
sonSQL: An extensible relational DBMS

for social network start-ups⋆

Zhifeng Bao Jingbo Zhou Y.C. Tay

National University of Singapore

Abstract. There is now a proliferation of social network start-ups. This demon-

stration introduces sonSQL, a MySQL variant that aims to be the default off-the-

shelf database system for managing their social network data.

1 Introduction

The mushrooming of online social networks is now as unstoppable as the spread

of the Web. Their datasets are heterogeneous and, sometimes, huge. Whatever its size,

such a network needs a database system to properly manage its data. However, a small

start-up with limited database expertise may pick a non-extensible design that is hard

to modify when more features are included as the social network grows. The database

research community should help such start-ups by designing and engineering a robust

and scalable system that is customized for managing social network data.

Our contribution to solving the problem is sonSQL (“son” for “social network”).

We plan to develop sonSQL into the default database system for social networks. We

start with the MySQL codebase, and restrict the conceptual schema to sonSchema,

which is tailored for social networks [1].

A visitor to our demonstration will see their social network design automatically

transformed into relational tables for users, products, interactions, etc. The transforma-

tion has a question-and-answer interface that does not require database expertise from

the user. The visitor can use the interface to (1) construct a relational database schema

for the social entities, products and interactions; (2) populate the tables with synthetic

data for test queries; and (3) modify or update the schema.

2 Objectives

We now state our technical objectives, and briefly say how we aim to fulfill them.

For clarity, we refer to the sonSQL user as an SNcreator, who uses sonSQL to create a

social network SN; we refer to the users of SN as SNusers. An SN typically belongs to

some SNdomain (entertainment, education, technology, etc.).

The first objective is (O1) sonSQL should be based on a database system that is

freely available, yet reasonably complete. Most models of social networks use graphs,

⋆ This research was supported in part by MOE Grant No. R-252-000-394-112 and carried out

at the SeSaMe Centre, which is supported by the Singapore NRF under its IRC@SG Funding

Initiative and administered by the IDMPO.

but we decided against using a graph database system. Our most compelling reason is

this: A database system for social networks must have an expressive query language,

query optimization, indices, integrity constraints, concurrency control, crash recovery,

batch processing, etc. Implementing this list to bring a prototype to market is highly

nontrivial for any database system, and the only ones to do so are relational DBMS.

We hence adopt a relational system for (O1), and start with MySQL as the codebase.

Our second objective is (O2) sonSQL must be sufficiently general that it can cover

most, if not all, current and foreseeable social networks. Our strategy is to have a design

that is service-oriented, i.e. the entities and relationships in the schema must correspond

naturally to social network activity and services. We did an extensive survey of current

social network services, and arrived at the following fundamental characterization [1]:

(i) An SN records (explicitly or implicitly) social network relationships, such as Face-

book friends, Sina Weibo followers and LinkedIn groups. (ii) SNcreators and SNusers

can introduce social products, such as Cyworld games, Flickr photos and Renren blogs.

(iii) SNusers have social interactions. These are dynamic and cumulative, and each is

related to a social product, like tagging a photograph, accepting an invitation, etc. (iv)

Products can have relationships, like coupon for a sale, poll for a meeting, etc.

profile

u_id

post

post_id

u_id

content

friendship

u_id

u2_id

since_time

response_id

post_id

user

time

group_id

profile

group

group_id

u_id

membership

private_msg

msg_id

from_u(g)_id

to_u_id

content

group_id

social_product

product_id

creator_id

product_info

social_prouct_

activity

activity_id

product_id

participate_user

_id

participate_time

since_time

product_group

social_product

_relationship

product_id

p2_id

description

response2post

product_id

Fig. 1. The sonSchema conceptual schema. Table

names are in bold, and edges point from foreign

key to primary key. The 5 green tables are for

entities, the 5 blue tables for relationships. Each

table can have multiple logical instantiations.

This characterization focuses on

social interaction, and explicitly points

out the role of products. We then de-

signed sonSchema in Fig. 1 to match

the characterization. Here, we high-

light some entities and relationships

(details in [1]):

• social product activity links a

user to a product via an activ-

ity (vote in a poll, buy a coupon,

etc.).

• private msg is a message that is

visible only to the sender and re-

ceiver(s).

• response2post is a relationship

between a tag and an image, a

comment and another comment, etc.

It is a special case of social product relationship.

sonSchema fulfils objective (O2)

because it exhausts the list of en-

tities (users and products) and rela-

tionships (user-user, user-product and

product-product). It is a conceptual

schema: user in Fig. 1 can be instan-

tiated as a table for retailers and an-

other for advertisers, while buying a coupon and registering for a course can be dif-

ferent instances of social product activity. For contrast, consider Drupal Gardens

(⁀http://drupalgardens.com), which is a software-as-a-service for designing and host-

ing websites. Its interface for constructing an SN has a fixed list of products (blog,

forum, etc.) and services (follow, share, etc.) for SNcreator to choose from; she cannot

customize these, nor create new ones, and the tables are pre-defined.

Many web services now offer social network applications. Such application data

can be contained in a sonSchema instantiation that is separate from the legacy schema.

sonSchema’s extensibility adds to our confidence in its generality (O2).

Our third objective is (O3) a database novice should find it easy to use sonSQL to

construct a schema for her social network design. How can we provide an interface

that requires little database expertise and minimal SNcreator effort, yet constructs a

technically sound schema to match the SNcreator specification?

Knowledge

Base

SN Constructor

S
N
 E
x
p
e
rt

S
y
st
e
m

Entity Mapper

SQL DDL

Generator

IC Verifier Data

Generator

Module

Tester

Interactive User Interface

MySQL

Fig. 2. sonSQL Architecture

Fig. 2 shows the sonSQL architecture,

with the interface at the top and MySQL at

the bottom. The middle layer contains the SN

Constructor, a Module Tester for the SNcre-

ator to test the SN, and a Data Generator to

populate the SN with test data.

Our solution to (O3) lies in form-based

interaction. The forms are generated by a

rule-based expert system, with help from a

knowledge base. It has an inference engine

called Entity Mapper that maps SNcreator’s

input into sonSchema entities and relation-

ships. Its IC Verifier checks that the SNcre-

ator’s specifications satisfy sonSchema’s in-

tegrity constraints. It then generates SQL

DDL (or DML) scripts to construct (or update) MySQL tables.

Our fourth objective is (O4) the schema should facilitate engineering for scalabil-

ity. sonSchema is in Boyce-Codd normal form, so its tables can be updated without

requiring integrity checks that may be prohibitive in a distributed system under heavy

workload. sonSchema is also hypergraph-acyclic, so it has a full reducer [2]. We are

now studying the structure imposed by sonSchema on the space of all join trees, to

identify bushy strategies for multi-way joins that execute faster than those produced by

current optimizers [3]. We will also study the use of sonSchema’s structure to design a

concurrency control that provides strong consistency but without the ACID bottleneck.

3 The Demonstration

A visitor to our demonstration will be invited to assume the role of an SNcreator

(see http://sonsql.comp.nus.edu.sg/).

Initial SN Characterization

sonSQL first presents a form like Fig. 3 for the SNcreator to browse a tree and identify

the SNdomain (e.g. sports news or comic books) for her SN design. She can then spec-

ify the user categories (celebrities, authors, etc.) and social relationships (friendships,

followers, etc.). With this information, sonSQL can create tables for user, friendship,

group and membership in sonSchema.

Fig. 3. Form for initial SN characterization

Social Product Creation

Next, SNcreator sees a form for spec-

ifying products, including new ones

(textbox in Fig. 3). When she selects a

product (e.g. coupon), sonSQL checks

its knowledge base and responds with

options for Producer (advertiser? re-

tailer?), Consumer (common SNuser?

group?), possible related activities (dis-

seminate coupon?), and a high-level view

of the SN (top-left in Fig. 4). Click-

ing on
⊗

shows a mid-level pop-up

view of relationships (top-right of Fig.

4). Clicking on an entity box shows a

low-level view of the tables (bottom of

Fig. 4). In this way, SNcreator iterates

through the products in her SN design,

thus specifying the details to sonSQL.

Fig. 4. 3-level views of the SN at the stage of adding

social product

Modifications and Updates

Throughout, SNcreator can click

on any part of the 3-level view to

undo the latest change. After the

changes are committed and even

after the SN is deployed, SNcre-

ator can call up similar forms to

add new activities or remove some

products, etc. sonSQL translates

SNcreator’s forms into SQL DDL

or DML transactions, verifies that

integrity constraints are satisfied,

then sends the transactions to the

MySQL backend for execution.

Testing the SN

sonSQL also has a form for the

SNcreator to generate synthetic

data, so she can run SQL queries

to test her SN design.

References

1. Z. Bao, Y. C. Tay, and J. Zhou. sonSchema: A conceptual schema for social networks (under

review). http://sonsql.comp.nus.edu.sg/rsn.pdf.

2. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database

schemes. J. ACM, 30(3):479–513, July 1983.

3. Q. Huang. Optimizing PostgreSQL for social network databases. (FYP report), Dec. 2012.

	 sonSQL: An extensible relational DBMS for social network start-ups

