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ABSTRACT
It is useful to predict future values in time series data, for
example when there are many sensors monitoring environ-
ments such as urban space. The Gaussian Process (GP)
model is considered as a promising technique for this set-
ting. However, the GP model requires too high a training
cost to be tractable for large data. Though approximate
methods have been proposed to improve GP’s scalability,
they usually can only capture global trends in the data and
fail to preserve small-scale patterns, resulting in unsatisfac-
tory performance.

We propose a new method to apply the GP for sensor
time series prediction. Instead of (eagerly) training GPs on
entire datasets, we custom-build query-dependent GPs on
small fractions of the data for each prediction request.

Implementing this idea in practice at scale requires us to
overcome two obstacles. On the one hand, a central chal-
lenge with such a semi-lazy learning model is the substan-
tial model-building effort at kNN query time, which could
lead to unacceptable latency. We propose a novel two-level
inverted-like index to support kNN search using the DTW
on the GPU, making such “just-in-time” query-dependent
model construction feasible for real-time applications.

On the other hand, several parameters should be tuned
for each time series individually since different sensors have
different data generating processes in diverse environments.
Manually configuring the parameters is usually not feasible
due to the large number of sensors. To address this, we
devise an adaptive auto-tuning mechanism to automatically
determine and dynamically adjust the parameters for each
time series with little human assistance.

Our method has the following strong points: (a) it can
make prediction in real time without a training phase; (b)
it can yield superior prediction accuracy; and (c) it can ef-
fectively estimate the analytical predictive uncertainty.

To illustrate our points, we present SMiLer, a semi-lazy
time series prediction system for sensors. Extensive ex-
periments on real-world datasets demonstrate its effective-
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ness and efficiency. In particular, by devising a two-level
inverted-like index on the GPU with an enhanced lower
bound of the DTW, SMiLer accelerates the efficiency of kNN
search by one order of magnitude over its baselines. The pre-
diction accuracy of SMiLer is better than the state-of-the-art
competitors (up to 10 competitors) with better estimation
of predictive uncertainty.

Categories and Subject Descriptors: H.2.8 [Database
management]: Database applications-Data mining

Keywords: Semi-lazy learning; Sensors; Time series; Pre-
dictive analysis; Gaussian Process; DTW; GPU

1. INTRODUCTION
With sensor data becoming prevalent, time series predic-

tion of sensors is valuable in many applications including
event prediction, air pollution forecasting, manufacturing
condition monitoring and medical diagnoses. Since statis-
tical regression methods are not powerful enough to handle
large varieties of time series in realistic settings, machine
learning methods have drawn much attention and are be-
coming popular for time series prediction.

Among the models, the Gaussian Process (GP) model
have received significant interests for time series prediction
[70, 34, 50, 16, 20, 35, 72, 23, 40]. This is due to its nonpara-
metric nonlinear property and excellent modeling capability
for a wide variety of behavior. In addition, the GP mod-
el can easily estimate analytical predictive uncertainty with
conceptually simple closed-form expression.

A major limitation of the GP is its poor scalability that
scales as O(n3) where n is the size of training data. To
overcome this limitation, some approximation methods are
usually adopted to find approximated representation of the
whole dataset. The consequence is that the constructed G-
P models are more influenced by global distribution of the
whole time series data, while local behavior and small-scale
patterns are not captured. We refer this as the “information
loss” problem. In addition, the GP models, as well as many
other non-linear machine learning models, may also suffer
from “concept drift” problem. In the case of sensors mon-
itoring dynamic environments such as urban space, since
the underlying model generating the data might gradually
change, the constructed global GP models might be outdat-
ed by the time when sufficient historical data is collected to
build the models. In this case, paying a high computational
cost to construct a large, global model that fits the whole of
the sensor time series may be wasteful.
Example 1.1 (Traffic Sensor Prediction). Time se-
ries prediction for traffic sensors can be very useful for many



smart city applications such as abnormal event detection,
traffic jam prediction and flow speed prediction [42]. While
the standard GP model is not tractable for large data, the
approximated GP models have relative low prediction accu-
racy, and also high training time cost. These observations
are supported by our experiment evaluation for traffic sen-
sors prediction (see Fig. 13(a) and Section 6.4.2).

In this paper, we propose a new approach to employing
the GP model in sensor time series prediction. Instead of
attempting to eagerly train a global GP model on the en-
tire dataset which may suffer from information loss and is
not adaptive to concept drift, we propose to build a query-
dependent GP model for each prediction request. In general,
the methodology of our solution can be considered as a semi-
lazy learning approach, which is a hybrid of the eager learn-
ing approach (e.g. GPs and SVMs) and the lazy learning
approach (e.g. kNN regression). Its framework essentially
follows the lazy learning paradigm until the last step, where
sophisticated models, i.e. GPs in this paper, are applied on
the kNN results of the submitted prediction request.

Fig. 2 shows an illustration of the semi-lazy learning GP
prediction idea. We use the time series of a sensor in the
last few time steps as the input request to retrieve a set of
k-Nearest Neighbor (kNN) time series segments from histor-
ical data. The kNNs are then utilized to construct GPs for
predicting the future value of the sensor.
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Figure 1: Trends of computing performance over time.1

Fig. 1 illustrates the growth in computing capability over
recent years. We believe that such growths in modern hard-
ware will increasingly make semi-lazy learning feasible: cheap
and fast storage can support high speed similarity search
(e.g. kNN) and powerful computing devices can support
efficient online model construction (e.g. GP). The work in
this paper is part of our “Genie and Lamp” project [1] which
aims to provide a systematic investigation into the use of
semi-lazy learning for predictive analytics.

Two main technical obstacles must be overcome to make
the semi-lazy time series prediction scalable in practice. First,
to build the query-dependent GP model, substantial model-
building effort at kNN query time could lead to unaccept-
able latency. As will be explained in Section 4, we define
a “(Continuous) Suffix kNN Search” problem which tries to
identify small fractions of data for each prediction request.
A property of the Suffix kNN Search is that each prediction
request invokes a set of kNN queries sharing common suffix.
To make such kNN search feasible in real-time application-
s, we develop an efficient search method using the popular
Dynamic Time Warping (DTW) distance on the Graphic
Processing Unit (GPU). Specifically, we design a novel two-

1References of data source are presented in Appendix A.

level inverted-like index on the GPU and use an enhanced
DTW lower bound to accelerate the search process.

Second, several parameters have to be configured. The
underlying generating process of time series data may be di-
verse and continuously changing. As a result, we have to set
different parameters for different sensors and even for the
same sensor at different times. It is infeasible to manually
set parameters for each sensor in a sensor network. To over-
come this, we propose an adaptive auto-tuning mechanism
to dynamically adjust the parameters for each sensor during
continuous prediction without requiring user intervention.

Our method has several appealing advantages:

• It can make time series prediction of sensors in real
time without a training phase in contrast to non-linear
machine learning models like GPs and SVMs.

• It can yield superior prediction accuracy over several
eager learning competitors. Since historical time series
data is kept until prediction time in semi-lazy learning
approach, a very rich set of models is preserved as part
of the data. The query-dependent GP model caters to
specifically making prediction for a submitted query
without the need to build a generalized model that
caters to the whole dataset.

• It can effectively estimate the analytical predictive un-
certainty. Compared to traditional kNN regression,
our method not only has higher prediction accuracy,
but also can provide a closed-formed analytical expres-
sion to measure the prediction confidence.
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Figure 3: Overview frame-

work of SMiLer.

To make our method feasible, we present SMiLer, a SeMi-
Lazy time series prediction system for sensors. Fig. 3 shows
an overall framework of SMiLer comprising of two main steps
which overcome two mentioned obstacles respectively. More
details about it will be clarified in Section 3.4. In summary,
our key contributions are listed as follows.

• We propose a new method to enable the Gaussian Pro-
cess model for time series prediction of sensors. It
brings up a new insight for time series prediction from
the semi-lazy learning perspective.

• We contrive a novel two-level inverted-like index on
the GPU with an enhanced lower bound of the DTW,
which can accelerate the proposed Suffix kNN Search
problem to quickly identify small fractions of data for
building query-dependent GP models.

• We devise an adaptive auto-tuning mechanism which
can automatically learn and adjust the parameters of
models over time for each sensor.

• We conduct extensive experiment study on several real-
life datasets. SMiLer accelerates the efficiency of kNN
search by one order of magnitude over its competitors.
The prediction accuracy of SMiLer is better than sev-
eral state-of-the-art competitors (up to 10 competitors



including GPs, SVMs, kNN and linear models with S-
GD) with better estimation of predictive uncertainty.

The rest of this paper is organized as follows. Next, we
discuss the related work in Section 2, followed by an overview
of the framework of SMiLer in Section 3. Then we address
the search problem in Section 4 and the model construction
problem in Section 5. Finally, we evaluate our system in
Section 6, and conclude the paper in Section 7.

2. RELATED WORK
In thi section, first, we review existing methods for time

series prediction. Next, we give a discussion about GPs.
Then, we investigate literatures about the semi-lazy ap-
proach. Finally, we briefly talk about kNN search under
DTW distance.

2.1 Time series prediction methods
Existing time series prediction methods can be separated

into two categories, i.e. statistical regression methods and
machine learning methods. Statistical regression methods
focus on finding parameterized functions, including linear
models (e.g. ARIMA [15] and robust regression [59]) and
nonlinear models (e.g. exponential smoothing [71, 38] and
((G)ARCH) models [31, 13]), which can predict the behavior
of time series. Their major drawback is that they usually
impose rigid assumptions on the time series data which may
not be true in real-life applications.

Machine learning methods can be further grouped into
two classes: the eager learning approach and the lazy learn-
ing approach. The eager learning approach usually has a
pre-processing stage to train models for prediction such as
Artificial Neural Networks (ANNs) [2, 68], Support Vector
Machines (SVMs) [58, 46] and Gaussian Processes (GPs) [34,
50, 17, 72]. The common problem is that they usually re-
quire high computational cost. Although some approximate
methods have been proposed, they are more influenced by
the global distribution of the whole dataset, resulting in high
potential of overfitting or underfitting [61]. Whereas, though
some linear models with Stochastic Gradient Descent (SGD)
can be efficiently trained, their prediction performance is not
as good as the non-linear models in some applications.

The lazy learning approach typically is done by finding
a set of k similar time series of the sensor and doing some
simple computation (e.g. average) over these query result-
s [44, 18, 11, 8]. These methods however cannot estimate
the analytical predictive uncertainty directly. Bootstrap can
partially remedy this drawback but requires high time cost.
Furthermore, bootstrap cannot work well in high dimension-
al space when the time series segment is long. Besides, the
accuracy of the semi-lazy learning approach still needs to be
further improved.

2.2 GP for time series prediction
The Gaussian Process (GP) has received extensive atten-

tion for time series prediction [70, 34, 50, 16, 20, 35, 72, 23,
40]. GP has powerful and flexible model capability since it
can be derived from both perspectives of neural networks
and Bayesian nonparametric regression [49, 47]. The eval-
uation study in [55] further demonstrates that the GP can
consistently outperform (or at least be comparable to) other
modeling approaches like neural networks or local learning
methods. In contrast to SVMs, GPs can innately predict
analytical model uncertainty.

Unfortunately, the GP has a poor scalability (scaling as
O(n3)). Low-rank approximation is a popular method to
improve its scalability [25, 56, 65, 43], but can only capture
the global patterns of the data rather than the local behavior
and patterns. There are also a few of papers about the lo-
calized models [33, 51, 48], which try to divide the data into
different parts and build GP model for each part. Neverthe-
less, how to partition the data becomes a serious problem
in high dimensional space. For this reason, the applications
of this method are suitable for low dimensional spatial data
analysis [33, 51, 48], but not for time series prediction.

We propose a new method to improve the scalability of
GPs. The general idea is to build local GPs on the kNNs of
prediction requests. This method can preserve the strength
but not the weakness of the eager learning and the lazy
learning approach. Using many local models to form an im-
plicit global approximation, it can commit to a much richer
hypothesis [73] but avoid an intractable training phase.

2.3 Semi-lazy prediction
To our best knowledge, SMiLer is the first work to exploit

the semi-lazy learning approach to time series prediction. It
is still desirable to discuss existing works about semi-lazy
learning approach. There are indeed some works [74, 12]
employing SVMs on kNN results for image classification.
These methods are customized for image features (like tangle
distance), and cannot be directly extended to support time
series prediction. The authors in [67] propose a kNN based
Kalman Filter GP regression. However, it still needs an
offline processing to learn the hyperparameters, which makes
it essentially still be an eager learning method.

Compared with the semi-lazy trajectory prediction[77, 76],
SMiLer is a general framework for time series prediction,
while the method in [77] is only applicable to object path
prediction because its methodology is specially catered to
the scenario where there are many moving objects in a dy-
namic environment. Furthermore, the method in [77] re-
quires several parameters which have to be tuned manually;
on the contrary SMiLer can minimize the user assistance by
devising an adaptive auto-tuning mechanism. Additionally,
except the semi-lazy GP idea, we also devote an extensive
study to kNN search under the DTW distance leveraging
the GPU and devise an adaptive mechanism for auto-tuning
parameters, both of which are not touched by previous semi-
lazy learning methods.

2.4 kNN search on Dynamic Time Warping
There have been many efforts to speed up kNN search un-

der the DTW [41, 78, 30, 6, 54]. Various indexing methods
in memory [6] and disk [37, 5, 36] are also studied in recent
years. In [60], the authors compared the performance of G-
PUs and FPGAs with scanning method for DTW computa-
tion. We refer interested readers to [30]. As far as we know,
our paper is the first study to design index on the GPU to
accelerate kNN search. We also introduce an enhanced lower
bound of the DTW suitable for GPU computation.

3. OVERVIEW
In this section, we give a formal description of our semi-

lazy method for time series prediction, and discuss the chal-
lenges of our method. Table 1 lists the basic notations used
throughout this paper.



Table 1: Table of Basic Notations.
Ci time series of sensor i cit value of Ci at t

xij,d d-length segment of Ci Xi
k,d data set {xij,d}

k
j=1

yij,h h-step ahead value of xij,d Y ih a vector of yij,h
EKV Ensemble kNN Vector k number of kNNs
ELV Ensemble Length Vector d length of segment

3.1 Preliminaries
A time series Ci is a collection of observations made se-

quentially in time from a sensor i (or more generally, an
unknown system), i.e., Ci = {ci0, ci1, .., cij , ...}, where cij is

the value of Ci at timestamp j. We assume the sample rate
of one sensor is always fixed1, therefore, a time series is only
a sequence of data points. |Ci| denotes the length of Ci. A
set of contiguous observations of Ci between two points cit
and cit+d is called a segment and is denoted by Cit,d. We also
call a segment with length d as a d-length segment.

At time t0, the h-step ahead prediction is to predict the
value of the sensor at time t0+h. Taking a d-length segment
xi0,d = Cit0−d+1,d = {cit0−d+1, .., c

i
t0} as model input and

denoting the h-step ahead value of xi0,d by yi0,h = cit0+h, the
h-step ahead prediction model is a mapping f(·) between
xi0,d and yi0,h, i.e. yi0,h = f(xi0,d).

3.2 Semi-lazy time series prediction
In this section, we first present the general framework

for semi-lazy time series prediction, and then introduce the
adaptive auto-tuning mechanism.

3.2.1 Abstract semi-lazy time series predictor
Given a time series segment xi0,d = {cit0−d+1, .., c

i
t0} end-

ing at time t0, we can retrieve k nearest neighbor segments
from time series Ci, i.e. Xi

k,d = {xij,d}kj=1 = [xij,d, ..., x
i
k,d]

(where xij,d is a segment of Ci ending at time tj , i.e. xij,d =

{citj−d+1, .., c
i
tj}). For each segment xij,d, its h-step ahead

value is yij,h = citj+h. We denote the h-step ahead values of

every xij,d in Xi
k,d by a vector Y ih = [yi1,h, y

i
2,h, ..., y

i
k,h]> =

[cit1+h, c
i
t2+h

, ..., citk+h]>. Now given (Xi
k,d, Y

i
h), we formally

define the semi-lazy time series predictor as below.

Definition 3.1 (Semi-Lazy Time Series Predictor).
Given a d-length time series segment xi0,d = {cit0−d+1, .., c

i
t0}

of Ci ending at time t0, the semi-lazy time series predic-
tor is a model which can use the kNN data (Xi

k,d, Y
i
h) =

{xij,d, yij,h}kj=1 and test input xi0,d to obtain the posterior dis-

tribution of the h-step ahead observation yi0,h (i.e. cit0+h):

yi0,h = f(xi0,d, X
i
k,d, Y

i
h) ∼ N (u, σ2) (1)

where f(·) is an abstract predictor which can be instantiated
with suitable probabilistic prediction model.

The semi-lazy time series predictor is built independently
for each sensor, but multiple sensors can be processed in the
same way. Hereafter, unless otherwise stated, we focus on
the kNN search and prediction for one sensor.

The superscript “i” (e.g. yi0,h and xij,d) indicates that the
variables are from sensor i. Hereafter, when we focus on one
sensor, we omit the superscript i for convenience.

1This is not a real limitation since the user can easily re-
interpolate data if the sample rate is changed.

3.2.2 Auto-tuning mechanism with ensemble method
We design an auto-tuning mechanism to eliminate the pa-

rameters of the semi-lazy prediction model as well as to im-
prove the prediction accuracy. In Definition 3.1, for each
predictor, there are two parameters: (1) k: the number of
nearest neighbors and (2) d: the length of time series seg-
ment. For different sensors with different intrinsic proper-
ties, the semi-lazy predictors may desire different k and d.
With the changing of the data generating process, the values
of k and d also have to be adjusted.

We introduce an ensemble method to the semi-lazy model,
which forms a matrix of abstract predictors fi,j for a sensor
with different k and d. The final predictor is the mixture of
all the fi,j predictors. Let us define an ensemble matrix λ:

λ =

 (k0, d0) ... (k0, dn−1)
... (ki, dj) ...

(km−1, d0) ... (km−1, dn−1)

 (2)

where ki is the number of nearest neighbors and dj is the
length of time series segment for predictor fi,j . We group d-
ifferent ki in the“Ensemble kNN Vector”denoted by EKV =
[k0, ..., km−1], and group different dj in the“Ensemble Length
Vector” denoted by ELV = [d0, ..., dn−1]. In the ensemble
matrix λ, each element λi,j also indicates the weight of fi,j
contributed to the final predictor. Hence, the ensemble pre-
diction model for one sensor is formally defined as:

fem =
1

Cλ

m−1∑
i=0

n−1∑
j=0

λi,jfi,j (3)

where Cλ is the normalization constant by summing the
weight of every element in λ, i.e. Cλ =

∑m−1
i=0

∑n−1
j=0 λi,j .

Later we further propose an intelligent self-adaptive method
to adjust λ during continuous prediction (see Section 5.1).

3.3 Challenges of semi-lazy prediction
Now we can summarize the challenges for semi-lazy time

series prediction. First, we need to quickly identify the kNNs
for each semi-lazy predictor. To overcome the unacceptable
latency for kNN search, we resort to the help of the GPU to
accelerate the search process in Section 4.

Specifically, we formalize the “(Continuous) Suffix kNN
Search” problem in Section 4. With the ensemble method,
we need to invoke a set of kNN queries for one sensor per
prediction (see Eqn. (2)). We can see that, if di < dj ,
x0,di is just a suffix of x0,dj since both of them end at time
t0. Moreover, we usually need to continuously predict the
future value of sensors. During the continuous prediction,
some computation can also be reused. Based on the suffix
property and the continuous prediction, we further propose
a two-level inverted-like index on the GPU in Section 4.

Second, a proper model selection for the abstract predic-
tor f(·) and an auto-tuning mechanism are required. We
propose to use GPs as predictors and give a complete solu-
tion for the semi-lazy time series prediction in Section 5.2.
We also fully depict the adaptive auto-tuning mechanism for
dynamic adjusting the ensemble matrix λ in Section 5.1.

3.4 Framework of SMiLer
SMiLer is designed to make the semi-lazy time series pre-

diction model feasible. Fig. 3 shows an overview framework
of SMiLer to satisfy the above objectives.

In the first step, called Search Step, with the input of the
last few time steps (Rectangle A in Fig. 3) of target sensors,



we invoke the Continuous Suffix kNN Search with multiple
k and d. The queries of one sensor are parallel processed on
the data of itself by the the GPU. (see Section 4)

Next, in the Prediction Step, the kNN results (Rectangle
B in Fig. 3) are input into the semi-lazy GP models to pre-
dict future value (with mean and variance) of each sensor
(Rectangle C in Fig. 3). The adaptive auto-tuning mech-
anism is utilized to improve the prediction performance as
well as to minimize users’ assistance. (see Section 5)

4. DTW KNN SEARCH WITH THE GPU
We use DTW distance to find kNN segments on the GPU.

There have been several similarity measures for time series,
such as Euclidean distance [32], DTW [10], LCSS [66], ERP
[21], EDR [22] and SpADe [24]. Euclidean distance is simple
but sensitive to noise (e.g. shifting and scaling) problem
which usually appears in time series. Among these measures,
DTW is a simple but effective one which is robust to noise
(e.g. shifting and scaling). Other distance measures can
also handle time series similarity search, but they usually
need a sophisticated index structure, which cannot be easily
implemented on the GPU. Besides, there are some evidences
showing that DTW is the best measures for time series data
mining problems [30, 60, 54].

4.1 Problem formulation
The SMiLer Index is designed to identify a set of kNNs

for the ensemble prediction model (refer to Section 3.2.2).
The kNN search with different k in EKV = [k0, k2, ..., km−1]
(see Eqn. (2)) can be solved by invoking the NN search with
maximum value kn, and then selecting subsets of the result
according to DTW distance order.

However, it is not trivial for kNN search with different
query lengths but sharing common suffix. Suppose at time
t0 the set of the queries is {x0,d0 , ..., x0,dn−1} where x0,di =
{ct0−di+1, ..., ct0}. We can see that, if di < dj , x0,di is a
suffix of x0,dj since both of them end at time t0. An example
of x0,d0 and x0,d1 is shown in Fig. 5. It is desirable to reduce
the computation cost based on the suffix property.

Another opportunity arises from the continuous kNN search.
Since the query input is gradually changing over time, we
should also consider this property to improve efficiency.

Let us define some simplified notations. For a target
sensor, “Master Query” denotes the longest query segment
MQ = xdn−1 = {q0, ..., qdn−1} = {ct0−dn−1+1, ..., ct0}. S-
ince every xdi is a suffix of x0,dn−1 , we also denote each query
segment as“Item Query”IQi = x0,di = {qdn−di , ..., qdn−1} =
{ct0−di+1, ..., ct0}. Fig. 5(b) shows an example of MQ and
its item queries IQ0 and IQ1. The “Continuous Suffix kNN
Search” problem can be formally defined as:

Definition 4.1 ((Continuous) Suffix kNN Search).
Given a master query MQ of a sensor with ELV = [d0, ...,
dn−1], we can generate a set of item queries {IQ0, ..., IQn−1}
where |IQi| = di and IQi is a suffix of IQj if di < dj. The
Suffix kNN Search is to find kNN segments Ct,di for each
item query IQi under DTW distance on time series C of
the sensor. From time t to time t + 1, we may continuous-
ly do Suffix kNN search with appending the latest observed
point into MQ and delete the oldest point from MQ.

In the following sections, we will exploit the SMiLer Index
for the Continuous Suffix kNN Search on the GPU. Readers
may refer to Appendix B.1 for a brief review about DTW.

Recall that in this paper we only consider the DTW under
Sakoe-Chiba band constraint with warping width ρ. We also
provide a short introduction of the GPU in Appendix B.2.

4.2 Enhanced lower bound for DTW
We introduce an enhanced lower bound for DTW, denoted

by LBen, which is derived from the existing lower bound
LB keogh [41] (refer to Appendix B.1) with reversing its
query and data roles [54].

Depending on which envelope is used [54], we simply de-
note LBEQ(Q,C) = LB keogh(E(Q), C) and LBEC(Q,C) =
LB keogh(E(C), Q). Examples of envelope, LBEQ(Q,C)
and LBEC(Q,C) are shown in Fig. 5 (a)(b). Then an en-
hanced lower bound LBen is defined as:

LBen(Q,C) = max{LBEQ(Q,C), LBEC(Q,C)}

Theorem 4.1. LBen(Q,C) is a lower bound of DTW (Q,C).

Proof. Since LBEC(Q,C) ≤ DTW (Q,C) and LBEQ(Q,
C) ≤ DTW (Q,C), we have LBen(Q,C) ≤ DTW (Q,C).

4.3 SMiLer Index: a two-level inverted-like
index

In this section, we present the SMiLer Index on the G-
PU memory as well as how to use this index to support the
Continuous Suffix kNN search. The novel point of the S-
MiLer Index is that we can reuse the intermediate results to
accelerate the computation of the DTW lower bound.

As shown in Fig. 4, indeed the SMiLer Index is a two-level
inverted-like index which contains a “window level index”
and a “group level index”. This inverted index-like structure
can enjoy the parallel capability of the GPU by using one
block to process one posting list.

4.3.1 Window level index of the SMiLer Index
Following the DualMatch framework [45, 36], we divide

the time series C into disjoint windows DW and divide the
master query MQ into sliding windows SW where ω =
|DW | = |SW |. Examples of DW and SW are illustrat-
ed in Fig. 5(a)(b). Note that we divide sliding windows in
time-reserved order (from right to left in Fig. 5(b)).

In the window level index, a keyword (index term) is a s-
liding window (of the master query) whose posting list stores
lower bounds between the sliding window and disjoint win-
dows of time series C. The window level inverted index can
be constructed efficiently by the GPU. We use one block to
treat one sliding window to parallel compute lower bounds
(LBEQ and LBEC) between all SW s and DW s. Illustration
of the window level index is shown in Fig. 4 and Fig. 5(c).

Remark 1: reuse based on the continuous query.
During continuous prediction, we can reuse the computed

result on the window level index to avoid building the SMiL-
er Index from scratch. Suppose that at time t0−1 there is a
master query MQ′. Then at time t0, the new master query
MQ is constructed by adding one point to the head of MQ′

and removing the last point of MQ′. Consequently, we only
need to add a new sliding window to MQ and remove the
last sliding window of MQ′.

Fig. 6 illustrates how to update the window level index
during the continuous prediction. For a new master query
at time t0, we first clear the posting list of the last sliding
window SWn, and then place the posting list of the new
sliding window SW ′ in the memory space of SWn (see Fig.
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Figure 5: An illustration for SMiLer Index.

6(b)). The starting cursor (the red vertical arrow) of the
window level index moves from SW0 to SW ′. Then at time
t0 + 1 (see Fig. 6 (c)), the new sliding window SW ′′ re-
places the memory space of SWn−1 and the starting cursor
moves to SW ′′. In addition, after adding a new point, the
envelopes of previous ρ (i.e. warping width) sliding windows
are changed. As a result, we need to re-calculate LBEQ in
the posting lists for these affected sliding windows. For ex-
ample, if ρ = 1, LBEQ of SW0 is re-calculated in Fig. 6 (b),
and LBEQ of SW ′ is re-calculated in Fig. 6(c).
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Figure 6: Reuse window level index for continuous
prediction.

4.3.2 Group level index of the SMiLer Index
In the group level index, a keyword is a Catenated Slid-

ing Window Group (CSG) (will be explained later) of item
query IQi. The posting list of the CSG of IQi stores the
lower bounds between IQi and a set of segments of C. The
general idea for constructing group level index is that par-
tial sum of posting lists in window level index are just the
lower bounds between item queries and candidate segments.
We first define the keyword in the group level index, i.e. the
Catenated Sliding Window Group (CSG) which is inspired
by the concept of “equivalence class” in [36].

Definition 4.2 (Catenated Sliding Window Group).
A Catenated Sliding Window Group (CSG) of query Q con-
tains maximum number of sliding windows without overlap.

CSGi,b denotes a CSG of item query IQi, where subscript
i is identifier of IQi and subscript b is identifier of the first
sliding window (from right to left) SWb in the CSGi,b. For a
master query MQ without subscript, we denote it as CSGb.
Note that CSGi,b is always the prefix of CSGb.

Example 4.1. In Fig. 5(b), master query MQ has three CS-
Gs which are CSG0 = {SW0, SW3, SW6}, CSG1 = {SW1, SW4}
and CSG2 = {SW2, SW5}. The CSGs of IQ0 are CSG0,0 =
{SW0, SW3}, CSG0,1 = {SW1} and CSG0,2 = {SW2}.
CSG0,b of IQ0 is always a prefix of CSGb of MQ.

Theorems of the CSG for index construction.
We introduce two important theorems for constructing the

group level index. Before that, we first clarify the meaning
of the alignment between a CSG and disjoint windows.

Lemma 4.1. Suppose that item query IQi has a CSGi,b
whose sliding windows are aligned with a set of contiguous
disjoint windows (from right to left) i.e. {DWr, DWr−1, ...}.
Then this alignment indicates an alignment between IQi and
a segment Ct,di where the value of subscript t of Ct,di is:

t = (r − |CSGi,b|+ 1) ∗ ω − (di − b)%ω (4)

where |CSGi,b| is the number of windows in CSGi,b.
Proof. See Appendix C.1.

Theorem 4.2. For each pair of IQi and Ct,di , there is one
and only one alignment between CSGi,b and corresponding
disjoint windows.

Proof. See Appendix C.2.

Then we can deduce the window enhanced lower bound
LBw, between IQi and Ct,di from the window level index.

Theorem 4.3. Given a CSGi,b = {SWb, SWb+w, ...} of IQi
and a disjoint window DWr, we can define the window en-
hanced lower bound LBw between IQi and Ct,di as:

LBw(IQi, Ct,di) = max

{ ∑m−1
j=0 LBEQ(SWb+j∗ω, DW r−j)∑m−1
j=0 LBEC(SWb+j∗ω, DWr−j)

(5)
where m = |CSGi,b| and t = (r −m+ 1) ∗ ω − (di − b)%ω.
The following inequality always holds:

LBw(IQi, Ct,di) ≤ DTW (IQi, Ct,di)

Proof. See Appendix C.3.

Group level index construction.
The construction of the group level index is based on the

property of the Suffix kNN search and Theorem 4.3. S-
ince IQi is always a suffix of IQj if di < dj for the Suffix
kNN search, from Eqn. (5) we can see that the intermediate
results of LBw(IQj , Ct,di) just contain the lower bound be-
tween IQi and a candidate segment. We use this intuition
to design the algorithm for building group level index.

For each item query IQ, we spin off a set of CSGs as the
keywords to construct the group level index, where the post-
ing lists of CSGs store the enhanced lower bounds between
IQ and a set of time segments. Specifically, Theorem 4.2



tells us that we can get the lower bounds between IQ and
every candidate time series segments in this way.

Eqn. (5) indicates that, by shift summing the posting lists
of sliding windows within the same CSG of MQ, we can
sequentially get all the lower bounds of IQi (0 ≤ i ≤ n− 1)
of MQ (see Example 4.2). In other words, based on the
suffix property, by sequentially summing the posting lists of
sliding windows within the same CSG of a master query, we
can obtain the posting lists of the CSG for each item query.

This computation can also be efficiently parallel processed
by the GPU. The idea is to use one block of the GPU to pro-
cess one CSG and use each thread of the block to handle
several disjoint windows (elements in posting lists). In Algo-
rithm 1 (Appendix D), we show the pseudo code to compute
the posting lists of CSGs on the GPU.

Example 4.2. We use a block of the GPU to scan posting
lists sequentially in order of SW0 → SW3 → SW6 (see Fig.
4). In the block, there is a thread (blue dashed arrow) visiting
the elements of the posting lists in order of: (SW0, DW3)→
(SW3, DW2) → (SW6, DW1) (see Fig. 5(c)). To sum the
first two elements, we get lower bound between IQ0 and C6,6,
LBEC(IQ0, C6,6) = LBEC(SW0, DW3)+LBEC(SW3, DW2)
(refer to Eqn. 5). With summing the third element, we have
LBEC(IQ1, C3,9) = LBEC(IQ0, C6,6)+LBEC(SW6, DW1),
which is an element of posting list of CSG1,0 (see Fig. 4).

Remark 2: reuse based on the Suffix kNN Search.
The reuse of the computed result on the group level index

can be seen from two points. First, for a set of item queries
sharing suffix, by sequentially summing the posting lists of
sliding windows in suffix order, we can compute the lower
bounds between all item queries and time series segments in
one-pass scan (see Example 4.2), which can avoid scanning
the GPU memory multiple times. Second, the elements in
the posting lists of window level index are computed once
but are reused multiple times for computing the lower bound
of every item query.

4.3.3 kNNs: filtering, verification and selection
After building the SMiLer Index, we follow the filtering-

verification framework to retrieve the kNN results. By scan-
ning the posting lists of CSGs in the group level index, we
can get the DTW lower bound between item query IQi and
all candidates segments. We filter the segments whose lower
bounds are larger than a threshold τi (Filtering), and then
compute the real DTW distance between IQi and unfiltered
segments Ct,di (Verification). Finally, we select the kNNs
of each IQi from all unfiltered candidates (Selection).

Filtering. The method is to discard candidates whose
lower bounds are larger than threshold τi during scanning
the post lists in group level index. There are two methods to
determine threshold τi for IQi. The first one is to select the
segment with the k-th smallest lower bound, and then set
τi as the DTW distance between the segment and IQi. The
second method is to reuse the kNN results during continuous
prediction. Suppose that at time t0 − 1 there is a query
item IQ′i. Since the difference between IQi and IQ′i should
be slight, we can take the distance between the k-th NN
segment of IQ′i and IQi as threshold τi. In SMiLer, we use
the first method to determine the τi in initial queries, and
then use the second one for the following continuous queries.

Verification. In Algorithm 2 (Appendix E), we show the
pseudo code to compute the DTW distance (with Sakoe-

Chiba band) between item queries and un-filtered candi-
dates. The novelty of Algorithm 2 lies in the use of a com-
pressed warping matrix. The shared memory, which is much
faster than the global memory, is quite small (up to 64KB).
To store the warping matrix in the shared memory, we design
a compressed warping matrix with size of 2×(2∗ρ+2) where
ρ is the warping width. The essential idea is to temporarily
store the matrix elements along the warp path, while the
modulus operation (%) is employed to reuse the memory
space. Please refer to Appendix E for more details.

Selection. We use a GPU k-selection algorithm to select
kNNs with the smallest DTW distance from all unfiltered
candidates. The main technique is distributive partitioning
for k-selection on the GPU [3]. We adopt the existing work
for GPU k selection [3] but with two incremental improve-
ments: (1) we use one block to handle one k-selection for
one query to support multiple k-selections; (2) we return all
k smallest segments instead of only the k-th one.

4.4 Utility of the GPU
We summarize the utility of the GPU in the SMiLer Index

from several perspectives. First of all, the SMiLer Index
is essentially a two-level inverted-like index which can be
parallel processed in as fine-grained manner as possible to
fully utilize the GPU parallel computation capability. For
example, we use one block to treat one sliding window to
construct window level index; and we use one block to treat
one CSG to construct group level index.

Second, based on properties of the Continuous Suffix kNN
Search, the SMiLer Index can reuse intermediate results to
improve efficiency (see Section 4.3.1, Remark 1: reuse based
on the continuous query and Remark 2:reuse based on the
Suffix kNN Search).

Third, the enhanced lower bounds (LBen) are innately
applicable to GPU computation, which is not adopted by
existing CPU based method like [45, 41, 36, 54]. Owing
to the powerful parallel processing ability, we can obtain a
tighter lower bound by computing both LBEC and LBEQ
without increasing the response time.

Fourth, we try to ensure that processing in each thread
block is as homogenous as possible. We use a two-phase
scheme to filter and verify candidates instead of having them
in one phase. The reason is that, due to the property of the
SIMD architecture, the GPU hardware serializes different
execution paths. If we mixed the filtering and verification,
threads doing different processing need to wait for each other
before continuing their processing which sacrifices efficiency.

Last, the SMiLer Index can easily scale up with multi-
ple sensors, where we only need to create multiple SMiLer
Indexes and invoke more blocks.

5. TIME SERIES PREDICTION VIA SEMI-
LAZY LEARNING

Following by Section 3.2, we continue the discussion about
our semi-lazy model. We first present the adaptive auto-
tuning mechanism. Next, we introduce the instantiation of
the abstract predictor with the Gaussian Process.

5.1 Adaptive auto-tuning mechanism with con-
tinuous prediction

The adaptive auto-tuning mechanism will dynamically ad-
just the ensemble matrix λ during continuous prediction



(Section 5.1.1). We also devise a sleep and recovery strategy
(Section 5.1.2) to reduce the computational cost.

5.1.1 Auto-tuning with self-adaptive prediction
During the continuous prediction, we can self-adaptively

learn to adjust the weight of each predictor in the ensemble
matrix. The trick is that, after acquiring the true value of
the sensor, we can evaluate each predictor by comparing the
true value with the predicted one. Then we can increase the
weight of predictors making good prediction.

Taking an abstract predictor fi,j as an example, we denote
the true value of the sensor at time t as y(t), and denote
the predicted mean and variance as ui,j(t) and σ2

i,j(t). The
likelihood function of fi,j after observing y(t) is:

li,j(t) = l(y(t), ui,j(t), σ
2
i,j(t)) (6)

=
1√

2πσ2
i,j(t)

exp(− (y(t)− ui,j(t))2

2σ2
i,j(t)

) (7)

It is clear that the larger the likelihood li,j(t) is, the better
the predictor is. Then the weight of fi,j in the ensemble
matrix at time t is adjusted as follows:

λ̄i,j(t) = λi,j(t− 1) +
li,j(t)∑

i

∑
j li,j(t)

(8)

After Eqn. (8), we need to further re-normalized λ̄i,j(t) to
get the final weight of the predictor fi,j , i.e.:

λi,j(t) =
λ̄i,j(t)∑

i

∑
j λ̄i,j(t)

(9)

In fact, combining Eqn. (8) and Eqn. (9), λi,j(t) is an
effectively exponential smoothing average of the posterior
probability of the predictor fi,j over time.

5.1.2 Sleep and recovery
We further devise a strategy to control the sleep and recov-

ery of every predictor. If λi,j(t) is smaller than a threshold,
we can temporarily make fi,j sleep to reduce the computa-
tional cost. The predictor would be recovered later.

The strategy is briefly presented here. In SMiLer, each
predictor fi,j has a sleep counter ςi,j specified how many
steps it would sleep. If the weight λi,j is smaller than thresh-
old η = 1

2∗n∗m (n∗m is the number of elements of the ensem-
ble matrix), we make predictor fi,j sleep, who will recover
when the number of subsequent prediction steps exceeds ςi,j .
If there are κ predictors recovered, the new weight of every
recovered predictor is η/(1−κ∗η). After normalization, the
weight of recovered predictors are equal to η.

Aiming to make the “weaker” predictor sleep longer, the
sleep counter ςi,j is also self-adaptive during the continuous
prediction. ςi,j is first initialized as 1, which means the
predictor would only sleep for one step. If after recovery
the predictor fi,j goes to sleep immediately in the next step,
we will double the value of ςi,j . Otherwise, if the predictor
successfully avoids the sleep trap, we would continuously
halve the value of ςi,j at very prediction step until ςi,j = 1.

5.2 Instantiation of the abstract predictor
5.2.1 A simple aggregation predictor

One simple predictor is a function to aggregate all the h-
step ahead values of the kNN data. We define an Aggregation
Regression (AR) function with pseudo-mean ũ0 and pseudo-
variance σ̃2

0 :

ŷ(t0 + h) = f(x0,d, Xk,d, Yh) (10)

= AR(x0,d, Xk,d, Yh) ∼ N (ũ0, σ̃
2
0) (11)

ũ0 =

∑k
a=1 ya,h

k
(12)

σ̃2
0 =

∑k
a=1(ya,h − ũ0)2

k
(13)

AR predictor is simple and can be effectively computed,
but its drawback is that the true value of y(t0 + h) may not
follow the normal distribution defined by ũ0 and σ̃2

0 .

5.2.2 Gaussian Process predictor
In this section, we introduce the Gaussian Process (GP)

predictor, which has better prediction accuracy and good
ability to estimate the predictive uncertainty. In Appendix
B.3, we briefly recall some fundamentals of the GP.

For the GP predictor, given an input test segment x0,d,
the predictive distribution of ŷ0,h is obtained through con-
ditioning on the kNN data (Xk,d, Yh) (recall Section 3.2.1).
The predictive distribution is also a Gaussian distribution
with mean u0 and variance σ2

0 as follows:

ŷ(t0 + h) = f(x0,d, Xk,d, Yh) (14)

= GP (x0,d, Xk,d, Yh) ∼ N (u0, σ
2
0) (15)

u0 = c>0 C
−1Yh (16)

σ2
0 = c(x0,d, x0,d)− c>0 C−1c0 (17)

where C, c and c0 are specified by the covariance function:

c(xa, xb) = θ20exp

(
−1

2

‖xa − xb‖2

θ21

)
+ δabθ

2
2 (18)

More details about Eqn. (16), Eqn. (17) and covariance
function can be found in Appendix B.3. However, before
making prediction, an important point is to determine the
hyperparameters Θ = {θ0, θ1, θ2}.

Online training for model optimization.
We use an online training method to determine the hy-

perparameters Θ = {θ0, θ1, θ2}. For the eager learning ap-
proach, a heavy training process is employed to learn the
optimal hyperparameters of GP in a pre-processing stage.
In contrast, with the semi-lazy learning approach, we can
afford the time to invoke an online training process to de-
termine the hyperparameters because there are only a small
number of training points (i.e. the kNN data (Xk,d, Yh)).
The advantage of this method is that the hyperparameters
are specially trained for the test input x0,d (and its neigh-
bors). In this way, we can avoid the underfitting or overfit-
ting problems of the eager learning approach.

Now we explain how to train the GP predictor (to deter-
mine the hyperparameters) on the kNN dataset (Xk,d, Yh).
For the GP, the predictive log probability when leaving out
a training item (xa,d, ya) is [56]:

logp(ya|Xk,d, Y−a,h,Θ) = −1

2
logσ2

a −
(ya − ua)2

2σ2
a

− 1

2
log2π

(19)
where notation Y−a,h means all h-step ahead values in Yh
except ya. The ua and σ2

a are computed according to Eqn.
(16) and Eqn. (17) respectively. Thus, the leave-one-out



(LOO) log likelihood function on the whole kNN data is:

L(Xk,d, Yh,Θ) =

k∑
a=1

logp(ya|Xk,d, Y−a,h,Θ) (20)

The objective is to maximize the LOO log likelihood func-
tion (i.e. Eqn. (20)). To achieve this goal, we can compute
its partial derivatives w.r.t. the hyperparameters and use
the Conjugate Gradient (CG) optimization.

Since the expressions in Eqn. (16) and Eqn. (17) are
almost identical for different points (only one column and
one row removed in turn), the computation cost to optimize
Eqn. (20) can be significantly reduced by the inversion of the
partitioned matrix. An efficient approach to such training
process can be found in [64].

Online training in continuous prediction.
In the continuous prediction, we can use an online opti-

mization method to train the GP model. The intuition for
the online training is that the hidden model generating the
time series should change gradually. Consequently, the fixed
steps pursuit training method is enough to find near-optimal
value of the hyperparameters. Based on this point, in SMiL-
er, we only use the fixed five-step gradient descent to update
the hyperparameters for the subsequential predictions. For
a time series predictor GP , let θr(t) denote a hyperparam-
eter at time t. We can use θr(t) as the inial seed value
(instead of random seed values) to deduce the the parame-
ter θr(t + 1) by one step gradient descent. After the initial
deducing, we further employ the CG optimization method
(with fixed steps of descent) to obtain a near-optimal val-
ue of θr. By this method, the energy paid for the training
process in previous steps is partially preserved.

6. EXPERIMENTS

6.1 Settings
Table 2: Default parameter for experiment.

Parameter Description value
ρ warping width 8
ω window length 16

ELV Ensemble Length Vector {32, 64, 96}
EKV Ensemble kNN Vector {8, 16, 32}

6.1.1 Environment and parameters
Experiments were conducted on a CPU-GPU platform.

The GPU is a GeForce GTX TITAN with 6 GB memory.
We implemented the GPU code using CUDA 6. The other
program was implemented in C++ running on CentOS 6
with an Intel Core i7-3820 CPU server and 64 GB RAM.

Table 2 lists the default parameters in the experiment.
For the DTW computation (SMiLer and its competitors),
we set the warping width as ρ = 8. The window size ω is set
as 16. Unless otherwise stated, in SMiLer we used a 3 × 3
ensemble matrix for prediction (see Section 3.2.2) where k
and d are indicated in EKV and ELV respectively.

6.1.2 Datasets
We used three real-life time series datasets to evaluate

our system. Two datasets are publicly available which can
ensure the repeatability, and the remaining one is provided
by our collaborators. We used z-normalization to normalize
the time series of each sensor.

Table 3: Effect of the enhanced lower bound LBen. The

“time” (in seconds) is the total time for verifying un-filtered

candidates of all sensors, and the “number” indicates the

number of unfiltered candidates per query per sensor.

data ROAD MALL NET
time number time number time number

LBEQ 2.30 12558 1.12 6632 0.11 753
LBEC 1.55 9206 0.94 5707 0.11 725
LBen 1.11 6739 0.63 3677 0.079 516

[ROAD] This dataset [27] consists of times series of 963
road traffic sensors of San Francisco bay area freeways in
PEMS website [53]. Each sensor measured the occupancy
rate of a road in the city for 15 months with 10-minute sam-
ple interval. In total, there are 61.0 million data points. The
data set is available in the UCI Machine Learning Reposi-
tory [7] and can be download freely [28].

[MALL] This dataset consists of time series of available
car park lots in main shopping malls in Singapore. There
are a total of 26 car parks with a record in every 10 minutes
for 12 months. We duplicated every time series 40 times. In
total, there are 1040 (26 × 40) sensor time series and 53.9
million data points (after duplication). The data is crawled
from dataMall website [63] from Sept. 2013 to Sept. 2014.

[NET] This dataset is a time series of internet traffic data
of a network backbone. It was collected for 3 months with 5-
minute sample interval. We duplicated this time series 1024
times. In total, there are 1024 (1× 1024) sensor time series
and 20.4 million data points (after duplication). The data
set can be download freely from DataMarket [29].

6.2 Search Step: Suffix kNN search on DTW

6.2.1 Competitors and experiment settings
We compared our DTW kNN search method of SMiLer,

denoted as “SMiLer-Idx”, with three kNN search competi-
tors, namely FastGPUScan, GPUScan [60] and FastCPUS-
can. FastGPUScan first computes the DTW between the
queries and all segments with the Sakeo-Chiba constraint,
and then uses the GPU fast selection method to obtain the
kNNs. GPUScan [60] is similar to FastGPUScan but with-
out the Sakeo-Chiba constraint. FastCPUScan computes
the DTW under the Sakeo-Chiba constraint with suitable
pruning criteria studied in [41, 54]. For all datasets, we
randomly selected a master query for each sensor to do the
Suffix kNN search with 100 steps continuous query. The
running time is the total time of all sensors per query step.

6.2.2 Evaluation with running time
Fig. 7 (y-axis is log-scaled) shows that SMiLer-Idx is one

order of magnitude faster for the Suffix kNN Search com-
pared with the best competitor FastGPUScan. SMiLer-Idx
needs about 1 second to finish the search on all sensors, while
FastGPUScan needs 10 seconds and FastCPUScan needs
about 500 seconds. The time cost of SMiLer-Idx is quite
stable with different numbers of nearest neighbors k.

Table 3 exhibits the utility of the lower bound LBen. Both
the number of unfiltered candidates and the time cost for
verifying the candidates of LBen are only about a half of
the ones of LBEQ and two-thirds of the ones of LBEC .

Fig. 8 further demonstrates the effectiveness of the two-
level inverted-like index of SMiLer. In Fig. 8, we use“SMiLer-
Dir” to denote the method to compute the LBen directly for
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Figure 7: Time cost (log-scaled) of the Suffix kNN Search on all sensors with varying k.
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each item query without building index at the window level
(i.e. simply scanning the data to compute the lower bound).
We can see that the SMiLer-Idx can significantly reduce the
running time for computing LBen by much more than one
order of magnitude over SMiLer-Dir.

6.3 Prediction Step: effectiveness of SMiLer

6.3.1 Competitors and experiment settings
SMiLer-AR and SMiLer-GP denote our semi-lazy pre-

diction models with different instantiated predictors. We
category competitors into two groups: offline learning mod-
els and online learning models. The offline learning models,
which are examples of eager learning, have a training phase;
while the online learning models build the model on the fly
with the incoming data. The offline learning models are:
• PSGP, i.e. Projected Sparse Gaussian Process, is an

approximation to the Gaussian Process [56] by project-
ing all information onto a set of “active points” [25].We
set the number of “active points” to 32, whose effect is
also investigated in Section 6.4.2. We used an open-
source project of PSGP [9].

• VLGP, i.e. Variational Learning Gaussian Process,
is another state-of-the-art scalable Gaussian Process
approximation model [65]. We set the number of in-
ducing inputs as 32 whose effect is similar to the active
points of PSGP. We use its implementation in [62].

• NysSVR, is a low-rank approximation of RBF kernel
Support Vector Regression (SVR) model with Nyström
method [69]. We set the reduced rank as 128.

• SgdSVR, is a linear SVR model with the Stochastic
Gradient Descent (SGD) optimization method [75].

• SgdRR, is a robust regression [59] model with the
SGD optimization method.

For NysSVR, SgdSVR and SgdRR, we used their implemen-
tation in Scikit-learn [52]. The grid search method by 10-fold
cross validation is used to find their optimal parameters. We
adopted the method in libSVM [19] to estimate the predic-
tion confidence of SVR. The online learning models are:
• LazyKNN, is a lazy learning prediction method for

time series prediction [4], where the predicted value
is an average of the kNNs weighted by the inverse of
DTW distance. We used the variance of the kNNs as
the predicted variance.

• HoltWinters, which has two sub-methods: “FullHW”
and“SegHW”, is a popular statistical regression mod-
el for time series with periodical patterns [71, 38]. We
used its implementation in“forecast”package of R [39].
We set the period as one day, and parameters were de-
termined by minimizing the squared error. For “Full-
HW”, we used all the available data to construct the

model for each prediction, and for “SegHW”, we used
the last 10 days data to construct the model.

• OnlineSVR and OnlineRR, are similar with SgdSVR
and SgdRR, but are trained in a one-pass online fash-
ion [14]. We used the first one-third of the data to
determine their parameters with grid search by 10-fold
cross validation, and then used the following data to
sequentially update the model with SGD.

Though some competitors are in R or Python, their core
algorithms (except VLGP) are still implemented by C++ or
Cython. Therefore, their running time is still comparable.

We evaluate the prediction performance by two measures:
mean absolute error (MAE), which is an average of the ab-
solute errors between the predicted value and the true value;
and mean negative log predictive density (MNLPD), which
is an average of negative log of the density of the true value
under the predicted normal distribution. The MAE can eval-
uate the accuracy of the predicted result; while the MNLPD
can assess the quality of the predictive uncertainty. For both
measures, the smaller the value is, the better the method is.

For the ROAD dataset, we cut off a segment (i.e. leave-
out testing) with 1000 points at the end of every time series.
For MALL and NET datasets, since there is duplication, we
randomly cut off a segment (leave-out testing) with 1000
points from every time series. Then we made 200-step con-
tinuous prediction along the segment. For PSGP, VLGP and
NysSVR, we only tested on 50 randomly selected time series,
since their training time costs for all sensors are too high to
be acceptable (see Section 6.4.2 for more explanation).

Table 4: Running time comparison. The training time cost

(“trn”, in hours) is the total time for training the models for

all sensors for one prediction step in the experiment. The

prediction time (“prd”, in milliseconds) is the average pre-

diction time per sensor per query.

data ROAD MALL NET
trn(h) prd(ms) trn(h) prd(ms) trn(h) prd(ms)

SMiLer-GP - 27.59 - 24.46 - 25.32
SMiLer-AR - 1.48 - 0.95 - 0.25
FullHW - 724.87 - 770.73 - 188.05
SegHW - 58.52 - 64.23 - 83.32

LazyKNN - 0.63 - 0.46 - 0.11
PSGP 1.8e3 0.037 1.6e3 0.031 126.3 0.024
VLGP 198.4 0.0068 274.3 0.011 57.5 0.0068
NysSVR 95.3 0.0085 86.2 0.0087 28.9 0.0088
SgdSVR 2.2 2.1e-4 2.3 2.2e-4 0.6 2.1e-4
SgdRR 13.5 2.7e-4 12.7 2.4e-4 4.0 2.5e-4

OnlineSVR 0.6 2.4e-4 0.5 2.2e-4 0.19 2.2e-4
OnlineRR 2.4 2.7e-4 2.3 2.5e-4 0.72 2.4e-4

6.3.2 Evaluation with MAE and MNLPD
Fig. 9 and Fig. 10 show the prediction performance of S-

MiLer compared to offline learning and online learning mod-
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Figure 9: MAE and MNLPD of offline learning models with

varying h-step ahead prediction.
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Figure 10: MAE and MNLPD of online learning models

with varying h-step ahead prediction.

els with varying look-ahead step h. From Fig. 9 (a)(c)(e)
and Fig. 10 (a)(c)(e), we can see that SMiLer-GP always has
a smaller MAE than all competitors. The reason is that, as
a query-dependent GP model, SMiLer-GP caters to specifi-
cally making prediction for the submitted query without the
need to cater for all parts of the data. Whereas the offline
learning methods may result in over generalized global mod-
els, and the online learning methods may not have powerful
enough modeling capability. An interesting point is that the
MAE of SMiLer-AR is about 2 times larger than SMiLer-GP
on the ROAD dataset (see Fig. 10(a)), while their MAE is
almost identical on the MALL and NET datasets (see Fig.
10(c)(e)). It is because the ROAD dataset contains more dy-
namic traffic information while the MALL and NET datasets
have some seasonal patterns. Therefore, SMiLer-GP, with
strong GP predictors, has an innate advantage over SMiLer-
AR on such complex data. Moreover, SMiLer-AP is worse
than SMiLer-GP under MNLPD measure.

Fig. 9(b)(d)(f) and Fig. 10(b)(d)(f) demonstrate that
SMiLer-GP is better than (or at least is comparable to) all
competitors under MNLPD measure. In particular, SMiLer-
GP is significantly better than SMiLer-AR and LazyKNN
under the MNLPD measure. SMiLer-GP also has smaller
MNLPD than the other competitors except after step 30.

6.3.3 Effect of the adaptive auto-tuning mechanism
Fig. 11 reveals the effect of the adaptive auto-tuning

mechanism of SMiLer. SMiLerNE-GP and SMiLerNE-AR
denote the experimental result of SMiLer without the en-
semble method (i.e. only one predictor instead of a matrix
of predictors). For SMiLerNE, we fixed the query segmen-
t length as d = 64 and the number of nearest neighbors
as k = 32. SMiLerNW-GP and SMiLerNW-AR denote the

SMiLer with the ensemble prediction but without the self-
adaptive prediction. We can see that SMiLer-GP always has
a better performance than SMiLerNW-GP and SMiLerNE-
GP under both measures (MAE and MNLPD). But SMiLer-
AR only holds similar conclusion on the MAE measure since
it lacks ability to estimate predictive uncertainty.

6.4 Practicality of SMiLer

6.4.1 Scalability of SMiLer
Table 4 shows running time of SMiLer and its competitors.

Except for FullHW and SegHW, SMiLer-GP requires a larg-
er prediction time. However, we should note that SMiLer-
GP does not have a training phase, but has the best pre-
diction performance under both MAE and MNLPD. This
shows a trade-off between the time and the accuracy.

Fig. 12 (a)(b) show the total time cost of SMiLer on all the
sensors per prediction. The paybacks of the higher time cost
of SMiLer-GP are more accurate prediction results (lower
MAE) and better estimation of predictive uncertainty (lower
MNLPD). If the predictive uncertainty is not a concern, the
SMiLer-AR may still be a choice.

Note that, since the sample time interval is 5-10 minutes
in the datasets, both SMiLer-AR and SMiLer-GP can per-
form prediction for all sensors in real time. Besides, the
running time of SMiLer-GP can be further reduced by mul-
tithreading on multi-core architecture.

SMiLer scales well with the number of sensors in real-life
applications. Fig. 12(c) shows the maximum number of
sensors supported by one GPU. The space of SMiLer Index
is O(nM) where n is number of sensors and M is size of time
series data per sensor. In our system, 6GB memory is large
enough for all sensors (about 1000 sensors of ROAD data
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Figure 11: Effect of the adaptive auto-tuning mechanism.
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tal time cost of all sensors to make prediction, (c) shows
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from a city) while each sensor has one year data. To support
more sensors, there are two options. First, we can simply
use multiple-GPU system. We also believe that the memory
of the GPU will be continuous increasing while the number
of sensors in a city is quite stable over years. Second, we can
reduce M (the size of one sensor data). For example, if we
take a sample of ten percent of ROAD dataset into the GPU,
one GPU can support more than ten thousands of sensors.
But its prediction performance may be degenerate. This is a
trade-off between the space and the prediction performance.

6.4.2 Comparison of PSGP and SMiLer
We claim that SMiLer is more practical than its competi-

tors. It seems that the low-rank approximation models, such
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Figure 13: Comparison of PSGP and SMiLer-GP: average

training time per sensor of PSGP and their MAE.

as PSGP and VLGP, have a potential to achieve better pre-
diction performance since their accuracy can be improved
by increasing the “rank”. We take PSGP as an example to
reveal the impracticality of this solution.

Fig. 13 indicates why SMiLer-GP is more practical than
PSGP. For each dataset, we randomly selected 50 sensors
to make prediction using PSGP and averaged their training
time and MAE. In Fig. 13, when we vary the number of
active points, the left y-axis shows the MAE of PSGP and
the right y-axis shows the average training time of PSGP
for each sensor. The MAE of SMiLer-GP averaged on such
50 sensors is also illustrated with violet solid line. We can
see that, after the number of active points is larger than
a threshold (e.g. 32), the marginal improvement of MAE
is small, but the increase of the time is exponential. For
example, on the ROAD dataset, the total training time for
its 963 sensors with 128 active points should be about 200
days (18000*963=17334000 seconds). However, SMiLer-GP
still has lower MAE than PSGP on all the datasets even if
we allow such an expensive training process for PSGP.

The experiment in this section and Fig. 13 (a) also ex-
perimentally demonstrates that SMiLer can overcome the
critical challenges in the “traffic sensor prediction” problem
introduced in Example 1.1 (see Section 1). Without hav-
ing a training phase, SMiLer can still achieve much better
prediction performance than the approximated low-rank GP
model which requires high training time cost.

7. CONCLUSIONS
We present SMiLer, a semi-lazy time series prediction sys-

tem for sensors. The core idea is to employ the semi-lazy
learning approach to enable GPs for time series prediction.
Two challenging problems are solved, which are a suffix kNN
search method under DTW and a semi-lazy GP prediction
model. For the former problem, we depicted a GPU-based
two-level inverted-like index for fast Suffix kNN search. For
the latter one, we devised an adaptive auto-tuning mecha-
nism integrating the ensemble and continuous prediction.

Extensive experiment study demonstrates that SMiLer
performs the prediction with good accuracy, and can also
scale well with carrying out prediction in real time.
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APPENDIX
A. DATA SOURCE OF FIG. 1

The data of Fig. 1(a) is selected from http://ark.intel.

com/ according to the family of the Intel Xeon Processor E5
and 5000. Fig. 1(b) is depicted from data of Dr. Michael
Galloy in https://github.com/mgalloy/cpu-vs-gpu. Fig.
1(c) is drawn according to a list maintained by Prof. John
C. McCallum in http://www.jcmit.com/memoryprice.htm

whose major source is NewEgg.com. The data of Fig. 1(d)
is collected from http://www.techpowerup.com/gpudb/ ac-
cording to the family of the NVIDIA GeForce GPU.

B. CONCEPT AND BACKGROUND

B.1 Dynamic Time Wrapping
We give a short explanation of Dynamic Time Warping

(DTW) here. For more details, please refer to [41]. With-
out losing the generality, we assume that all time series
are of equal length (see [57]). We have two time series
Q = [q1, q2, ..., qd] and C = [c1, c2, .., cd]. The DTW com-
putes the best possible alignment between Q and C with
respect to the overall warping cost. In Fig. 14(a), a warping
matrix γ is constructed where element (i, j) corresponds to
the alignment between qi ∈ Q and cj ∈ C. Indeed, com-
puting DTW is to find a contiguous set of matrix elements,
called warping path, which defines the optimal alignmen-
t between Q and C (see Fig. 14). Typically, the warping
path is restricted to not more than ρ cells from the diagonal
[41, 54, 5]. This constraint is called Sakoe-Chiba band where
ρ is called the warping width. This band constraint not only
reduces the computation cost of DTW, but also avoids the
degenerated matchings (e.g. most of elements of a time se-
ries are matched to several elements of the other) [5]. In this
paper, we only consider the DTW with Sakoe-Chiba band
constraint. The definition of DTW with ρ warping path is:

γ(i, j) = dist(qi, cj) + min

 γ(i− 1, j)
γ(i, j − 1)
γ(i− 1, j − 1)

(21)

γ(0, 0) = 0, γ(i, 0) = γ(0, j) =∞, (22)

dist(qi, cj) =∞ if |i− j| > ρ (23)

D(Q,C) = γ(d, d) (24)

where dist(·) is the distance between observations.
Now we give an introduction about the popular lower

bound of DTW – LB keogh [41]. We first define the “enve-
lope” of time series.

Definition B.1 (Time Series Envelope). Given a time
series C and a warping width ρ, the envelope E(C) contain-
s two sequences: upper envelope U(C) and lower envelope
L(C), whose i-th elements are defined as:

Uci = max
−ρ≤r≤ρ

(ci+r), Lci = min
−ρ≤r≤ρ

(ci+r) (25)



LB keogh is the distance between E(C) and the query Q:

LB keogh(E(C), Q) =
∑ dist(Uci , qi) qi > Uci

dist(Lci , qi) qi < Lci
0 otherwise

(26)

warping width warping path

File: warpMatrix

(a)

File: dtwAlign

(b)

Figure 14: (a) An illustration for warping matrix
with warping width and warping path; (b) Result
alignment according to warping path.1

B.2 Graphics Processing Unit
The Graphics Processing Unit (GPU) is a computing de-

vice that provides a massively parallel execution environ-
ment for many threads. With all of the threads running on
multiple processing cores, and executing the same program
on separate data, the GPU shares many aspects of Single-
Instruction-Multiple-Data (SIMD) architecture.

We implemented our algorithm on a NVIDIA GPU using
the Compute Unified Device Architecture (CUDA) toolkit
[26]. Each CUDA function is executed by an array of thread-
s. A small batch (e.g. 256) of threads are organized as one
block that possesses an associated pool of “shared memory”
for the cooperation of the threads. Note that the shared
memory is much faster than the global memory of the GPU.

B.3 Gaussian Process
We give a brief review of Gaussian Processes (GPs) here.

Please refer to [56] for a comprehensive introduction. A
Gaussian Process is a collection of random variables, any
subset of which has a joint normal distribution. Suppose
that a set of data pairs (X,Y ) = {xi, yi}ki=1 are random
variables, where xi is a d-dimensional vector and yi is the
predicted value. We can assume that there is an underlying
prediction function f(·) such that ŷi = f(xi) is based on the
GP, which is fully specified by the mean function m(x) and
the covariance function c(xi, xj). We usually further assume
that the mean function is set to be zero, i.e.:

[y1, y2, ..., yn]> ∼ GP(0,Σ) (27)

where Σij = cov(yi, yj) = cov(f(xi), f(xj)) = c(xi, xj),
which specifies the covariance between pairs of random vari-
ables. A widely-used covariance function is the squared ex-
ponential (SE) covariance function, i.e.,

cov(yi, yj) = cov(f(xi), f(xj)) = c(xi, xj)

= θ20exp

(
−1

2

‖xi − xj‖2

θ21

)
+ δijθ

2
2

where δij is a Kronecker delta. δij = 1 if and only if i = j
and δij = 0 otherwise. The vector Θ = {θ0, θ1, θ2} is a set

1The figure is reproduced and modified from [41].

of hyperparameters. In particular, θ1 is called a character-
istic length-scale, which determines how relevant an input
is: if the length-scale has a very large value, the covari-
ance becomes almost independent of that input, effectively
removing it from the inference.

Now given data (X,Y ) = {xi, yi}ni=1, and a test input
vector x0, we want to estimate the predictive distribution of
the value y0 corresponding to the input x0. Given the Gaus-
sian Process prior and Bayesian rules, the joint distribution
of the observed values and the predicted value y0 is given by[

Y
y0

]
∼ GP

(
0,

[
C(X,X) C(X,x0)
C(x0, X) c(x0, x0)

])
(28)

where C(X,x0) = [c(x1, x0), ..., c(xn, x0)]> is the n× 1 vec-
tor of variances between the test vector and training vec-
tors (similar for the other entries C(X,X), C(x0, x0) and
C(x0, X)). For simplicity, we use a compact notation as
C = C(X,X), c0 = C(X,x0) = C>(x0, X).

In the Gaussian Process model, for a test input x0, the
predictive distributive is simply obtained through condition-
ing on the training data. The joint distribution of the vari-
ables being Gaussian, the posterior distribution for the input
test data p(ŷ0|x0, X, Y ) is also a Gaussian distribution, with
the following mean and variance:

ŷ0 = f(x0, X, Y ) ∼ N (u0, σ
2
0) (29)

u0 = E(y0) = c>0 C
−1Y (30)

σ2
0 = cov(y0) = c(x0, x0)− c>0 C−1c0 (31)

C. PROOF

C.1 Proof of Lemma 4.1
Proof. We have two observations: (O1) For the item

query IQi with CSGi,b, the number of points in the right
side of SWb (exclusive) is b. Then, the number of points in
the left side of SWb adding the number of points of SWb is
di − b. According to the definition of CSG, in the left side
of SWb, only (di − b)%ω points are not included in CSGi,b.

(O2) If the rightmost aligned disjoint window is DWr,
then the leftmost aligned disjoint window isDWr−|CSGi,b|+1.
The starting position (from left to right) of the point of
DWr−|CSGi,b|+1 is (r − |CSGi,b|+ 1) ∗ ω.

Then, based on (O1) and (O2), in order to match IQi
with a segment, we only need (di − b)%ω number of points
from the starting position of DWr−|CSGi,b|+1 to left forward.
Therefore, the starting position of the aligned segment Ct,di
is t = (r − |CSGi,b|+ 1) ∗ ω − (di − b)%w.

C.2 Proof of Theorem 4.2
Proof. Suppose that the disjoint windows covered by

segment Ct,di are {DWr, DWr−1, ..., DWr−m+1} where m
is the number of the disjoint windows and r is the identifier

of the rightmost disjoint window. We have m = b (r+1)∗ω−t
ω

c.
We prove the corollary in two directions.

(I) There is one alignment. For the segment Ct,di , we
can find a CSGi,b of IQi, where b = t + di − (r + 1) ∗ w
(b is the number of points in the right side of SWb). The

number of sliding windows in CSGi,b is b di−b
ω
c. By replacing

b with b = t + di − (r + 1) ∗ w, it is computed that m =

b di−b
ω
c = b (r+1)∗ω−t

ω
c. Therefore, CSGi,b can be aligned

with the disjoint windows covered by Ct,di .



(II) There is only one alignment. We prove it by contradic-
tion. Suppose that for a segment Ct,di there are at least two
CSGs, denoted by CSGi,b′ and CSGi,b′′ , which are aligned
with the disjoint windows {DWr, DWr−1, ..., DWr−m+1}.
The number of points of Ct,di in the left side of DWr−m+1 is
bl = (r−m+1)∗ω−t (bl is the number of points from t to the
starting point (exclusive) of the disjoint window DWr−m+1).
Then the total length of Ct,di is d′i = bl + m ∗ ω + b′ and
d′′i = bl+m∗ω+b′′. Since b′ 6= b′′, it is obvious that d′i 6= d′′i .
But Ct,di have only one length, i.e. di = d′i = d′′i . There
is a contradiction. Therefore, there is only one alignment
between the CSG and the disjoint windows.

Based on (I) and (II), we prove the claim.

C.3 Proof of Theorem 4.3
Proof. Suppose that the disjoint windows covered by

segment Ct,di are {DWr, DWr−1, ..., DWr−m+1} where r is
the identifier of the rightmost disjoint window and m is the

number of disjoint windows such that m = b (r+1)∗ω−t
ω

c.
Then, the number of points of Ct,di in the left side ofDWr−m+1

is bl = (r−m+ 1) ∗ ω− t and the number of points of Ct,di
in the right side of DWr is br = t + di − (r + 1) ∗ w (The
calculation of bl and br can be found in Appendix C.2).

For simplicity, let the distance between the point qj and
the envelop of ci be LB(E(ci), qj) , i.e.

LB(E(ci), qj) =

 dist(Uci , qj) qj > Uci
dist(Lci , qj) qj < Lci
0 otherwise

For the lower bound LBEC(IQi, Ct,di), we have:

LBEC(IQi, Ct,di) =

di−1∑
j=0

LB(E(ct+j), qj)

=

bl−1∑
j=0

LB(E(ct+j), qj) +

di∑
j=di−br+1

LB(E(ct+j), qj)

+

di−bl−br∑
j=bl

LB(E(ct+j), qj)

≥
di−bl−br∑
j=bl

LB(E(ct+j), qj) =

m−1∑
a=0

LBEC(SWb+a∗ω, DWr−a)

In the same way, we can also get LBEQ(IQi, Ct,di) ≥∑m−1
a=0 LBEQ(SWb+a∗ω, DWr−a). Combining these two in-

equalities, we have LBw(IQi, Ct,di) ≤ LBen(IQi, Ct,di). Ac-
cording to Theorem 4.1, for the enhanced lower bound we
also have LBen(IQi, Ct,di) ≤ DTW (IQi, Ct,di). Finally, we
get LBw(IQi, Ct,di) ≤ DTW (IQi, Ct,di).

D. ALGORITHM FOR COMPUTING LOW-
ER BOUND IN GROUP LEVEL INDEX

Algorithm 1 shows the pseudo code for constructing the
posting list of CSG in the group level index of the SMiLer
Index. We use one thread to scan the elements of posting
lists of sliding windows in the sliding window index to com-
pute the lower bound of item queries. There are two key
points. The first one is to do shift sum (recall Eqn. (5))
to compute the lower bound LBEQ and LBEC in Line 7

and Line 8 by sequentially accessing the window level index.
The second one is to compute LBw (recall Theorem 4.3) for
each item query in Line 11. The computed LBw is just the
element of the posting list in the group level index.

Algorithm 1: Group level index construction: compute
enhanced lower bound of the CSG.

// One block of the GPU takes one CSG

11 for each CSGb of master query MQ do
2 for each disjoint window DWr of C do
33 j ← 0 // count window number

44 i← 0 // count item query number

55 d← b+ ω // ω is window length

// n is number of item queries per MQ
6 while i < n do

// access window level index

77 LBq ← LBEQ(SWb+j∗ω, DWr−j)
88 LBc ← LBEC(SWb+j∗ω, DWr−j)
9 if d+ ω > |IQi| and d ≤ |IQi| then

10 t← (r − j) ∗ ω − (d− b)%ω
11 LBw(IQi, Ct,d)← max{LBq, LBc}
1212 Store LBw(IQi, Ct,d) in posting list of

CSGi,b of IQi
13 i← i+ 1 // for next item query

1414 j ← j + 1, d← d+ ω

E. ALGORITHM FOR COMPUTING DTW

Algorithm 2: Compute DTW distance

input : a query Q and a time series C (|Q| = |C| = d)
output: The DTW distance between Q and C
// This is pseudo-code for one thread.

11 m = 2 ∗ ρ+ 2;// ρ is warping width

22 γ[m][2] // γ is allocated in shared memory

33 for i← 1 to m− 1 do
44 γ(i, 0) =∞
55 γ(0, 1) =∞
66 for j ← 1 to d do
77 γ((j − ρ− 1)%m, j%2) =∞
88 γ((j + ρ)%m, (j − 1)%2) =∞
99 for i← (j − ρ) to (j + ρ) do

1010 γ(i%m, j%2) =

dist(qi, cj) + min

 γ((i− 1)%m, j%2)
γ(i%m, (j − 1)%2)
γ((i− 1)%m, (j − 1)%2)

1111 return γ(d%m, d%m)// |Q| = |C| = d

In Algorithm 2, we show the pseudo code to compute the
DTW distance (with Sakoe-Chiba band constraint) between
a query Q and a time series C. It is worth noting that, in
order to reduce the number of accesses to the global mem-
ory, the query Q should reside in the shared memory; and
furthermore, the query Q must be placed in the inner loop
of Algorithm 2 (i.e. Q should be placed in line 9 instead of
line 6) [60].


