:

T = {(x1, y1, t1), (x2, y2, t2), · · · , (xend, yend, tend)},

where the nodes pi = (xi, yi, ti) are sorted in time order
such that t1 < t2 < · · · < tend. For the trajectory T , in order
to extract stay points, we have the following definitions:

• Edge: An edge is a pair of adjacent nodes ei =
(pi, pi+1) for i = 1, 2, · · · , |T |−1. The time of an edge
is defined as ∆t(ei) = ti+1 − ti, and the speed of an

edge is defined as v(ei) =

√
(xj+1−xj)2+(yj+1−yj)2

ti+1−ti .

• Sequence: A sequence of nodes is Si,j = (pi, pi+1, · · · ,
pj), and the duration of a sequence is ∆t(Si,j) = tj −
ti. A sequence Si,j contains several edges {ei, ei+1,
· · · , ej−1}.

• Stationary sequence: A sequence Si,j is called a sta-
tionary sequence iff the speeds of all edges are less
than a threshold, i.e., vek < vmax, for i ≤ k ≤ j − 1.

• Maximum stationary sequence: A stationary sequence
Si,j is called a maximum stationary sequence iff there
does not exist another stationary sequence Si′,j′ such
that Si′,j′ ⊃ Si,j , i.e., i′ ≤ i, j′ ≥ j and j′− i′ > j− i.

• Stay sequence: A maximum stationary sequence Si,j is
called a stay sequence iff the duration of this sequence
is no shorter than some threshold, i.e., ∆t(Si,j) ≥
tmin, while at the same time this sequence is not at
the head or tail of the trajectory, i.e., i = 1 or j = |T |.

Our goal in this step is to find all nodes that belong
to some stay sequences. We start by scanning the speeds
of all edges in the trajectory in time order. We use Pstay to
denote the target set in which we place the stay nodes. We
also maintain a sequence Pcur to keep track of the current
stationary sequence, and update them as follows. After we
encounter an “overspeeding edge” on which the travelling
speed of the user exceeds vmax, we check if the current
stationary sequence Pcur has a duration of at least tmin. If
it has, we place all the nodes in the sequence into Pstay.
Then, we empty Pcur and continue with the scanning in the
same way, until reaching the end of the trajectory. At last we
return the target sequence Pstay, which is the set of all stay
points. The pseudo-code of the algorithm is in Fig. 4.

Following this algorithm, the moving points and noise
points will be placed into the maximum stationary se-
quences with durations shorter than tmin, and will not be
in the target sequence Pstay.

5.2 TF-IDF Vectors Generating
In our framework, the co-occurrence similarities between
trajectories and mobile query records are different from the
similarity computations between trajectories in [8], [32]. In
our case, we compute the similarities between spatial and
temporal distributions, rather than that between trajectory
sequences. The main reason is that our input data comes
from two different resources. As explained in Section 4,
there is no exact location information for some of the query
records, and we use the IP location distributions instead.
This brings difficulty in building exact trajectory sequences
for users, making it not a good idea to directly calculate
the similarities between trajectory sequences. Thus, we in-
stead use the location and time distribution. It will be
more appropriate to transfer the trajectories and IP address
distributions into vectors, and to use the cosine similarities
to stand for the co-occurrence similarities of users.

To turn the location records into vectors, we use the TF-
IDF model [14], which is usually used in natural language
processing. We adopt the model and extend it to represent
properties of location distribution. Different from [16], we
build two different indexes, the spatial index and the spatial-
temporal index. This is because the temporal information
also have some relationship with user similarities. For ex-
ample, if the trajectories of two user IDs appear at the same

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 6

1: function GETTFIDFVECTOR(T)
2: A← EMPTYMAP
3: for (xk, yk, tk, wk) ∈ T do
4: xg ← bxk

sg
c, yg ← byk

sg
c, tg ← b tk∆tc,

5: gst ← (xg, yg, tg)
6: tp ← b tkst c
7: if A does not have key tp then
8: A[tp]← EMPTYMAP

9: if A[tp] does not have key gst then
10: A[tp][gst]← 0

11: A[tp][gst]← A[tp][gst] + wk

12: fs,fst ← indexes with zero entries
13: for tp in the key set of A do
14: ntp ← number of distinct records in tp
15: for gst in the key set of A[tp] do
16: gs ← the spatial index of gst
17: fs

gs ← fs
gs +

A[tp][g]
ntp

18: fst
gst ← fst

gst +
A[tp][g]
ntp

19: for each spatial grid gs do
20: tfgs ← log(1 + fs

gs)
21: Ngs ← number of users appearing in gs
22: idfgs ← 1

log(1+Ngs)

23: vsgs = tfgs · idfgs
24: for each spatial-temporal grid gst do
25: tfgst ← log(1 + fst

gst)
26: Ngst ← number of users appearing in gst
27: idfgst ← 1

log(1+Ngst)

28: vstgst = tfgst · idfgst
29: return (vs

‖vs‖ ,
vst

‖vst‖)

Fig. 5: TF-IDF vector generating

place in the same day, then the similarity of the two user IDs
should be stronger than the similarity when they appear at
the same place but in different days. To take full advantage
with this time-based information, we also propose spatial-
temporal indexes in this paper.

In our dataset, we split the whole city into small grids.
We map each spatial point (x, y) into a grid (b x

sg
c, b y

sg
c),

and map each spatial-temporal point (x, y, t) into a grid
(b x

sg
c, b y

sg
c, b t

∆tc), where sg is the size of the grids and
∆t = 1 day is the length of time bins. Following this
approach, each grid gj (either a spatial-temporal grid or
a spatial grid) can be considered as a word, and each
trajectory Ti can be considered as a document made up of
all grids (words) that a user has visited. The appearance of
a user in the grid gj can be regarded as the appearance of
the word in the document. Similar to the TF-IDF model in
document processing [14], we define the following notions.

• The term frequency (TF) of grid gj in trajectory Ti is:

tf(gj , Ti) = log(1 + fi,j),

where fi,j is the frequency that gj appears in Ti.
• The inverse document frequency (IDF) of grid gj is:

idf(gj) =
1

log(1 + |{i|fi,j > 0}|)
.

Then, define the TF-IDF value for grid gj in trajectory Ti:

tf-idf(gj , Ti) = tf(gj , Ti) · idf(gj)

Then, given trajectory Ti, we can represent it as a vector:

v(Ti) = (tf-idf(g1, Ti), tf-idf(g2, Ti), · · · , tf-idf(g|G|, Ti)).

In practice, we can instead use the normalized vector:
v∗(Ti) = v(Ti)

‖v(Ti)‖ .
As we can see, if we want to calculate the vector for a

trajectory Ti, the only thing we need to do it to estimate its
appearance frequency fi,j for all j, and then use the above
definition to calculate the vector v∗(Ti). In fact, for each
trajectory Ti, we get two vectors in the same way, a spatial
vector vs∗(Ti) and a spatial-temporal vector vst∗(Ti).

The frequencies fi,j are calculated as follows. First, split
the whole time range into several 1-hour periods, and each
time t is in a time period with ID b t

st
c, where st = 1 h.

Denote the set of time periods by Gt. In a trajectory, for
each record (xk, yk, tk), if it is the only record in the period
b tist c, it makes a contribution of 1 to the frequency of the grid
(bxk

sg
c, byk

sg
c) and (bxk

sg
c, byk

sg
c, b tk∆tc). If there are np records

in a period, each record makes an equivalent contribution of
1
np

to its grid. Summing these contributions, the frequencies
fi,j for each grid j can be attained. For a predicted IP
location distribution with a confidence value (see Section
4), i.e., (xk, yk, tk, wk), where wk is the confidence value of
the prediction, it makes a contribution of wk for the single
appearance in a period, and a contribution of wk

np
for each

record for the np multiple appearances in a period.
The complete TF-IDF generating algorithm is in Fig. 5.

Here we represent the exact location records (xk, yk, tk)
as location predictions with a confidence of 1, i.e.,
(xk, yk, tk, 1). After we compute the vectors for each user
ID in multiple spaces, we use it to compute the pairwise
similarities of users in the next step.

5.3 Computing with the Pairwise Index
In Section 5.2, we have proposed a way to transform tra-
jectories and search query records into a vector space. In
order to match similar distributions in datasets, we need to
compute the similarity between each pair of vectors from the
two datasets, and keep the ID pairs with high similarities.

This is in fact an all-pair similarity search problem,
which has been discussed, e.g., in [27], [28]. However,
these algorithms require a huge amount of calculation on
our datasets, which makes them incompatible to be used
directly for our problem. For example, in [28], the vectors are
transferred into inverted indexes, generating pairs of vectors
in each index, and merging the same pairs to get similarity
values. The step of enumerating all pairs of vectors with
the same index takes an O(n2) complexity. To resolve this
problem that existing methods are not applicable to our
large dataset, we have made an improvement by building
a pairwise index instead of indexes with single entries.

Next, we define the all-pair similarity problem formally.
Given the two sets of vectors generated in the last step, we
have the following.

• For the dataset of user trajectories, we have D =
{(vs1, vst1), (vs2, v

st
2), · · · , (vs|D|, v

st
|D|)}, where vsk and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 7

vstk are nonnegative spatial and spatial-temporal vec-
tors representing the location and time distribution
for device ID idL

k .
• For the dataset of mobile search queries, we have
K = {(us1, ust1), (us2, u

st
2), · · · , (us|K|, u

st
|K|)}, where usj

and ustj are the nonnegative spatial and spatial-
temporal vector representing for the location and
time distribution for cookie ID idQ

j .

The goal of this step is that, for each cookie ID idQ
j ,

we want to find K different devices IDs such that they
have the top-K largest spatial cosine similarities with usj ,
and compute the spatial and spatial-temporal similarities of
them with usj and ustj .

Note that vsk, v
st
k and usj , u

st
j are usually sparse vectors

with only a few positive entries. We only store the positive
entries during computation. We represent vsk and vstk as:

vsk = (vsk,1, v
s
k,2, · · ·) = {〈gsi1 , v

s
k,i1〉, 〈g

s
i2 , v

s
k,i2〉, · · · },

vstk = (vstk,1, v
st
k,2, · · ·) = {〈gsth1

, vstk,h1
〉, 〈gsth2

, vstk,h2
〉, · · · },

where vsk,i1 , v
s
k,i2

, · · · are the nonzero entries in the trajec-
tory, and gsi1 , g

s
i2
, · · · are the grid IDs of these entries, and

the same is with vstk . Similarly, we represent usj and ustj as

usj = (usj,1, u
s
j,2, · · ·) = {〈gsi1 , u

s
j,i1〉, 〈g

s
i2 , u

s
j,i2〉, · · · },

ustj = (ustj,1, u
st
j,2, · · ·) = {〈gsth1

, ustj,h1
〉, 〈gsth2

, ustj,h2
〉, · · · }.

Our improved algorithm is theoretically based on the
uniqueness bound of human mobility, which was discussed
in [12], [13]. According to [12], [13], taken several points
from a person’s trajectory, the probability that there exists
a unique trajectory which contains these points increases
with the number of selected points. Based on an analysis on
our dataset, the probability that a single point can be used
to identify a unique person is less than 10%. This means
that if two user IDs only have co-occurrences in a single
grid, it will be unlikely that they can be concluded to belong
to the same person. Furthermore, according to the analysis
on our dataset, for the user pairs in the ground truth, the
probability that two users have co-occurrences in a single
grid is 16.3% in Beijing, and 20.5% in Harbin, which is not
the majority in the ground truth dataset. Thus, we will only
consider the case that the two user IDs have co-occurrences
in at least two grids.

In the following, we only describe how to compute the
spatial similarities, and the spatial-temporal similarities can
be computed in almost the same way. The only difference is
that we will keep all the similarities in the spatial-temporal
computing, instead of only selecting the top-K similarities.

We build an index in which each key is a pair of grid
cells instead of a single grid cell. In this way, we can only
consider pairs of IDs who have appeared in at least two
different grid cells, and the total time and space requirement
can be reduced significantly in this way. The main idea of
the pairwise index is shown in Fig. 6.

Since the dataset is large within a city, our algorithm
runs in parallel in a Hadoop Map-Reduce framework. Our
algorithm consists of two steps. In the first step, we build
an inverted pairwise index from the vectors for the users.
In the mapper stage, for each pair of nonzero entries

Fig. 6: Pairwise index: building index for the pairwise co-
occurrences for the user ID pairs. User idL

1 and idQ
2 both

appear in grid gs1 and gs2. Build a pairwise index with the
key of (gs1, g

s
2). Add idL

1 and idQ
2 into the ID list of this index.

〈gsip , v
s
k,ip
〉, 〈gsiq , v

s
k,iq
〉 in vector vsk, we generate a key-value

pair, where the key is the grid pairs (gsip , g
s
iq

), and the
value is made up of the user ID idL

k and the entry weights
(vsk,ip , v

s
k,iq

). In the reducer stage, we merge all values
〈idL

k , (v
s
k,ip

, vsk,iq)〉 into a set belonging to the same key (i.e.,
pairs of grids). The pseudo-code of this step is in Fig. 7.

1: function MAPPER1(〈idL
k , v

s
k〉)

2: for 〈gsip , v
s
k,ip
〉, 〈gsiq , v

s
k,iq
〉 ∈ vsk do

3: output (gsip , g
s
iq

), 〈idL
k , (v

s
k,ip

, vsk,iq)〉
4: function MAPPER2(〈idQ

j , u
s
j〉)

5: for 〈gisp , u
s
j,ip
〉, 〈gsiq , u

s
j,iq
〉 ∈ usj do

6: output (gsip , g
s
iq

), 〈idQ
j , (u

s
j,ip

, usj,iq)〉
7: function REDUCER((gsip , g

s
iq

), set(〈idL
k , (v

s
k,ip

, vsk,iq)〉),
set(〈idQ

j , (u
s
j,ip

, usj,iq)〉))
8: output 〈(gsip , g

s
iq

), set(〈idL
k , (v

s
k,ip

, vsk,iq)〉),
set(〈idQ

j , (u
s
j,ip

, usj,iq)〉)〉

Fig. 7: Step One of similarity computation: generating the
pairwise indexes

In the second step, we compute the similarity between
pairs of IDs with at least two co-occurrences. For each cookie
ID, we keep the K device IDs with the largest similarities
with the cookie ID. Note that we have already obtained an
inverted list in Step 1, i.e.,

〈(gsip , g
s
iq), set(〈idL

k , (v
s
k,ip , v

s
k,iq)〉), set(〈idQ

j , (u
s
j,ip , u

s
j,iq)〉)〉.

In the mapper stage, for each pair of grids (gsip , g
s
iq

), we
match each item 〈idL

k , (v
s
k,ip

, vsk,iq)〉 from the device ID set
and item 〈idQ

j , (u
s
j,ip

, usj,iq)〉 from the cookie ID set. The first
key of the output is idQ

j , the second key is idL
k , and the

value is made up of the grid IDs and the product of the
vector entries, i.e., 〈gsip , v

s
k,ip

usj,ip〉 and 〈gsiq , v
s
k,iq

usj,iq 〉. In the
reducer stage, we merge the items with the same pair of
user IDs (idQ

j , id
L
k), and sum all products of vector entries,

i.e., vsk,ipu
s
j,ip

for all p, to obtain similarities between these
two user IDs, i.e.

∑
p v

s
k,ip

usj,ip . Finally, for each cookie ID
idQ

j , we process a sorting to all device IDs by similarities
with idQ

j , and keep the top-K most similar IDs. The pseudo-
code of this step is in Fig. 8. In this way, we compute the
best matched device IDs for each cookie ID together with
similarities.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 8

1: function MAPPER(〈(gsi,p, gsi,q), set(〈idL
k , (v

s
k,ip

, vsk,iq)〉),
set(〈idQ

j , (u
s
j,ip

, usj,iq)〉)〉)
2: for 〈idL

k , (v
s
k,ip

, vsk,iq)〉 do
3: for 〈idQ

j , (u
s
j,ip

, usj,iq)〉 do
4: output idQ

j , id
L
k , 〈gsip , v

s
k,ip

usj,ip〉
5: output idQ

j , id
L
k , 〈gsiq , v

s
k,iq

usj,iq 〉
6: function REDUCER(idQ

j , set(〈idL
k , set(〈gsip , v

s
k,ip

usj,ip〉)〉))
7: sim← EMPTYMAP
8: for 〈idL

k , set(〈gsip , v
s
k,ip

usj,ip〉)〉 do
9: sum← 0

10: for gsip , v
s
k,ip

usj,ip do
11: sum← sum+ vsk,ipu

s
j,ip

12: sim[idL
k] = 〈〈idQ

j , id
L
k 〉, sum〉

13: output top-K from sim

Fig. 8: Step Two of similarity computation: getting the top-K
matched ID pairs

5.4 Index with Time Drifts
In section 5.2, we define the spatial-temporal index which
could be used to compute the co-occurrences of user trajec-
tories. However, in the temporal dimension of the index, we
have split the whole time period into small time intervals
of ∆t = 1 day, and in this way, there may be pairs of nodes
closed to each other, but not laying in the same time interval.
To tackle this problem, we introduce a novel variant of the
index, which is named as index with time drifts.

In the new index, we use ∆t′ = 1
2∆t as the new time

interval length. In the algorithm of Fig. 5, for each node
(xk, yk, tk), its spatial-temporal index turns to be:

(xg, yg, t
′
g) = (bxk

sg
c, byk

sg
c, b tk

∆t′
c)

For each node in the offline dataset, we directly use
(xg, yg, t

′
g) as its index. For the online dataset, we add the

drifts of {−1, 0, 1} to each time index, i.e., for each node
(xk, yk, tk), we build three time indexes for it: (xg, yg, t

′
g−1),

(xg, yg, t
′
g), (xg, yg, t

′
g + 1). We repeat line 9-11 of Fig. 5 for

three times, and in each repetition, use each of the above
three indexes to replace gst. Other parts of the algorithm
remain the same. By this variation of index with drifts, we
can benefit in these ways: (a) All the co-occurrences in the
∆t intervals can also be included in the ∆t′ intervals with
drifts. (b) No co-occurrence will be ignored as long as the
time difference is no more than ∆t′. In this way, two pieces
of trajectory nodes will not be assigned into different time
slots if their occurrence time is quite close. Therefore, we can
attain a higher coverage of user co-occurrences.

The index with time drifts has better effect if the users’s
behavior does not have clear inactive time boundary. In
our experiment, we divide the time bins at the midnight
times, and these are usually inactive time for users. If there
is a such clear inactive time for most of users, different
ID’s nodes of the same user should have little chance to
be divided into different time intervals. However, in a big
city like Beijing, such global inactive time boundary may
not be clear since the city’s nightlife is rich and varied.
Whereas, in a middle city like Harbin (a provincial capital

city in Northeast China), most of users are not active at the
midnight. Our experiment in Section 7.3.2 also demonstrates
such interesting phenomenon that the index with time drifts
has improved performance on the dataset of Beijing, but has
little effect on the dataset of Harbin.

5.5 Optimization of Pairwise Indexes
In Section 5.3, we have described an algorithm for building
pairwise indexes. In this section, we propose how to opti-
mize the pairwise index for the spatial similarity calculation.

At first, in order to reduce the size of the intermediate
data, for each inverted list we split the device ID set and the
cookie ID set into several subsets, say {SL,1, · · · , SL,NL

} and
{SQ,1, · · · , SQ,NQ

}. For each iteration, we take one subset
SL,i from the device ID set and one subset SQ,j from the
cookie ID set, computing the top-K similar device IDs for
each cookie ID. After matching up all pairs of these subsets,
we merge these lists together to get the top-K similar device
IDs for each cookie ID in the whole set.

However, as we will explain, not all pairwise grids need
to be used in building inverted lists. For example, for a pair
of users, if they are in pair-indexes (g1, g2) and (g1, g3), it
is clear that they have co-occurrences at grids g1, g2 and g3.
Then, there is no need to build the pair-index (g2, g3) any
more. However, the problem is that we do not know which
pairs are not needed. Nevertheless, if we have a threshold
for the minimum value of similarity, it will be possible to
reduce the size of the index. Since we have split the user
sets into several subsets, the threshold can be attained by the
result of the last subset. For example, if we have computed
the top-K similarities between cookie ID subset SQ,1 and
device ID subset SL,1, then when computing the similarity
of SQ,1 and SL,2, for each idQ

k in SQ,1, we can assign its
threshold rk in SL,2 to be the K-th largest similarity value
for idQ

k among SL,1. When a user in SL,2 has a similarity no
more than rk with idQ

k , we can just ignore it.
The problem becomes the following. For each device ID

idL
k and a threshold rk, our goal is to find all users usj ∈ K,

such that the inner product 〈vsk, usj〉 > rk, and then compute
the similarity values sk,j = 〈vsk, usj〉 for all these usj .

Here we solve this new problem. Let usmax,i = maxj u
s
j,i.

Define the co-occurrence set of vsk and usj to be the set of
grids that both users appear: Ck,j = {i | vsk,i > 0, usj,i >
0, 1 ≤ i ≤ M}, where M is the number of grids. Let wk,i =
vsk,iu

s
max,i. Then, the inner product of vsk and usj satisfies

〈vsk, usj〉 =
∑

i∈Ck,j

vsk,iu
s
j,i ≤

∑
i∈Ck,j

vsk,iu
s
max,i ≤

∑
i∈Ck,j

wk,i.

If
∑

i∈Ck,j
wk,i ≤ rk, then 〈vsk, usj〉 ≤ rk, and this means the

similarity value is not large enough. Then we only need to
consider the pairs (vsk, u

s
j) such that

∑
i∈Ck,j

wk,i > rk.
To build a pairwise index for vsk, we define a graph Gk =

(Vk, Ek), such that Vk = {i | vsk,i > 0, 1 ≤ i ≤ M} is the
set of all grids vsk appears, and Ek ⊆ {(i, j)|i < j, i, j ∈ Vk}
is the key set of the pairwise index. Then for each subset
V ′ ⊆ Vk, as long as V ′ satisfies

∑
i∈V ′ wk,i > rk, then it

is possible that there exists a user usj with Ck,j = V ′, and
that means

∑
i∈Ck,j

wk,i > rk, and we should preserve that
this ID pair should not be discarded. In this case, for the
subgraph Gk(V ′) = (Vk(V ′), Ek(V ′)) where Vk(V ′) = Vk ∩

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 9

V ′ and Ek(V ′) = {(i, j) ∈ Ek | i, j ∈ V ′}, for each node
i ∈ Vk(V ′), we need the degree of i in Gk(V ′) to be at least
1, so that the entry vsk,i could be indexed in at least one pair
in Ek(V ′).

With these conditions, our problem becomes the follow-
ing. Given a node set Vk, assigning a weight wk,i ≥ 0 for
each i ∈ Vk, we need to find an edge set Ek ⊆ {(i, j)|i <
j, i, j ∈ Vk}, such that for each V ′ ⊆ Vk which satisfies∑

i∈V ′ wk,i > rk, the subgraph of Gk = (Vk, Ek) on V ′

must not have a zero-degree node. The edge set Ek should
be as small as possible to reduce the size of the index.

We solve this problem in such a way. We will try to split
Vk into several non-intersected sets, i.e., Vk = Vk,1 ∪ · · · ∪
Vk,t ∪ V ∗k , such that

∑
i∈Vk,r

wk,i ≤ rk for each 1 ≤ r ≤ t,
and wk,i > rk for i ∈ V ∗k . Let the edge set be

Ek =

 ⋃
1≤i<j≤t

Vk,i × Vk,j

 ∪(t⋃
i=1

Vk,i × V ∗k

)
∪ {(i, j)|i < j, i, j ∈ V ∗k }

Then it is obvious that Ek satisfies our requirement. We can
use all the node pairs in Ek to replace the complete index
{(i, j)|i < j, i, j ∈ Vk} for Vk.

Here we propose a greedy algorithm for it. At first, we
sort all the nodes in Vk with nonnegative weights wk,i in
an increasing order. Then, we initialize the first subset by
Vk,1 = ∅, and repeatedly put the smallest remaining item in
Vk into this subset if the sum of the elements in Vk,1 does
not exceed the threshold rk. When the sum of the weights in
Vk,1 would exceeds rk once new elements are included, we
set up a new subset Vk,2 and put the following elements into
this new set. We repeat the process for Vk,3, Vk,4, · · · until all
the elements with a weight no more than rk have been put
in one subset Vk,i. After that, we put the remaining elements
with weights larger than rk into the remaining subset V ∗k .
Finally, for each pair of elements in the same subset Vk,i, we
will not build the inverted list for them. In this way, the size
of the index can be reduced.

6 RANKING WITH DIFFERENT FEATURES

In Section 5, we describe an algorithm to generate the top-K
similar device IDs with a cookie ID by the TF-IDF similarity.
However, except for the TF-IDF similarity, there are still
other features that can be used to describe user similarities.
After getting the top-K device IDs via TF-IDF similarities,
it is useful to take other features into account rather than
only using the TF-IDF similarities. For this purpose, we use
the GBDT [33] to implement a learning-to-rank (LTR) model
[15] to get a general ranking for all the top-K IDs related to
the same cookie ID, which can be used to identify whether
two IDs belong to the same user. Note that we cannot skip
the pre-filtering step based on TF-IDF similarities described
in Section 5, since directly applying the LTR model on all ID
pairs will incur a high computation cost.

The features for the LTR we will use include: (1) The
spatial TF-IDF similarity between two users described in
Section 5. (2) The spatial-temporal TF-IDF similarity. (3)
The number of spatial co-occurrence grids for two users.
(4) The number of spatial-temporal co-occurrence grids. (5)
The maximum distance between pairs of grids at which two

users have co-occurrences. That is, if two users meet at p
different grids gi1 , gi2 , · · · , gip , then this distance will be
max1≤j<k≤p dis(gij , gik). (6) Similarities between the sets of
IP addresses,1 mobile phone operation systems and mobile
phone models. These similarities are calculated using the
Jaccard similarity coefficient of two sets S1 and S2, where
S1 and S2 are the feature sets for the two users.

Compared with the LTR process in [16], we also add the
spatial-temporal TF-IDF similarities as input feature. After
merging all these related features, we can get a vector xi for
each ID pair that can be used to train the ranking model.
In our experiment, we use a small set of user login records
as ground truth to train the model to decide whether two
IDs belong to the same user. Let yi = 1 if the i-th pair
of IDs have ever shared the same login account, and yi =
0 if not. Our objective is to train a prediction model f(·),
which minimizes the sum of the training losses between
ŷi = f(xi) and yi for all ID pairs on training data. In our
implementation, we use the Gradient Boosting Decision Tree
(GBDT) introduced in [33] to construct the model f(·).

While training the LTR model, we have selected 80% of
all the samples as the training set, 10% as the validation set,
and the remaining 10% as the testing set. After the training
process, we get a ranking model f(·), which can return how
similar a device ID is to a cookie ID. Using this ranking
model, we get a prediction about which device ID should
be chosen to be the best-matched result among all the top-
K similar IDs.

7 EXPERIMENTS

In order to evaluate the efficiency and effectiveness of our
framework, we have designed several experiments.

7.1 Experiment settings

Our experiments are based on the dataset of mobile query
logs and trajectories in two cities: (1) Beijing, a megacity and
the capital of China, and (2) Harbin, a provincial capital city
in Northeast China. Both datasets are randomly sampled
as a portion of whole data. Specifically, in this experiment,
our goal is to match the users IDs from the datasets of
mobile query logs and trajectories, and the time periods are
June 2016 for Beijing and December 2015 for Harbin. In our
experiments, we only use IDs with an active period of at
least a week and visited at least two different places (or at
least two IP addresses). Our datasets are as follows.

• Mobile query log dataset: Obtained from the search
query logs of the Baidu search box generated from
the mobile phones. 40.7% of all the query records
have location information, while the rest 59.3% only
have raw IP addresses.

• Trajectory dataset: Obtained from the location
records from a mobile application “Mobile Baidu”.2

Table 1 shows the statistics of our datasets, including
the number of IDs and records, and the average number of
records for each ID for each dataset.

1. The trajectory data may also contain IP addresses for uploading
the location information.

2. http://xbox.m.baidu.com/wuxian/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 10

TABLE 1: Statistics of the datasets of two cities

City Beijing Harbin

Query Logs
of IDs 12, 616, 442 2, 410, 892
of records 1, 829, 633, 176 299, 708, 763
Records per ID 145 124

Trajectories
of IDs 2, 811, 169 748, 789
of records 574, 008, 583 142, 768, 995
Records per ID 204 191

Our framework is implemented as a series of Hadoop
streaming jobs written in Python 2.7, and the experiments
have been running on the Hadoop Map-Reduce [34] cluster
with 3, 000 nodes running in parallel for each job. All the
reported results are the averages of five running results.

Our default parameters are sg = 30 m, K = 100 and
∆t = 24 h. For the optimization in Section 5.5, we have
NQ = NL = 2. Since performance of the index with time
drifts method depends on the data property (which has
improvement in the dataset of Beijing, but not improvement
in the dataset of Harbin), therefore we disable the index with
time drifts method by default. In the learning-to-rank step,
we set the step size to be η = 0.1, minimum loss reduction
to be γ = 2, minimum child weight to be 0.05, and number
of rounds to be 50. For the decision tree depth, we set it to
dt = 9 to get the best validation result.

The ground truth comes from records of account logins.
If a device ID has been logged as the same user account, as
a cookie ID, then we can use this device-cookie ID pair as
a ground truth. In our dataset, there are 87, 456 cookie IDs
in Beijing and 21, 518 in Harbin which have related device
IDs, and we use these ID pairs as ground truth.

7.2 Running time and space cost

As discussed before, since this is a problem in which pairs of
user IDs are needed to be matched to compute the similarity,
the time and space complexity is O(n2) with respect to the
size of the user ID set. Here we have designed a series of
experiments in order to test the efficiency of our framework.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 10 20 30 40 50 60 70 80 90 100

R
u
n
n
in

g
 T

im
e
 (

h
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50 60 70 80 90 100

R
u
n
n
in

g
 T

im
e
 (

h
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(b)

 0

 5

 10

 15

 20

 25

 30

0 10 20 30 40 50 60 70 80 90 100

S
p
a
c
e
 C

o
s
t
(T

B
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(c)

 0

 1

 2

 3

 4

 5

 6

0 10 20 30 40 50 60 70 80 90 100

S
p
a
c
e
 C

o
s
t
(T

B
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(d)

Fig. 9: Total run times for Beijing (a) and Harbin (b), and
total space costs for Beijing (c) and Harbin (d) for different
indexes

 0

 50

 100

 150

 200

0 10 20 30 40 50 60 70 80 90 100

R
u
n
n
in

g
 T

im
e
 (

m
in

)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 10 20 30 40 50 60 70 80 90 100

R
u
n
n
in

g
 T

im
e
 (

m
in

)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(b)

 0

 20

 40

 60

 80

 100

 120

 140

0 10 20 30 40 50 60 70 80 90 100

S
p
a
c
e
 C

o
s
t
(G

B
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 10 20 30 40 50 60 70 80 90 100

S
p
a
c
e
 C

o
s
t
(G

B
)

Data Percentage (%)

UIONF-PT
UIONF-PR
UIONF-SG

(d)

Fig. 10: Maximum single mapper run times for Beijing (a)
and Harbin (b), and maximum single mapper space costs
for Beijing (c) and Harbin (d) for different indexes

The total run time and space cost of our framework are
plotted in Fig. 9. In each iteration, we extract both the per-
centage 10%, 20%, · · · , 100% from the set of the cookie IDs
and the device IDs. In Fig. 10, we plot the maximum values
of the run times and space costs for all the mappers in the
Map-Reduce jobs. Note that the main time and space cost
of our framework is due to the second step to compute the
TF-IDF similarities described in Section 5. In each iteration,
we test three different methods on the subset extracted, and
get the time costs and maximum memory usages during the
whole processes of computing TF-IDF similarities. The main
differences of the compared methods are how to build the
index for computing similarity, including:

• UIONF-PT: the pairwise index in Section 5.
• UIONF-PR: the pairwise index without the optimiza-

tion method described in Section 5.5.
• UIONF-SG: using vanilla inverted index in [16] in-

stead of the proposed pairwise index.

From Fig. 9(a)(b), we see that when the dataset is small
(e.g., for Harbin), UIONF-PT (which is with pairwise index
with optimization) takes much more time, because when
splitting the whole problem into small sub-jobs, it takes
more time for the initialization of the jobs. When the dataset
becomes larger, the gap is not as large. Particularly, it takes
much time for single index when the dataset gets larger
because the problem of extreme length of some posting
lists leads to imbalance problem, and these huge lists cause
instability to the Hadoop cluster such that some subtasks
will keep crashing and restarting, which takes a lot of time.

From Fig. 9 (b), we can see that the maximum space
requirement grows quadratically with the size of the dataset.
It can be seen that less space will be used when we use
UNICORN-PT (which adopts pairwise index with opti-
mization) than the other two methods. In our experiment,
UIONF-PR takes less space than single index in Beijing, and
a little more in Harbin, and it depends on the datasets.

As in Fig. 10, the original UIONF-SG suffers from seri-
ous imbalance issues for the mappers, and solutions with
the pairwise index such as UIONF-PT and UIONF-PR can

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 11

efficiently deal with this problem. For both the space and
time complexities, the pairwise index with the proposed
optimization method (UIONF-PT) is more efficient for a
large dataset.

7.3 Effectiveness of our framework

In this part, we evaluate the effectiveness of our framework
based on comparison with existing methods. As introduced
in Section 6, in the LTR step, we set up a filtering rule for
prediction as follows. If this prediction value does not ex-
ceed some particular threshold, we consider that no device
ID is matched with this cookie ID. Otherwise the device
ID with the highest probability value is matched with this
cookie ID. By setting up different values for the threshold,
we can get a precision-recall curve for the prediction.

7.3.1 Comparison with the state-of-the-art method
Here we compare our method with some state-of-the-art
methods such as [9], [20], [21], [35]. Since these methods
are designed for offline data, for the online data in our
dataset, we can only use the records with exact location
information. As introduced in Section 6, in our method,
we use a learning-to-rank approach, using 80% of the ID
pairs in the ground truth as the training set, 10% as the
validation set and the other 10% as the testing set. Then
we mix the 10% test ID pairs with all the device IDs to test
the performance of our model. Since our task is to find the
best-matched device ID from the candidate device ID set
for each cookie ID, we always use the whole set of device
IDs, regardless of whether we are in the training and testing
process. Since there are no machine learning algorithms
such as LTR in the baselines, which means there is no need
for training and validation, we only use the testing ID pairs
when evaluating the baselines.

We have compared our framework with the state-of-the-
art location-based user identification methods in [9] and
used two different similarity measures in [9]: 1) co-filtering
with signal and Jaccard similarities (Co-filtering), and 2)
only the signal similarities (Signal). The precision-recall
curves of these two method together with our framework
is shown in Fig. 11(a)(b), from which we can see that our
framework get a better precision and recall on our dataset.
We have also tried the baselines together with the method
of IP-location clustering in Section 4, which is shown in Fig.
11(c)(d). There are two main advantages in our framework
compared with existing methods: a) We have use the IP
clustering approach to enrich the online query logs without
location information; and b) We have used more information
in the learning-to-rank to get a more accurate prediction.

We have also compared our method with some of the
probability model based methods such as HIST [20], [35]
and POIS [21] which is shown in Fig. 11(a)(b). The imple-
mentation of HIST is mainly based on paper [20] since [20] is
an extension of [35]. When running on a Hadoop platform,
both HIST and POIS need a step of computing all the co-
appearances between users with an inverted index, so they
have a similar time and space complexity with UIONF-SG.
However, these models do not show a good performance
in our dataset. There are several reasons. (a) Similar to [9],
there are not methods to fuse the online and offline data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering

Signal
HIST
POIS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering

Signal
HIST
POIS

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering+IP

Signal+IP
HIST+IP
POIS+IP

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering+IP

Signal+IP
HIST+IP
POIS+IP

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

GMM+Time

GMM+Time*

GMM

UNICORN

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

GMM+Time

GMM+Time*

GMM

UNICORN

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

IP+TF-IDF(UIONF)
TF-IDF
IP+TF

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

IP+TF-IDF(UIONF)
TF-IDF
IP+TF

(h)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

LTR-C

LTR-L

LTR-N

(i)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

LTR-C

LTR-L

LTR-N

(j)

Fig. 11: Comparing our framework with baselines in (a) for
Beijing and (b) for Harbin, where raw location information
is used in the baselines. Comparing our framework with
baselines in (c) for Beijing and (d) for Harbin, where the
IP-location clustering in Section 4 is used in the baselines.
Examining the performance of the GMM clustering method
and spatial-temporal-based indexes in (e) for Beijing and (f)
for Harbin. Examining how IP clustering and TF-IDF vectors
contributed to the performance of our framework in (g) for
Beijing and (h) for Harbin. Comparing the effect of different
features of LTR in (i) for Beijing and (j) for Harbin.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering

Signal
HIST
POIS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

UIONF
Co-filtering

Signal
HIST
POIS

(b)

Fig. 12: Comparing our framework with baselines in (a) for
Beijing and (b) for Harbin, using only the subset of the
whole dataset which appears in the ground truth.

like IP clustering and learning-to-rank methods to improve
the performance of the models. (b) The method in [20], [35]
assumes all the available information about a user is in
the form of histograms. Some useful information for user
identification cannot be contained by such histogram data.
(c) It has been assumed in [21] that user trajectories follow
certain probability models such as the Poisson distribution.
However, user trajectories have some more complex pat-
terns [9], which cannot be described well by these models.

In our original training process, we use the whole user
dataset to compute user similarities, and evaluate the per-
formance of our model and [9], [20], [21], [35] with the
whole dataset containing all user IDs. However, most user
IDs in the whole dataset do not appear in the ground
truth. Now we only compute user similarities between the
user IDs which appear in the ground truth, and evaluate
the prediction performance on the 10% testing data of the
ground truth, where we do not include all the candidate
device IDs. For each cookie ID in the test set, we use
our framework and the baselines to find the best-matched
device ID among the candidate set of device IDs which
appear in the ground truth. Since the ground truth dataset
is much smaller than the whole dataset, we expect higher
precision and recall values when the candidate device ID set
is restricted to the ground truth set. The result on the ground
truth set is shown in Fig. 12. After replacing it with the
ground truth dataset, precision and recall values are higher
with all methods, and our framework still has a significant
improvement compared to the baselines.

For the baseline of [9], we are using the grid sizes of
{20 m, 200 m}, r20 = 0.625, r200 = 0.375, mc = 2000, η =
16, γ = 0.2, α = 0.4, λ = 50, µ = 1/4000, β = {0.8, 0.2}.
For other baselines, we have chosen the grid index size of
30 m in [20], [35], and (10 m, 31 days) in [21]. In this way, the
best matching results can be attained.

7.3.2 Effect of GMM clustering and spatial-temporal index
Fig. 11(e)(f) shows how GMM clustering and the spatial-
temporal index contribute to our framework. “GMM+Time”
is for the UNIOF framework in this work, “GMM” is for
the method with GMM but without spatial-temporal index,
and “UNICORN” is for the method in [16] without GMM
or spatial-temporal index. From the curves, we see that
after replacing DBSCAN with GMM, there is an obvious
improvement with the precision-recall curves. After adding
the spatial-temporal index, the effect raises even more.

We have also evaluated the index with time drifts
in Section 5.4, which is referred as “GMM+Time*”. This
method has reasonable improvement of the performance
in the dataset of Beijing, but not the one of Harbin. As
we discussed in Section 5.4, the major reason is because
the users in Harbin has a global inactive time for clearly
splitting the time intervals. Whereas the users in Beijing do
not have a global inactive time boundary due to the richful
nightlife, and it hard to divide the temporal dimension
without distributing temporally closed nodes into different
time bins. Therefore, the index with time drifts method can
bring more benefit for the dataset of Beijing. Besides, if two
user IDs belong to the same user, it is usual that they have
a lot of co-occurrences. It does not have much influence if
only a very small part of co-occurrences are ignored.

7.3.3 Effect of IP-to-location mapping and TF-IDF vectors
We show how IP clustering contributed to our prediction
in Fig. 11(g)(h). We can see that when we need a high
predicting accuracy, it does not make much difference with
the curves of the method with IP clustering (IP+TF-IDF)
and without IP clustering (TF-IDF). If we need a high
recall, IP clustering makes an obvious contribution. This is
because we can take advantage of more information with IP
clustering, but there are some limitations because many IP
addresses distribute in a large area and it can not preserve a
high accuracy.

We also show that the TF-IDF vectors (IP+TF-IDF) have
a contribution to our performance compared to pure TF
vectors (IP+TF). By TF-IDF, when the recall is 0.2, we can
increase the precision by 2.9 percent in the dataset of Beijing,
by 5.0 percent in the dataset of Harbin; and when the recall
is 0.4, we can increase the precision by 1.0 percent in the
dataset of Beijing, by 4.4 percent in the dataset of Harbin.
TF-IDF is better because the co-occurrences in more popular
grids will make a less contribution to the similarities of
users. Since the computation cost of TF-IDF is small, it is
reasonable to adopt the TF-IDF method instead of pure TF.

7.3.4 Comparison of different LTR methods
The precision-recall curves of our framework with different
LTR methods are plotted in Fig. 11(g)(h), including:
• LTR-Complete (LTR-C): using all location-based fea-

tures, together with other features such as IP ad-
dresses, mobile phone OSes and phone models.

• LTR-Location (LTR-L): using only location-based fea-
tures in LTR.

• LTR-None (LTR-N): not using LTR, using only the
spatial-based similarities.

From Fig. 11(i)(j), we can see that the location-based LTR
(LTR-L) contributes to the precision and recall of the identifi-
cation, and after adding additional information (LTR-C), we
gets a better prediction result than LTR-L. When increasing
the threshold, the recall decreases slightly but the precision
increases significantly. One can select an appropriate thresh-
old to adjust the precision and recall based on actual needs.

7.4 Parameter Evaluation
In this section, we evaluate the effect of parameters of our
framework. At first, we evaluate the coverage of the top-
K TF-IDF-based similar IDs for different values of K , as

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 13

introduced in Section 5. The coverage means the percentage
of real cookie ID and device ID pairs that can be retrieved
in the returned top-K results. For example, with 100 real
ID pairs, if there are 60 cookie IDs whose top-K device
IDs contain its corresponding real device ID, we say the
coverage is 60%. It is clear that the coverage define the
upper bound of the recall.

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100 200 500

C
o
v
e
ra

g
e
 (

%
)

Value of K

Using IP locations
Not using IP locations

(a)

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100 200 500

C
o
v
e
ra

g
e
 (

%
)

Value of K

Using IP locations
Not using IP locations

(b)

Fig. 13: Top-K coverage by TF-IDF similarities for Beijing
(a) and Harbin (b).

The results of the top-K coverage have been plotted in
Fig. 13. From the figure, we see that the coverage for the
method with IP clustering is significant larger than that
without IP clustering, which demonstrates the effectiveness
of our proposed IP localization.

From Fig. 13, we see that the top-K coverage of the TF-
IDF similarities increases when we rise the value of K , and
it gets very close to the upper bound when the value of K is
over 100. Although a better coverage can be attained when
we assign a larger value of K , doing so also increases the
computation cost of the following steps. Thus, we decide to
assignK = 100 to achieve a good tradeoff. Under this value,
most real ID pairs will be covered. We have also plotted the
coverage curves without IP clustering, and we see that the
method IP clustering increases the coverage rates.

We also evaluate how theK value and the grid size affect
the prediction performance. The precision-recall relation as
a function of K are illustrated in Fig. 14(a)(b). We see that
when K is large enough, the precision and recall values are
not very sensitive to K , which coincides with Fig. 13.

Similarly, results for different grid sizes are plotted in
Fig. 14(c)(d). For the grid size, we see that the precision with
the same recall will become very different when we choose
different grid sizes. When the grid size is too small, most co-
occurrences cannot be discovered; and when it is too large,
there will be a lot of false-positive co-occurrences. From the
results, we choose sg = 30 m to best fit our dataset.

For comparison purposes, we have also evaluated the
decision tree depth of the GBDT approach in Fig. 14(e)(f).
From the results, we see that for small depths, the precision
increases with the depth, but when the depth grows large,
there is no significant increment of precision.

8 CONCLUSIONS

In this paper, we propose and improve the framework in
[16] to deal with the user identification problem between
heterogeneous datasets from the online and offline data.
Firstly, for the online mobile query records without exact
location information, we develop a method by the GMM-
based IP location clustering to enrich them with location

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

K=10

K=20

K=50

K=100

K=200

K=500

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

K=10

K=20

K=50

K=100

K=200

K=500

(b)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

10m 30m 100m 300m

(c)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

10m 30m 100m 300m

(d)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

Depth 3
Depth 6

Depth 9
Depth 12

(e)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40 0.35 0.3 0.25

P
re

c
is

io
n

Recall

Depth 3
Depth 6

Depth 9
Depth 12

(f)

Fig. 14: Comparison of different parameters. Values of K
in (a) for Beijing and (b) for Harbin. Values of sg in (c) for
Beijing and (d) for Harbin. Values of GBDT depth dt in (e)
for Beijing and (f) for Harbin.

data. Then, we measure the co-occurrence by TF-IDF be-
tween location distributions of query records and trajecto-
ries by building the spatial and spatial-temporal pairwise
index. The pairwise index is proven to be effective in re-
ducing time and space cost of the computation, and two
kinds of indexes are adopted to increase the performance of
the task. After that, we use a learning-to-rank approach to
figuring out the matched ID pairs among several possible
similar IDs. Our experiments demonstrate the effectiveness
and improvement on the task of user identification between
the datasets of mobile query logs and trajectories.

REFERENCES

[1] J. Vosecky, D. Hong, and V. Y. Shen, “User identification across
multiple social networks,” in NDT, 2009, pp. 360–365.

[2] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across
multiple heterogeneous social networks,” in CIKM, 2013, pp. 179–
188.

[3] S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen, “Mapping users
across networks by manifold alignment on hypergraph.” in AAAI,
2014, pp. 159–165.

[4] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan, “Hydra:
Large-scale social identity linkage via heterogeneous behavior
modeling,” in SIGMOD, 2014, pp. 51–62.

[5] O. Goga, P. Loiseau, R. Sommer, R. Teixeira, and K. P. Gummadi,
“On the reliability of profile matching across large online social
networks,” in KDD, 2015, pp. 1799–1808.

[6] X. Zhou, X. Liang, H. Zhang, and Y. Ma, “Cross-platform iden-
tification of anonymous identical users in multiple social media
networks,” TKDE, vol. 28, no. 2, pp. 411–424, 2016.

[7] H. Zang and J. Bolot, “Anonymization of location data does not
work: A large-scale measurement study,” in MobiCom, 2011, pp.
145–156.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 14

[8] L. Rossi, J. Walker, and M. Musolesi, “Spatio-temporal techniques
for user identification by means of GPS mobility data,” EPJ Data
Science, vol. 4, no. 1, p. 1, 2015.

[9] W. Cao, Z. Wu, D. Wang, J. Li, and H. Wu, “Automatic user iden-
tification method across heterogeneous mobility data sources,” in
ICDE, 2016, pp. 978–989.

[10] P. Luo, S. Yan, Z. Liu, Z. Shen, S. Yang, and Q. He, “From online
behaviors to offline retailing,” in KDD, 2016, pp. 175–184.

[11] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understand-
ing individual human mobility patterns,” Nature, vol. 453, no.
7196, pp. 779–782, 2008.

[12] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,”
Scientific reports, vol. 3, 2013.

[13] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. S. Pentland,
“Unique in the shopping mall: On the reidentifiability of credit
card metadata,” Science, vol. 347, no. 6221, pp. 536–539, 2015.

[14] G. Salton and M. J. McGill, Introduction to modern information
retrieval. McGraw-Hill, Inc., 1986.

[15] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations
and Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[16] T. Hao, J. Zhou, Y. Cheng, L. Huang, and H. Wu, “User identifi-
cation in cyber-physical space: A case study on mobile query logs
and trajectories,” in SIGSPATIAL, 2016, pp. 71:1–71:4.

[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, vol. 96, no. 34, 1996, pp. 226–231.

[18] G. McLachlan and D. Peel, Finite mixture models. John Wiley &
Sons, 2004.

[19] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching
trajectories by locations: An efficiency study,” in SIGMOD, 2010,
pp. 255–266.

[20] F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli, “Where
you are is who you are: User identification by matching statistics,”
IEEE-TIFS, vol. 11, no. 2, pp. 358–372, 2016.

[21] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi,
“Linking users across domains with location data: Theory and
validation,” in WWW, 2016, pp. 707–719.

[22] M. Werner, “BACR: Set similarities with lower bounds and appli-
cation to spatial trajectories,” in SIGSPATIAL, 2015, pp. 29:1–29:10.

[23] R. T. Whitman, M. B. Park, S. M. Ambrose, and E. G. Hoel, “Spatial
indexing and analytics on Hadoop,” in SIGSPATIAL, 2014, pp. 73–
82.

[24] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos,
“Copycatch: stopping group attacks by spotting lockstep behavior
in social networks,” in WWW, 2013, pp. 119–130.

[25] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “Inferring
lockstep behavior from connectivity pattern in large graphs,”
KAIS, vol. 48, no. 2, pp. 399–428, 2016.

[26] T. Tian, J. Zhu, F. Xia, X. Zhuang, and T. Zhang, “Crowd fraud
detection in internet advertising,” in WWW, 2015, pp. 1100–1110.

[27] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in WWW, 2007, pp. 131–140.

[28] A. Metwally and C. Faloutsos, “V-SMART-join: A scalable MapRe-
duce framework for all-pair similarity joins of multisets and
vectors,” PVLDB, vol. 5, no. 8, pp. 704–715, 2012.

[29] G. Xuan, W. Zhang, and P. Chai, “EM algorithms of Gaussian
mixture model and hidden Markov model,” in ICIP, 2001, pp. 145–
148.

[30] G. Schwarz et al., “Estimating the dimension of a model,” The
annals of statistics, vol. 6, no. 2, pp. 461–464, 1978.

[31] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining
user similarity based on location history,” in SIGSPATIAL, 2008,
pp. 34:1–34:10.

[32] L. Chen and R. Ng, “On the marriage of lp-norms and edit
distance,” in VLDB, 2004, pp. 792–803.

[33] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in KDD, 2016, pp. 785–794.

[34] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” CACM, vol. 51, no. 1, pp. 107–113, 2008.

[35] J. Unnikrishnan and F. M. Naini, “De-anonymizing private data
by matching statistics,” in Allerton Conference, 2013, pp. 1616–1623.

Tianyi Hao Tianyi Hao is a Ph.D. candidate at
the Institute for Interdisciplinary Information Sci-
ences (IIIS) at Tsinghua University, interested in
social network mining, machine learning and AI
in board games. He is also working as an algo-
rithm engineer at the Huakong Tsingjiao, focus-
ing on federated learning. He received his B.E.
degree from IIIS, Tsinghua University in 2014.
He worked as an intern at the Baidu Research,
focusing on spatial-temporal data mining.

Jingbo Zhou Dr. Jingbo Zhou is a staff research
scientist at Business Intelligent Lab of Baidu
Research, working on machine learning prob-
lems for both scientific research and business
applications, with a focus on spatial temporal
data mining, user behavior study and knowl-
edge graphs. He obtained his Ph.D. degree from
National University of Singapore in 2014, and
B.E. degree from Shandong University in 2009.
He has published several papers in top venues,
such as SIGMOD, KDD, ICDE, TKDE and AAAI.

Yunsheng Cheng Yunsheng Cheng received
the B.S. degree in Information Engineering and
the M.S. degree in computer science from Zhe-
jiang University.

Longbo Huang Dr. Longbo Huang is an as-
sociate professor at the Institute for Interdisci-
plinary Information Sciences (IIIS) at Tsinghua
University, Beijing, China. Dr. Huang received
the outstanding teaching award from Tsinghua
university in 2014 and the ACM SIGMETRICS
Rising Star Research Award in 2018. Dr. Huang
currently serves as an associate editor for ACM
Transactions on Modeling and Performance
Evaluation of Computing Systems (ToMPECS),
an editor for the IEEE Transactions on Commu-

nications (TCOM), and an associate editor for IEEE/ACM Transactions
on Networking (TON). Dr. Huang’s research interests are in the areas of
stochastic modeling and analysis, machine learning and optimal control.

Haishan Wu Haishan Wu is currently the vice
general manager of WeBank AI Group. Prior to
that he was the AI scientist at BlackRock. He
also worked in Baidu AI as tech leader. His re-
search interest is using AI and big data to mea-
sure the dynamics of economic systems. He got
Ph.D. degree from Fudan University in China.

