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Abstract. sonSQL is a MySQL variant that aims to be the default database sys-

tem for social network data. It uses a conceptual schema called sonSchema to

translate a social network design into logical tables. This paper introduces son-

Schema, shows how it can be instantiated, and illustrates social network analysis

for sonSchema datasets. Experiments show such SQL-based analysis brings in-

sight into community evolution, cluster discovery and action propagation.
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1 Introduction

The proliferation of online social networks is now as unstoppable as the spread of

the Web. Such a network needs a database system to properly manage its data. Many

social network services are started by small teams of developers and typically use some

free, off-the-shelf database system, e.g. MySQL. If the service is successful and the

team grows to include professional database administrators, the dataset may be so large

already that any re-engineering of the early decisions becomes difficult.

Our contribution to solving this problem is sonSQL (http://sonsql.comp.nus.edu.sg),

a variant of MySQL that we hope to develop into the default database management sys-

tem for social networks. We provide sonSQL with an interactive user interface and a

rule-based expert system to translate a developer’s design for a social network into a set

of db-relational1 tables. These tables are logical instantiations of a conceptual schema,

called sonSchema (“son” for “social network”), that we designed for social network

data. The objective of this paper is to introduce sonSchema.

We follow two guidelines in our design of sonSchema: (G1: Generality) The schema

should be sufficiently general that it can model any social network design from the de-

veloper, and (G2: Service-Oriented) The entities and relationships in the schema must

correspond naturally to social network activity and services.

Given our goal of building a database system for social networks, why chose a db-

relational system (MySQL) as the code base? There is a trend in the convergence of

OLTP and OLAP2, so social network analysis (SNA) may increasingly run on live data.

⋆ This research was supported in part by MOE Grant No. R-252-000-394-112 and carried out

at the SeSaMe Centre, which is supported by the Singapore NRF under its IRC@SG Funding

Initiative and administered by the IDMPO.
1 Following Angles and Gutiérrez [2], we use “db-relation” to refer to a database table, while

“sn-relation” refers to a relationship in a social network.
2 http://www.greenplum.com/products/greenplum-uap



Can a sonSchema dataset support SNA effectively? Most SNA in the literature are based

on graph models, so should we start with a graph database system instead?

We studied one well-known problem in SNA, namely link prediction [15]. We de-

veloped sonLP, a predictor that applies principal component regression to features from

multiple dimensions in the data [5]. For the example of a social graph defined by coau-

thorship among ACM authors, the links are in one dimension, while affiliation, research

areas, etc., are in other dimensions. Experiments on such data show that sonLP outper-

forms HPLP+, a state-of-the-art predictor that is based entirely on the social graph [16].

This suggests that SNA should work with features beyond the graph topology.

By itself, sonLP cannot make the case for choosing db-relations instead of graphs

as the data model. A fuller discussion of this choice is in our technical report [4].

Perhaps the most compelling argument, for us, is this: A database system for social

network data must have an expressive query language, query optimization, indices, in-

tegrity constraints, concurrency control, crash recovery, batch processing and data ex-

ploration tools. Implementing this list to bring a prototype to market is highly nontriv-

ial for any database system, and the only ones to have done so are db-relational. This

may be why the core databases for Facebook (http://www.facebook.com) and Twit-

ter (http://www.twitter.com) remain db-relational, even though some of their data use

NoSQL (e.g. Cassandra for Twitter) [18].

The NoSQL movement (nosql-database.org) has argued that db-relational systems

do not suit massive datasets because ACID consistency would compromise partition

tolerance. However, there are other failures besides network partitioning and, again,

the task of implementing some non-ACID consistency to handle various failures can be

overwhelming [21]; this is particularly true for start-ups that need off-the-shelf systems.

We therefore chose to go with a db-relational system. It remains for us to show (later

in this paper) that SQL-based SNA can even provide better insight than analyzing some

graph extracted from the data.

This paper makes three contributions: (1) We introduce sonSchema, a conceptual

schema for social network data. (2) We show how social network analysis can be done

with SQL queries on a sonSchema dataset. (3) We present insights on community evo-

lution, cluster discovery and action propagation. Such insights are hard to extract from

just the social graph because they require multi-dimensional access to the raw data,

using the full range of db-relational query operators.

We begin by introducing sonSchema in Sec. 2, and present several examples of in-

stantiations of sonSchema in Sec. 3. Sec. 4 then demonstrates how three well-known

problems in social network analysis can be studied for a sonSchema dataset. Results

from experiments, reported in Sec. 5, show that these techniques are effective and pro-

vide new insights for these problems. Sec. 6 reviews related work, before Sec. 7 con-

cludes with a brief description of current work.

2 From guidelines to conceptual and logical schemas

Sec. 2.1 first characterizes a social network. The guidelines (G1) and (G2) then

lead us to the conceptual schema. The db-relational form of this schema is sonSchema,

which we present in Sec. 2.2, together with examples of translation into logical schemas.



2.1 Social network entities and relationships

For generality (G1), we start with the following fundamental characterization [25]:

An online social network is a group of users who interact through social products.

This informal definition focuses on social interaction, and explicitly points out the role

of products (games, events, songs, polls, etc.). It suggests four entities for our model:

(E1) user is generic; it can be Jim, an advertiser, a retailer, etc.

(E2) group has details (names, membership size, etc.) of an interest group.

(E3) post may be a blog, tag, video, etc. contributed by a user; it includes the original

post, comments on that post, comments on those comments, etc.

(E4) social product is a product with some intended consumers, like an event created

for a group, a retailer’s coupon for specific customers, etc. A post can be considered

as a special case of a social product (that has no intended consumer).

Similarly, there are four natural relationships:

(R1) friendship among users may refer to Twitter followers, ACM coauthors, etc.

(R2) membership connects a user to a group.

(R3) social product activity connects a user to a social product through an activity

(buy a coupon, vote in a poll, etc.).

(R4) social product relationship connects two social products, like between a meet-

ing and a poll, or between a charity event and a sponsor’s discount coupons.

Interaction creates another entity and relationship:

(E5) private msg is a message that is visible only to the sender and receiver(s).

(R5) response2post is a relationship between a tag and an image, a comment and a

blog, a comment and another comment, etc. If post is considered a social product,

then one can consider response2post as a special case of social product relationship.

The above exhausts the list of entities (users and products) and relationships (user-

user, user-product, product-product) in any online social network, in line with the gen-

erality requirement (G1). The refinements of social product into post and private msg

reflect services that are usually provided by social networks (G2). Service orientation

(G2) also guided our model for the interactions that give life to a social network; e.g.

we split a comment into a post ((E3) modeling the content) and a response2post ((R5)

modeling the interaction).

2.2 From conceptual to logical schemas

sonSchema is the db-relational form, shown in Fig. 1, of the conceptual schema

in Sec. 2.1. In the following, we use bold for a schema, italics for an instance of the

schema, and typewriter font for attributes.

The table friendship stores user pairs, since most db-relational systems do not pro-

vide an attribute type suitable for lists of friends. Fig. 1 shows an optional attribute

group id in post for the case where a post (e.g. a paper) belongs to a group (e.g. jour-

nal). There is another optional attribute, product group, for the category that this
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Fig. 1: sonSchema. Table names are in bold, primary keys are in italics, and edges

point from foreign key to primary key. The 5 green tables are for entities, the 5

blue tables for relationships. Some attributes (e.g. group id in post) are optional.

product belongs to. E.g. a social network for sharing and recommendation, like Douban

(http://www.douban.com), may categorize products into books (further classified by

topics like history, fiction, etc), movies, etc.

Fig. 1 may appear to be a logical schema, with a table each for the 5 entities and 5

relationships in Sec. 2.1. Rather, like the snowflake schema [14], sonSchema is in fact

a conceptual schema that can be translated into different logical schemas.

For example, private msg can be instantiated as two tables, one for messages be-

tween two users, and one from a group to its members (hence the attribute from u(g) id

in Fig. 1). Similarly, social product in Fig. 1 has a creator id that may be a u id or

a group id. Thus, Facebook events (http://socialmediadiyworkshop.com/2010/03/manage-

your-facebook-event/), like a wedding organized by a bride or a rally organized by a

union, can belong to different tables. Also, to allow a post to be shared (e.g. retweeted)

within a restricted group, one can add a shared to table, as an additional instance of

social product activity.

Adding new attributes is costly for a db-relational system. To overcome this prob-

lem, we make sonSchema extensible through multiple instantiations of its table schemas.

A social network service provider that wants to introduce a new service (image reposi-

tory, event organizer, etc.) just adds corresponding tables for social product, post, etc.

This again illustrates how the sonSchema design is service-oriented (G2), and its

extensibility provides generality (G1).



3 Application: social network data management

We now verify that sonSchema can be instantiated for some social network services,

and consider two applications: the ACM Digital Library (we will later use it to analyze

the social network of ACM authors) and coupon dissemination via a social network.

3.1 Online social networks

Online social networks are driven by an entity (image, video, etc.), thus generating

a corresponding set of tables. E.g. when Jay uploads a photograph (a post), Kaye may

comment on it and Elle may tag Kaye (two separate instantiations of response2post),

while mum may email Jay about the photograph (a private msg). We have designed

sonSchema to match this general structure of social interactions, so we expect its re-

stricted form to suffice for current and future social networks.

The following considers the instantiation in greater detail:

Undirected social graphs Facebook, Renren and Linkedin are major social networks,

where friendship models classmates, colleagues, etc. post or social product models

“status”, “note”, “photo”, “event”, etc., and response2post or social product activity

models “like”, “comment”, “share”, “join event”, “tag”, “via”, etc.

Directed social graphs Twitter and Sina Weibo (http://www.weibo.com) are large

social networks with directed follower-followed sn-relationships. Again, post would

model tweets, and response2post would model activities like “retweet”, “comment”

and “reply”.

Mixed social graphs For a service like Flickr, friendship can have two instantiations,

one for directed and the other for undirected links in user contact lists.

3.2 ACM Digital Library (ACMDL)

Facebook users often belong to overlapping social networks, some implicitly de-

fined. Can sonSchema model such networks? Since Facebook data is not publicly avail-

able, we use ACMDL as a proxy: the publications therein define at least two social

networks — an explicit bidirectional coauthorship, and an implicit directional citation.

In detail [4], sonSchema can model ACMDL with user instantiated as author, post

as papers (with group id identifying the publication venue), friendship as coauthor-

ship, response2post as citation, and group as conference/journal. Many implicit social

networks can be found via selection (e.g. affiliation) and joins of these tables.

3.3 Coupon dissemination

To extract value from a social network, a service provider like Groupon

(http://www.groupon.com)may use it to disseminate coupons for businesses. sonSchema

can model such a service by instantiating user as business and consumer (2 tables), so-

cial product as coupon, and private msg as coupon dissemination; coupon forwarding

among members of a social group [19] is a separate instance of private msg.



4 Application: social network analysis

We want to verify that db-relations are better than graphs for modeling and ana-

lyzing social network data. To do so, we examine three well-studied problems in the

literature, namely community structure (Sec. 4.1), cluster discovery (Sec. 4.2) and ac-

tion propagation (Sec. 4.3). In particular, we show how such social network analysis

can be done with SQL queries, instead of graph algorithms.

4.1 Community structure

Current techniques for studying community definition and evolution invariably use

graphs. We now examine how this can be done differently, using sonSchema.

Community definition Some social networks are explicitly declared [3] (e.g. Live-

Journal, http://www.livejournal.com), but many are only implicitly defined. With son-

Schema, one can easily discover, say, camera fans or bird watchers in the Flickr data by

querying response2post for relevant tags. Similarly, one can extract the communities

for data mining and cloud computing from ACMDL by specifying relevant journals and

conferences, or keywords in the attribute abstract for papers.

In social network analysis, the interaction graph is most important [25]. Since inter-

action is explicitly represented by private msg, response2post and social product activity,

extracting the interaction graph is easy with sonSchema. In the Flickr example, if one

defines an interaction as two users commenting on each other’s photographs, then such

user pairs can be retrieved with an appropriate join query.

Community growth One way of studying the growth of a communityC is to determine

the probability that someone on the fringe of C joins C [3]. Let fringe(C) consist of

users who are not in C but have a friend in C. For integer K ≥ 0, let prob(C|K,∆T )
be the probability that a user x ∈ fringe(C) will join C within the next time period

∆T if x has K friends in C.

We can compute prob(C|K,∆T ) in three steps: (i) run queries to take two snap-

shots of C — C1 at time T1 and C2 at time T2 = T1 + ∆T ; (ii) retrieve those x in

fringe(C1) with K friends in C1. (iii) count how many x from (ii) are in C2.

Note that, in the above, there are other, natural variations in the definition of fringe(C)
and prob(C|K,∆T ), as illustrated later in Sec. 5.1.

4.2 Cluster discovery

A social network often contains clusters, whose members interact more among

themselves than with others outside their cluster. E.g. Facebook users may have clusters

from the same school or club. We now illustrate cluster discovery via sonSchema.

For better clarity, we use the sonSchema model of ACMDL from Sec. 3.2. (Here, a

cluster may form around Codd, or Knuth.) Let coauthorship frequency of an author x
be the sum of number of coauthors on all papers written by x (if coauthor y appears on

n papers, y is counted n times).



Algorithm 1: Cluster discovery for a social network of authors

input : sonSchema dataset for publications, K: choice of top-K clusters, τ : threshold for

a qualified coauthorship frequency

output: a set of clusters: CSet
for each au ∈ author do1

/* coauthor freq(author id,freq,isVisited) is a table */

coauthor freq(au).freq = number of coauthorships per author au (SQL1);2

repeat3

let a = au that has the highest coauthor freq.freq and not isVisited (SQL2);4

let cluster C = {a} initially;5

let queue Q={a} initially;6

let P = ∅ initially;7

repeat8

let a=Q.pop();9

let B={b | (〈a, b〉 ∈coauthor OR 〈b, a〉 ∈coauthor)) AND (!b.isVisited)} (SQL3);10

for each b ∈ B do11

let Pa,b = set of paper ids coauthored by 〈a, b〉;12

if (coauthor freq(b,C) > τ ) AND (∃p ∈ Pa,b such that p /∈ P ) (SQL4) then13

C.add(b);14

Q.push(b);15

P .add(p);16

coauthor freq(b).isVisited = true;17

/* mark b as visited in table author freq */

until (Q is empty) ;18

Output cluster C;19

until (The K-th result has been found) ;20

Our Algo. 1 (above) for cluster discovery returns the top-K clusters, defined by

using an appropriate quality metric, like coauthorship frequency and number of papers.

It has an outer loop to find K clusters, and an inner loop to grow each cluster. It finds the

coauthorship frequency of all authors (SQL1), then picks the author with the highest

frequency to grow a cluster C (SQL2). The latter is done by iteratively picking from

coauthors of those in C (SQL3) and applying the quality metric (SQL4). This metric

has a threshold τ for coauthorship frequency between a pair of authors.

A reasonable choice is τ = f/n, where f is the total number of coauthorships

and n is the number of authors in the cluster, so coauthor freq(b, C) > f/n (SQL4)

means that adding b to C would raise the average coauthorship in the cluster. Thus, only

authors with strong coauthorship ties with C are admitted.

The other quality metric (SQL4) requires that b cannot join C if b cannot add a new

paper for C. Intuitively, a cluster with more papers is better.

Algo. 1 stops trying to grow C when it cannot be expanded (line18). It then picks

another author as seed to grow the next cluster, unless there are already K clusters.

The crucial parts of Algo. 1 are straightforward SQL select-join queries, and critical

calculations concerning quality can be easily coded and efficiently executed. There is

no use of graph algorithms like network flow [8], spectral algorithms [1] and hierarchi-

cal decomposition [6]. Clustering quality is judged semantically by coauthorships per

author and number of papers per cluster, rather than syntactically by conductance [10]



and modularity [6], etc. One can use a small K to generate only the most significant

clusters, without having to decompose the entire graph. Similarly, one does not need to

load the whole graph into memory (a problem for massive datasets); rather, Algo. 1’s

memory requirement is of the order of the cluster size, which is usually small [13].

4.3 Action propagation

Social network analysis should focus on user interaction, as that is the very reason

people join these networks. In current efforts to extract value from social networks (e.g.

coupon dissemination in Sec. 3.3), one key idea is that friends influence one another.

Analyzing action propagation through a network starts with a log of user actions [9].

With sonSchema, we can extract this log as a table Action(u, α, tu) from, say, so-

cial product activity, indicating user u performed action α at time tu. We say α prop-

agates from u to v if and only if 〈u, v〉 is an edge, 〈u, α, tu〉 ∈ Action and 〈v, α, tv〉 ∈
Action for some tu < tv , and 〈u, v〉 formed before tv .

This definition for action propagation can be easily evaluated with a SQL query, and

Sec. 5.3 will demonstrate this with a multi-dimensional analysis of Twitter dynamics.

5 Experiments

We now present experiments with the algorithms described in Sec. 4. The exper-

iments are done with one dataset from the ACM Digital Library3 and another from

Twitter (publicly available). Our ACMDL dataset has 445656 authors, 265381 papers,

4291 journals and conferences, 1741476 citation pairs and 170020 coauthorships. The

schemas for these datasets are described in Sec. 3.1 and Sec. 3.2. All experiments are

run on a Linux machine with 1.15GHz AMD Opteron(tm) 64-bit processor and MySQL

(version 5.1.51). No index is built on non-key attributes.

Before experimenting with our SQL-based algorithms for social network analysis,

we should do a head-to-head comparison between MySQL and a graph database system.

Where a social network is modeled as a graph and for queries that are expressible as

graph traversal, one expects a graph database system will have an advantage over a db-

relational system in processing the queries. This is because graph traversal corresponds

to table joins, which is an expensive operation. However, graph traversal in db-relational

systems can be accelerated via the use of an appropriate index.

For the comparison, we use Neo4j (a leading graph database system) and equip

MySQL with a GRIPP index [23] that is implemented as stored procedures to support

efficient graph traversal. We interpreted coauthorship in our ACMDL dataset as an

undirected graph, with 59695 nodes (authors) and 106617 edges (coauthorships).

We use a canonical query in graph traversal, namely reachability, for the compari-

son. Let distance d between nodes x and y be the smallest number of edges connecting

x and y. For each d, we randomly pick 1000 {x, y} pairs and measure the time to

determine reachability at distance d between x and y, using Neo4j and GRIPP.

Fig. 2 shows that Neo4j is indeed faster for small distances. However, its query

time accelerates as d increases because Neo4j uses the Dijkstra algorithm (which has

3 http://dl.acm.org/ Many thanks to Craig Rodkin at ACM HQ for providing the dataset.
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time periods average community size total number of papers avg. #coauthors per paper

1975-1980 5 144 2.1

1981-1985 6 356 2.6

1986-1990 6 366 2.9

1991-1995 9 511 4.2

1996-2000 11 535 4.7

Table 1: ACMDL community statistics over time.

quadratic time complexity). In contrast, traversal time with GRIPP scales linearly. It is

even faster than Neo4j for large distances, which is an advantage for large datasets.

5.1 Community structure

We now use ACMDL to demonstrate how, with sonSchema, community definition

is easy and can provide insight into community dynamics.

Community definition We illustrate the ease of community definition (Sec. 4.1) with

this question: How do coauthor communities evolve over time?

Some author lists include people who are actually not active in the research collab-

oration. To help exclude such authors, we define a coauthor community C to include

only those who coauthored at least two papers with others in C. On the other hand, to

avoid isolating students and fresh PhDs, we add them to their supervisors’ community.

We select only papers in SIGMOD conferences and divide time into 5-year periods.

Table 1 shows that the average community size increases with time. To understand this

increase, we run queries to count the number of papers and coauthors. Table 1 shows

that the average number of coauthors per paper also increases over time. The insight we

get is: coauthor communities get larger because there are more authors per paper.

A sample query to get the number of coauthors in a time period is:

select count(*) from coauthor, proceedings p, conference c

where coauthor.paper id=p.paper id

and p.proceeding id=c.proceeding id

and year(c.publication date)>1995



and year(c.publication date)<=2000

and c.proc profile like ‘%SIGMOD%’

Note the use of aggregation (count), joins, selection (year) and non-key attributes (SIG-

MOD). Such a multi-dimensional analysis using a combination of operators is easy for

SQL, but hard to formulate as a query on any graph-based model of coauthorship.

Community growth Sec. 4.1 describes how one can study the growth of a commu-

nity C by measuring the probability that someone in fringe(C) later joins C. We now

demonstrate how sonSchema facilitates the analysis of social dynamics with this ques-

tion: How does coauthorship history affect the joining probability?

A graph metric often used for cluster discovery is conductance [10], whose value is

smaller for a tighter community (see Sec. 5.2). Analysis via sonSchema complements

such graph-based analysis; we illustrate this now by choosing 10 communities from

year 1999 that have conductance smaller than 0.06, and size from 4 to 8 authors. For

each community C, we define fringe(C) as those authors x not in C but have written

a paper with someone in C in the last 10 years (i.e. 1990–1999). These x are further

classified into: Class (I) 0 coauthorship in 1997–1999; Class (II) 1 to 3 coauthorships

in 1997–1999; Class (III) 4 or more coauthorships in 1997–1999.

For each class, we then compute prob(C|K, 1 year) that an x in fringe(C), who

has more than K coauthorships with members of C over the last 10 years, joins C
between 1999 and 2000. For K = 8, the experiments find that:

• A Class(I) author x, i.e. who has 0 coauthorship with C in 1997–1999, has a low

probability 0.16 of joining C, even though x has more than 8 coauthorships with C.

• A Class(III) author x, i.e. who has 4 or more coauthorships with C in 1997–1999, has

a high probability 0.94 of joining C.

(For Class(II), the probability is 0.74.) The insight we get is: recent coauthorship affects

prob(C|K, 1 year) more than a high coauthorship count (that is spread over 10 years).

Again, extracting such an insight involving time and aggregation, etc., is easy with

sonSchema, but difficult if ACMDL is modeled as a graph.

5.2 Cluster discovery

To evaluate our SQL-based Algo. 1 for cluster discovery, we compare it to the

heuristic-based hierarchical decomposition [6] and the approximation-based local spec-

tral algorithm [12], which represent the two major graph-based discovery techniques [13].

Our Algo. 1 uses the author with the highest coauthorship frequency to seed each clus-

ter, so we rank the clusters in the order that they are generated. An empirical comparison

of current techniques found that minimizing conductance produces better clusters [13],

so we use conductance to rank (smaller is better) clusters for the graph algorithms.

To compare the algorithms, we use data from the data mining community (identified

by the keywords, title and abstract of each paper in ACMDL). The choice of threshold

τ and stop condition for Algo. 1 are as mentioned in Sec. 4.2.

Table 2 shows that the heuristic- and approximation-based techniques generate big

clusters: their minimum top-20 cluster sizes are about 30-50, and the approximation-

based technique have average cluster size of 1452 authors.



maximum minimum average

algo. all top-20 all top-20 all top-20

SQL 34 24 3 3 5 9

heuristic 2358 112 3 32 6 51

approx. 7733 150 3 46 1452 105

Table 2: Number of authors in a cluster

(excluding trivial clusters of size 1 and 2).

maximum minimum average

algo. all top-20 all top-20 all top-20

SQL 296 208 4 4 17 75

heuristic 8826 247 2 69 16 164

approx. 20251 505 3 203 3925 355

Table 3: Number of coauthorships

in a cluster.

maximum minimum average

algo. all top-20 all top-20 all top-20

SQL 20.3 16.9 1.3 1.3 3.1 8.9

heuristic 14.0 5.2 0.7 1.7 1.6 3.3

approx. 6.7 5.2 1.0 3.0 2.7 3.5

Table 4: Number of coauthorships

per author in a cluster.

maximum minimum average

algo. all top-20 all top-20 all top-20

SQL 0.96 0.96 0.008 0.024 0.381 0.556

heuristic 0.20 0.00 0.000 0.000 0.001 0.000

approx. 0.14 0.01 0.002 0.003 0.014 0.006

Table 5: Conductance of a cluster.

Besides size, we also examine the quality of the clusters. Table 3 shows that the

number of coauthorships per cluster is large for the approximation-based technique.

Moreover, it generates many clusters of more than 1000 coauthorships each, and the

average cluster has 3925 coauthorships; these numbers are arguably too high for the

clustering to be meaningful. Table 4 further shows that our SQL-based technique is

significantly better in terms of coauthorships per author. For example, the heuristic-

based clusters have an average of only 1.6 coauthorships per author, partly because

they have bigger sizes (Table 2).

Algo. 1 thus identifies clusters that are smaller in size and higher in quality. Yet, as

Table 5 shows, the clusters found by the graph algorithms have very small conductance.

It also shows that the SQL-based clusters have very high conductance. The insight we

get is: Conductance minimization is neither sufficient nor necessary for discovering

good clusters.

Finally, we compare the size distribution for Algo. 1 and the heuristic-based tech-

nique. (We omit the approximation-based technique because it gives just one cluster for

each size [13].) Fig. 3 shows that the heuristic-based technique generates many small

clusters (5083 clusters of 2 authors each) and another 7341 clusters that include huge

ones (up to 2358 authors). In contrast, Algo. 1 finds 2814 clusters (none with size 1 or

2), the largest of which has 34 authors. Thus, Algo. 1 divides the social network into

a small number of congenial clusters, whereas the heuristic-based technique produces

many clusters that have unfriendly size (too small or too big).

Note that one can easily modify Algo. 1 to use some other preferred metrics.

5.3 Action propagation

We now demonstrate how our sonSchema model of Twitter data (Sec. 3.1) can sup-

port an analysis of action propagation (Sec. 4.3); statistics for the Twitter dataset are

given in Table 6. Consider this question: Does the number of followers a user has affect

how far her tweet propagates?
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time period 2008-11-11 to 2009-11-06

number of users 456107

maximum/average/minimum number of followers 500/332/1

maximum/average/minimum number of people that a user follows 198/4/1

number of followed-follower pairs 815211

number of user pairs who follow each other 2494

number of tweets 28688584

number of tweets that are original tweets 26161245

number of tweets that are retweets 498991

number of users who have posted or replied to at least one tweet 274315

maximum/average/minimum number of tweets that are a users’s original post 383/95.5/1

maximum/average/minimum number of tweets that are a users’s reply 200/12.6/1

maximum/average/minimum number of tweets that are just retweets 195/4.4/1

Table 6: Statistics for Twitter dataset.

We first prepare a table retweet that stores all retweet information for each tweet up

to 4 hops. We then group users according to how many followers they have, as shown

in Table 7; e.g. there are 352 users who each has 1–50 followers, 161 users who each

has 51–100 followers, etc. To compute Table 7, we first compute table follower cnt

that stores user id and her number of followers, and table follower nhop that stores

user id and her followers up to 3 hops. We then run the query

select fc.uid, count(rt.tid)

from follower cnt fc, follower nhop fn, retweet rt

where fn.uid = fc.uid and fc.uid=rt.uid

and fc.f count≥1 and fc.f count≤50

and rt.ruid=fn.fid and fn.hop=1

group by fc.uid

Computation for other ranges are similar. This query illustrates the need for several

joins and aggregation in multiple dimensions (followers and retweets) if one is to gain

insight into network dynamics.

Table 8 presents our query results on propagation depth. Consider the row for 3

hops: It shows that the 3-hop penetration increases from 0% for a user with 1–50 fol-

lowers to 0.5% for one with 201–300 followers. Beyond that, the 3-hop penetration



n 1–50 51–100 101-200 201–300 301–400 401–500

#users with n followers 352 161 242 147 141 1433

Table 7: Breadth of following: 352 users who each has 1–50 followers, etc.

range in number of followers

K-hop 1–50 51–100 101–200 201–300 301–400 401–500

1 97.7% 97.9% 98% 97.6% 98.5% 99.4%

2 2.3% 1.8% 1.7% 1.9% 1.4% 0.4%

3 0% 0.3% 0.3% 0.5% 0.1% 0.1%

≥4 0% 0% 0% 0% 0% 0%

Table 8: Depth of propagation: for a user u with 201–300 followers, 0.5% of

retweets of u’s messages were by 3-hop followers, etc.

actually drops for users with more followers. This shows that it is not true that the

more followers u has, the farther u’s messages will propagate, i.e. the insight we get is:

breadth of following does not determine depth of penetration.

This observation would be relevant to merchants who are considering coupon dis-

semination via social networks (Sec. 4.3).

6 Related work

Most of the related work were already cited above. We now mention some others.

To see the novelty in sonSchema, one can compare it to the schemas for SoQL [17]

and NetIntel [24]; they consist of just nodes, edges, node types and edge types. In

contrast, sonSchema explicitly models social products and interactions, as well as user-

product and product-product relationships.

A survey of the literature on community structure [3,12,20], link prediction [11,15]

and social influence [9,22] shows that graphs are the predominant model for social net-

works. However, a social graph suffices for some of these studies because they do not

analyze the interactions (which we do through response2post and social product activity).

Cluster discovery techniques can be classified under heuristics and approximations [13];

Sec. 4.2 therefore compares our SQL-based technique to a representative of each.

Several papers have studied DBLP as a social network [3,26]. Instead, we use

ACMDL, which is much richer in terms of information (citation, affiliation, keywords,

abstracts, etc.). Goyal et al.’s study of action propagation [9] requires an action log for

Flickr, which we do not have. Instead, we use data from Twitter (with tweet as Action).

7 Current work

We can use sonSchema’s restricted form to re-engineer MySQL for scalability. E.g.

we believe it is possible to incorporate its schema graph into a concurrency control and

thus provide strong consistency, but without the ACID bottleneck [21].

For now, we are studying the structure that sonSchema imposes on the space of all

join trees. This study may identify bushy strategies for multi-way joins that execute

faster than strategies that are produced by current optimizers [7].
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