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Abstract

Social networks contain a wealth of useful information. In
this paper, we study a challenging task for integrating users’
information from multiple heterogeneous social networks to
gain a comprehensive understanding of users’ interests and
behaviors. Although much effort has been dedicated to study
this problem, most existing approaches adopt linear or shal-
low models to fuse information from multiple sources. Such
approaches cannot properly capture the complex nature of
and relationships among different social networks. Adopting
deep learning approaches to learning a joint representation
can better capture the complexity, but this neglects measur-
ing the level of confidence in each source and the consis-
tency among different sources. In this paper, we present a
framework for multiple social network learning, whose core
is a novel model that fuses social networks using deep learn-
ing with source confidence and consistency regularization. To
evaluate the model, we apply it to predict individuals’ ten-
dency to volunteerism. With extensive experimental evalua-
tions, we demonstrate the effectiveness of our model, which
outperforms several state-of-the-art approaches in terms of
precision, recall and F1-score.

1 Introduction
Social networks have revolutionized the way we network,
and they provide a wealth of useful information to gain a
comprehensive understanding of users’ interests and behav-
iors. Constrained by different designs of social networks,
each single source only provides partial information of a
user from a certain perspective. Therefore, linking and ag-
gregating information from multiple social networks can en-
rich a given user’s profile and enable us to comprehensively
understand the given users (Abel et al. 2013; Zhu et al. 2013;
Liu et al. 2014).

However, it is non-trivial to fuse multiple heterogeneous
social networks for learning. First of all, it is challenging to
deal with the complex nature of heterogeneous social net-
works (Mislove et al. 2007). Models with non-linear prop-
erties and rich modeling capabilities should be considered
for tackling this problem. Meanwhile, users use different
social networks differently, for example, using Facebook to
keep connected with friends, LinkedIn for professional net-
working, and Twitter to follow information about specific
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interests. In other words, information from each source will
not contribute equally to one given profiling task. Moreover,
since such multiple sources are naturally presumed to char-
acterize the same given user, the consistency of data from
difference sources must be taken into consideration during
information fusion. Therefore, it is desirable to devise an
effective approach for multiple social network learning that
not only can better capture this complexity, but also can mea-
sure the level of confidence in each source as well as the
consistency among different sources.

Great effort has been spent on this challenging multi-
source learning task. Concatenating all sources into a uni-
fied representation is a widely-used method. However, this
treats all sources equally without measuring the level of con-
fidence in each source and the consistency among differ-
ent sources. State-of-the-art approaches (Song et al. 2015;
Xiang et al. 2013; Zhang and Huan 2012) employ source
confidence or consistency regularization to address this
problem. However, such approaches adopt linear models to
fuse information from multiple sources for learning, which
cannot properly capture the complex nature of social net-
works. Another method is to use deep learning models to
learn a joint representation (Srivastava and Salakhutdinov
2012). These deep learning models may better capture the
complexity, but fail to explicitly model the source confi-
dence and consistency to better resolve the problem.

Based on above insights, we present a framework for
multiple social network learning, whose core is a novel
model that Fuses sociAl netwoRks uSing dEep lEarnING
(FARSEEING) with source confidence and consistency reg-
ularization. Figure 1 presents the framework, which consists
of three parts. First, given a set of users, the same users
are aligned by linking their multiple social accounts and
then their publicly available historical data are crawled from
all sources. Second, multi-faceted features, such as demo-
graphic, linguistic and behavioral features, are extracted to
characterize the given users. Before feeding the extracted
features into FARSEEING, missing data, which is caused
by users’ unbalanced activities in different social networks,
are inferred from the learned shared feature spaces by non-
negative matrix factorization.

Finally, we use FARSEEING for multiple social network
learning. The model consists of two main stages. First, in the
feature transformation stage, low-level features are mapped
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Figure 1: Illustration of our framework which comprises of
three components.

into high-level features using deep learning. Second, in the
multi-source learning stage, the high-level features from all
sources are fused together for learning. Specifically, we inte-
grate source confidence and consistency regularization into
the deep neural networks’ optimization process to regulate
the level of confidence in each source and measure the con-
sistency among different sources. This leads to an enhanced
multi-source deep learning model for multi-source learning.

To evaluate the model, we apply it to predict individuals’
tendency to volunteerism, which is desirable for nonprofit
organizations (NPOs) to identify candidate volunteers from
the crowd. We make the prediction by leveraging informa-
tion from social networks to gain a comprehensive under-
standing of a user’s interests, behaviors and personal traits.

Our main contributions are summarized as follows:
• We present a novel multi-source deep learning model that

fuses social networks using deep learning with source
confidence and consistency regularization. This model is
the core component of our introduced framework for mul-
tiple social network learning.

• We apply the framework to predict individuals’ tendency
to volunteerism. Extensive experiments validate the effec-
tiveness of our model, which outperforms state-of-the-art
competitors in terms of precision, recall and F1-score.
The rest of the paper is organized as follows: Section

2 formalizes the problem and describes the FARSEEING
model. Section 3 presents the details of our framework and
data preparation for experiments. Section 4 details the ex-
perimental results and analysis. Section 5 presents a review
of related work, followed by the conclusion in Section 6.

2 FARSEEING Model

We use deep learning to transform low-level features into
high-level feature spaces and then employ ridge regression
to fit a final prediction model. The novelty lies in integrating
the source confidence and consistency regularization into a
unified multi-source deep learning model.

2.1 Notation

We use bold capital letters (e.g., X) and bold lower case
letters (e.g., x) to denote matrices and vectors, respectively.

We employ nonbold letters (e.g., x) to represent scalars, and
Greek letters (e.g., λ) as parameters.

Suppose we have a set of N labeled data samples from
S social networks (with S ≥ 2). We denote Ds, Ns as the
number of features and samples in the s-th social network,
respectively. We useXs ∈ R

N×Ds to denote the feature ma-
trix extracted from the s-th social network, where each row
represents a user sample. The dimensionality of features ex-
tracted from all these social networks is D =

∑S
s=1 Ds.

Then the whole feature matrix can be written as X =
[X1,X2, · · · ,Xs] ∈ R

N×D, and y = [y1, y2, · · · , yN ]T ∈
{1,−1}N is the corresponding label vector.

We denote X̂s = fs(Xs) ∈ R
N×Fs as the high-level fea-

ture matrix extracted by a deep learning model fs(·) from
the s-th social network, and Fs is the number of correspond-
ing high-level features. We use X̂ = [X̂1, X̂2, · · · , X̂S ] ∈
R

N×F to denote the output of f(X), where F =
∑S

s=1 Fs

is the total output dimension.

2.2 Deep Neural Networks

Deep learning approaches can model complex non-linear re-
lationships. In this paper, we adopt Deep Neural Networks
(DNNs) to extract high-level features, since the DNN is a
typical model for deep learning and can be generalized to
others as well. In general, a DNN is an artificial neural
network (ANN), which is inspired by biological neural net-
works, with multiple hidden layers.

In a typical DNN, the output vector hk of the k-th layer
is computed by using the output hk−1 of the previous layer
as input, starting with an input h0 = x, which can be repre-
sented as follows (Rumelhart, Hintont, and Williams 1986;
Bengio 2009):

h
k
= g(b

k
+W

k
h

k−1
), (1)

where bk and Wk are the variables to learn, and g(·) is
an activation function. Typical choices for g(·) include the
tanh and sigmoid functions. In this paper, we employ the
tanh function, as it usually yields to faster training.

Typically, the softmax function is applied to the top layer
output hK to make a prediction. A key innovation in our
model is that, instead of using softmax to predict the labels,
we fuse the high-level features (i.e., the top-layer outputs) of
multiple per-source DNNs for multi-source learning-based
prediction. We expound on this in the following sections.

2.3 Problem Formulation

Given data X from S social networks, our objective is to
learn a predictive model p(X) to minimize the following
objective function Γ,

Γ = min
p

1

2N
||y − p(X)||2 +

λ

2
||p||2, (2)

where λ is a nonnegative regularization parameter.
SinceX is from S social networks, we can learn S predic-

tive models ps(Xs) independently and then combine these
models to form the final predictive model p(X). As dis-
cussed before, different social networks always contribute
differently to the final prediction, so we introduce a weight
vector α = [α1, α2, · · · , αS ]

T ∈ R
S to regulate the level of



confidence in each social network. Then the final predictive
model can be defined as follows:

p(X) =

S∑
s=1

αsps(Xs), (3)

where the value of αs can be either positive or negative.
Positive αs rewards and negative one dampens the correla-
tion among different sources which may contain unreliable
or noisy data.

Moreover, since the data from multiple social networks
characterize the same given user, we measure the consis-
tency among different sources using source consistency reg-
ularization, which is defined as follows:

S∑
s=1

∑
s′ �=s

||ps(Xs)− ps′ (Xs′ )||2. (4)

To better capture the complexity, we adopt a DNN fs(·)
to iteratively learn and optimize high level features X̂s from
Xs and then use X̂s to learn the final predictive model. The
predictive model ps(·) is defined as follows:

ps(Xs) = X̂sws + bs = fs(Xs)ws + bs, (5)

where ws ∈ R
Fs is the mapping model, and bs = bsv ∈

R
N , with v an identity vector, and bs the bias term.
Then the objective function Γ can be rewritten as follows:

Γ = min
{θs,ws,αs,bs}

1

2N
||y −

S∑
s=1

αs(fs(Xs)ws + bs)||2

+
μ

4N

S∑
s=1

∑
s′ �=s

||(fs(Xs)ws + bs)− (fs′ (Xs′ )ws′ + bs′ )||2

+
λ

2

S∑
s=1

||ws||2 +
γ

2

S∑
s=1

||θs||2 +
β

2
||α||2,

(6)

where θs denotes the variables in fs(·) and μ, λ, γ, and β
are the regularization parameters.

2.4 Optimization

We adopt the alternating optimization strategy to solve the
variables θs,ws, αs and bs in Eqn. (6). In particular, we
iteratively optimize one variable with others fixed and main-
tain this procedure until meeting a predefined stop condition.

Compute θs with others fixed When other variables are
fixed, θs can be updated as follows:

θ
(t+1)
s = θ

(t)
s − η

∂Γ

∂θ
(t)
s

. (7)

This equation leads to the well-known back-propagation al-
gorithm for DNN. Here we employ Theano1 to train the
DNN model using Stochastic Gradient Descent with mini-
batches. It is not necessary to provide an analytic solution
for ∂Γ

∂θ
(t)
s

as Theano can perform automatic differentiation.

1It is a Python library. http://deeplearning.net/software/theano/

Compute ws with others fixed When other variables are
fixed, the derivative of Γ with respect to ws is as follows:

∂Γ

∂ws

=
1

N
αsX̂

T
s (

S∑
s=1

αs(X̂sws + bs)− y) + λws

+
μ

N
X̂

T
s

∑
s′ �=s

((X̂sws + bs)− (X̂s′ws′ + bs′ ))

= [λI+
α2

s

N
X̂

T
s X̂s +

μ(S − 1)

N
X̂

T
s X̂s]ws +

α2
s

N
X̂

T
s bs

+
μ(S − 1)

N
X̂

T
s bs +

∑
s′ �=s

1

N
(αsαs′ − μ)X̂

T
s X̂s′ws′

+
∑
s′ �=s

1

N
(αsαs′ − μ)X̂

T
s bs′ −

αs

N
X̂

T
s y,

(8)

where I is a Fs×Fs identity matrix. Setting Eqn. (8) to zero
and rearranging the terms, all ws can be learned jointly by a
linear system Lw = t, where L ∈ R

F×F is a sparse block
matrix with S × S blocks, w = [wT

1 ,w
T
2 , · · · ,wT

S ]
T ∈ R

F

and t = [tT1 , t
T
2 , · · · , tTS ]T ∈ R

F are vectors with S blocks.
ts,Lss and Lss′ are defined as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ts = αs
N X̂T

s y −
α2
s+μ(S−1)

N X̂T
s bs −

∑
s′ �=s

αsα
s′−μ

N X̂T
s bs′ ,

Lss = λI+
α2

s

N
X̂T

s X̂s +
μ(S − 1)

N
X̂T

s X̂s,

Lss′ =
1

N
(αsαs′ − μ)X̂T

s X̂s′ .

(9)

When other variables are fixed, t can be treated as a constant
vector. L is symmetric as Lss′ = LT

s′s. Since L is a positive-
definite matrix and thus invertible (Song et al. 2015), we can
derive the solution of w as follows:

w = L
−1
t. (10)

Compute α with others fixed When other variables are
fixed, the objective function Γ can be rewritten as follows:

min
α

1

2N
||y − (X̂W +B)α||2 +

β

2
||α||2, (11)

where W = diag(w1,w2, · · · ,wS) ∈ R
F×S , and B =

diag(b1, b2, · · · , bS) ∈ R
N×S . Taking the derivative of Γ

with respect to α, we have,
∂Γ

∂α
=

1

N
(X̂W +B)

T
(X̂W +B)α− (X̂W +B)

T
y + βα. (12)

Setting Eqn. (12) to zero, it can be derived that,

α = (
1

N
(X̂W +B)

T
(X̂W +B) + βI)

−1
(X̂W +B)

T
y. (13)

Since ( 1
N (X̂W+B)T (X̂W+B)+βI) ∈ R

S×S is positive-
definite and invertible according to the definition, we can
obtain the analytic solution of α as Eqn. (13).

Compute bs with others fixed When other variables are
fixed, the derivative of Γ with respect to bs is as follows:

∂Γ

∂bs

=
1

N
αs(

S∑
s=1

αs(X̂sws + bs)− y)

+
μ

N

∑
s′ �=s

((X̂sws + bs)− (X̂s′ws′ + bs′ ))

=
α2

s + μ(S − 1)

N
bs +

∑
s′ �=s

1

N
(αsαs′ − μ)bs′ −

αs

N
y

+
α2

s + μ(S − 1)

N
X̂sws +

∑
s′ �=s

1

N
(αsαs′ − μ)X̂s′ws′ .

(14)



Similar to the process of computingws with the others fixed,
all bs can be learned jointly by a linear system. We have
bs = bsv ∈ R

N where v is an identity vector, and we define
b = [bT1 , b

T
2 , · · · , bTS ]T ∈ R

(N ·S). We construct a linear
system with the form Ab = c, where A ∈ R

(N ·S)×(N ·S)

is a sparse block matrix with S × S blocks. Each block in
A is an N × N diagonal matrix. For c we have cs ∈ R

N

and c = [cT1 , c
T
2 , · · · , cTS ]T ∈ R

(N ·S). cs,Ass andAss′ are
defined as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cs =
αs

N
y − α2

s+μ(S−1)

N X̂sws −
∑

s′ �=s

αsα
s′−μ

N X̂s′ws′ ,

Ass =
α2

s + μ(S − 1)

N
I,

Ass′ =
1

N
(αsαs′ − μ)I,

(15)

where I is an identity matrix with I ∈ R
N×N . Similar to L,

A is also a positive-definite matrix and thus invertible. Then
we can derive the solution of b as follows:

b = A
−1
c. (16)

3 The Framework

To evaluate our approach, we apply it to predict individu-
als’ tendency to volunteerism. We cast the problem of volun-
teerism tendency prediction as a binary classification task. If
the predicted score of a user is larger than a threshold value,
we regard this user as a prospective volunteer.

3.1 Data Preparation

We collected data2 from three popular social networks,
namely Facebook, LinkedIn and Twitter. They are represen-
tatives of private, professional and public social networks,
respectively. The data preparation process can be found in
detail in our previous work (Song et al. 2015). We briefly
summarize this process next.

Social Accounts Mapping Quora and About.me3, where
a user’s multiple social accounts are explicitly listed, are
used to align the same user across social networks (Abel
et al. 2013). Only the users who have accounts in Face-
book, LinkedIn and Twitter were kept, and then their pub-
licly available historical data from all sources were crawled.

Ground Truth Construction Information on LinkedIn is
presumed to be more reliable and complete. Therefore, a
user is regarded as a volunteer if and only if this user lists
volunteer experiences in the section “Volunteer Experience
& Causes” or the section “Experience” in the profile. Finally,
we obtained 1,284 volunteers and 1,215 non-volunteers.

Low-level Feature Extraction Generally, three kinds of
features were extracted. The first kind is demographic fea-
tures (Penner 2002), such as Gender, Relationship Status,
Education Level, and Number of Social Connections. The
second kind is linguistic features, including Linguistic In-
quiry and Word Count (LIWC) features (Bazelli, Hindle, and

2The compiled dataset is currently publicly available via:
http://multiplesocialnetworklearning.azurewebsites.net/

3Their links are: https://www.quora.com/ and https://about.me/

Stroulia 2013; Markovikj et al. 2013), User Topics and Con-
textual Topics (Blei, Ng, and Jordan 2003; Wei and Croft
2006; Guo et al. 2009). The third kind is behavioral features,
including Posting Patterns and Egocentric Network Patterns
(Pennacchiotti and Popescu 2011).

3.2 Missing Data Completion

Unbalanced user activities among different social networks
cause a problem of data missing. For example, we consider
a Facebook user to be inactive if the user has fewer than 10
historical posts, and such users’ Facebook data are treated
as missing. Before feeding the extracted features into our
FARSEEING model, we use Non-negative Matrix Factor-
ization (NMF) (Lee and Seung 2001) to explore the shared
latent spaces of different social networks, and further infer
the missing data based upon these latent spaces (Li, Jiang,
and Zhou 2014; Song et al. 2015).

3.3 Feature Transformation and Fusion

We feed the completed data into our FARSEEING model
for multiple social network learning. Since it is non-trivial
to fuse these complex data for learning, the FARSEEING
model adopts DNNs to iteratively transform the completed
low-level features into high-level feature spaces. Then we
use the transformed high-level features to build the final pre-
dictive model, which has been shown in Section 2.

4 Experiment

We implemented both FARSEEING and a set of competitors
in Python for comparative evaluation, and we conducted ex-
tensive experiments to evaluate our model.

4.1 Baselines and Experimental Settings

We compared the performance of our FARSEEING model
with nine approaches, including the SVM, three state-of-
the-art linear approaches, two deep learning approaches, and
three variants of our FARSEEING model.

• SVM: We chose SVM with radial basis function (RBF)
kernel as a baseline approach for comparison.

• regMVMT: The regularized Multi-View Multi-Task (reg-
MVMT) model uses a linear model to fuse all sources
with source consistency only (Zhang and Huan 2012).

• iSFS: The incomplete Source-Feature Selection (iSFS)
model (Xiang et al. 2013) uses a linear model to fuse all
sources. It measures the source confidence only.

• MSNL: The Multi-Social Network Learning (MSNL)
(Song et al. 2015) uses a linear model to fuse all sources.
It measures the source confidence and consistency.

• DBN: The Deep Belief Networks (DBN) model (Hinton
and Salakhutdinov 2006) fuses all sources by concatenat-
ing all input sources together, which does not measure the
source confidence or consistency.

• M-DBM: The Multimodal Deep Boltzmann Machine (M-
DBM) model fuses all sources by learning a joint repre-
sentation (Srivastava and Salakhutdinov 2012). It does not
measure the source confidence or consistency.



• FARSEEING-no: This is a variant of FARSEEING with
α = [ 1S , · · · , 1

S ] and μ = 0, i.e. without measuring source
confidence or consistency.

• FARSEEING-na: This is a variant of FARSEEING with
α = [ 1S , · · · , 1

S ], i.e. without measuring source confi-
dence.

• FARSEEING-nw: This is a variant of FARSEEING with
μ = 0, i.e. without measuring source consistency.

To save the cost of memory and computation, we use three
hidden layers to construct our FARSEEING model and its
variants as well as the DBN and M-DBM, which is sufficient
to achieve good performance. Although we also conducted
experiments using FARSEEING with four and more hid-
den layers, no significant improvement has been observed.
We follow established procedures (Bengio 2009) to train the
deep learning models to avoid getting stuck in local minima.

To avoid overfitting and achieve the best performance, we
selected the optimal parameters for each model based on 10-
fold cross validation, and we performed another 9-fold cross
validation on the training data with grid search in each round
(i.e. nested cross-validation). Hence, in each experiment, for
each round of the 10-fold cross validation, 90% of the sam-
ples were used for training the model with 9-fold cross val-
idation, and the remaining 10% were reserved for testing.
For the grid search, it was conducted between 10−2 and 102

with small but adaptive step sizes. The step sizes are 0.01,
0.05, 0.5 and 5 for the range of [0.01, 0.1], [0.1, 1], [1, 10]
and [10, 100], respectively (Nie et al. 2015).

4.2 Evaluation Scheme

Our main evaluation metric is the F1-score, which balances
precision and recall as F1 = 2 precision·recall

precision+recall , and the aver-
age results over the aforementioned 10-fold cross validation
are reported. We also applied a pairwise t-test between our
model and each of the competitors, and we present the re-
sulting p-values to indicate the statistical significance of the
improvements achieved by our model.

4.3 Model Performance

Table 1 presents the performance comparison of different

Approach Precision Recall F1-score p-value

SVM 83.177 83.334 83.202 0.0004

regMVMT 83.694 86.205 84.835 0.0029
iSFS 84.533 88.734 86.254 0.0282
MSNL 87.623 85.710 86.641 0.0798

DBN 87.062 86.707 86.635 0.0569
M-DBM 87.585 88.578 88.085 0.0933

FARSEEING-no 87.238 88.373 87.675 0.1949
FARSEEING-na 87.361 88.585 87.867 0.1586
FARSEEING-nw 87.518 91.121 89.101 0.6358
FARSEEING 88.069 92.197 89.921 -

Table 1: Model performance (%) and significance test.

models. We can see from Table 1 that multi-source deep
learning models, namely M-DBM, our FARSEEING model

and its variants, outperform state-of-the-art linear models,
namely regMVMT, iSFS and MSNL, in terms of F1-score.
This demonstrates that deep learning approaches can better
capture the complex nature of social networks than linear
models. We also observe from this table that multi-source
deep learning approaches outperform DBN, which means
that simply concatenating all sources together is not an ef-
fective way for multiple social network learning.

The experimental data in Table 1 also demonstrate that
both the source confidence and the source consistency de-
serve particular attention. First, the experiment demonstrates
that source confidence regularization is critical for fusing
information from multiple social networks. Our FARSEE-
ING model and its variant with source confidence regular-
ization only, FARSEEING-nw, outperform M-DBM signif-
icantly. Though we notice that M-DBM outperforms two
variants of our model without source confidence regulariza-
tion, FARSEEING-no and FARSEEING-na, the difference
is not significant. Moreover, by comparing the performance
between FARSEEING-na and FARSEEING-no, FARSEE-
ING and FARSEEING-nw, we can see that adopting source
consistency regularization can enrich the final performance.

To summarize, by fusing social networks using deep
learning with source confidence and consistency regular-
ization, our FARSEEING model significantly outperforms
state-of-the-art approaches in terms of precision, recall and
F1-score. This implies that the data on multiple social net-
works are complementary and characterize users’ volun-
teerism tendency consistently. This also indicates that the
correlation of different social networks with the task of vol-
unteerism tendency prediction cannot be treated equally.

In a real-world scenario, volunteers usually constitute
a small portion of social network users. Therefore, we
changed the percentage of volunteer samples in our dataset
to evaluate the usefulness of our model in a real-world sce-
nario. Figure 2 shows the F1-score with respect to different
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Figure 2: Performance comparison among various models in
terms of F1-score with different positive fractions.

positive sample percentages. We can see from the figure that
our FARSEEING model still outperforms other approaches.
Meanwhile, it is generally stable to different percentages
of positive samples which can achieve satisfactory perfor-
mance with a low positive sample proportion.



4.4 Source and Feature Performance

To demonstrate the effectiveness of fusing multiple social
networks, we conducted experiments over different source
combinations and performed significance tests to validate
the advantage of fusing multiple social networks.

The experiment on source combinations further demon-
strates the benefits of measuring the confidence and consis-
tency of different sources. Table 2 presents the performance

Source Precision Recall F1-score p-value

fb 82.365 83.377 82.382 0.0002
in 82.159 83.187 82.367 0.0008
tw 83.612 83.455 83.395 0.0015
fb+in 85.933 88.188 86.619 0.0532
fb+tw 86.864 87.269 86.863 0.0979
tw+in 87.243 85.193 86.941 0.0574
fb+in+tw 88.069 92.197 89.921 -

Table 2: FARSEEING performance (%) of different source
combinations. fb: Facebook, in: LinkedIn, tw: Twitter.

of FARSEEING over various source combinations. This ta-
ble shows that incorporating more sources will achieve bet-
ter performance, which shows that there is a complementary
rather than conflicting relationship among these sources.

Figure 3 presents the performance of all approaches over
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Figure 3: Performance comparison in terms of F1-score (%)
with different social network combinations.

different source combinations. From this figure, we obtain
conclusions similar to the ones from Table 2, namely that
incorporating multiple sources leads to better performance.
Moreover, we observe that multi-source deep learning mod-
els outperform linear models over each source combination.
Additionally, from single source performance, we observe
that linear models achieve significantly better performance
on Twitter alone than that on Facebook or LinkedIn (over
8%) and the combination of Facebook and LinkedIn as well,
while the performance of deep learning models is relatively
stable (∼ 1%). This is mainly because that the discrimi-
native power of data in each source is different, and deep
learning models can better capture the complexity of these
multi-feature social network data than linear models.

To examine the discriminative power of extracted fea-
tures, we conducted experiments on different kinds of fea-
tures using FARSEEING. Table 3 presents the performance

Source & Feature F1-score

Facebook 82.382

Demographic 68.138
LIWC 78.568
Posting 78.284
User topic 80.228

LinkedIn 82.367

Demographic 69.728
Posting 70.995
User topic 81.183

Twitter 83.395

Contextual 79.397
LIWC 76.568
Posting 77.559
User topic 80.108
Egocentric 75.304

Feature F1-score

Demographic 76.661

Linguistic 88.211

User topic 86.690
Contextual 79.397
LIWC 79.162

Behavioral 78.190

Posting 77.720
Egocentric 75.304

Table 3: FARSEEING performance comparison in terms of
F1-score (%) with different sources and features.

of FARSEEING with different features. From Table 3, we
can see that the user topic features achieve the best perfor-
mance in each source, and the linguistic features achieve the
best performance comparing demographic and behavioral
features. In particular, the user topic features achieve sig-
nificantly better performance against others. This shows that
individuals’ tendency to volunteerism is reflected in their so-
cial contents, especially the topics they discussed on social
networks. Meanwhile, the performance of contextual topic
features means that “birds of a feather flock together”, which
is to say that contextual information, namely the topics of
a given user’s followers/followees, reflects this user’s ten-
dency to volunteerism as well. The performance of behav-
ioral implies that posting patterns and social connections in-
deed reflect a users personal character and concerns.

5 Related Work

In this paper, we fuse data from multiple social networks
with deep learning and cast the problem of volunteerism ten-
dency prediction as a binary classification task. So our work
is related to studies of volunteerism, multi-source learning
as well as deep learning.

Volunteerism is generally regarded as non-profit activities
or services offered by individuals or organizations to ben-
efit the served person or community. A previous work by
Penner (Penner 2002) studies the influences of dispositional
variables on volunteerism using data from an on-line survey.
This research shows that people’s personality traits and re-
ligiosity have a significant relationship with their volunteer
activities, and it presents a theoretical model for the causes
of volunteerism and gives explanations from an interaction-
ist perspective.

Multi-source learning has attracted great attention from
machine learning community. regMVMT (Zhang and Huan
2012) introduces regularization to measure the consistency
of different sources, but neglects source confidence. A later
work, iSFS (Xiang et al. 2013) adopts source confidence reg-
ularization when fusing data for Alzheimers Disease predic-



tion. This work does not measure the consistency of differ-
ent sources. The state-of-the-art work, MSNL (Song et al.
2015) was devised for multiple social network learning. This
model measures both the confidence and the consistency
of different sources, and it also uses volunteerism tendendy
prediction as an application. All these approaches adopt lin-
ear models to fuse information from multiple sources. How-
ever, such linear models may not be powerful enough to cap-
ture the complex nature of different social networks.

Deep learning approaches have also been widely used for
multi-source learning. Deep denoised auto-encoders were
adopted to learn a shared representation of multiple sources
(Ngiam et al. 2011). M-DBM (Srivastava and Salakhutdinov
2012) is presented to fuse image and text tag data by learn-
ing a joint representation. A hybrid deep learning model,
HLDBN (Wang and Wang 2014), is presented to fuse users’
rating data and audio features for music recommendation.
These deep learning-based approaches can better capture
the complex nature of different sources. However, these ap-
proaches neither measure the level of confidence in each
source nor the consistency among different sources.

6 Conclusion

This paper presents a novel multi-source deep learning
model. It fuses social networks using deep learning with
source confidence and consistency regularization to better
capture the complex nature of social networks. This model
is the core component of our framework for multiple social
network learning. We evaluate our framework on the appli-
cation of user volunteerism tendency prediction. By exten-
sive experiments, we demonstrate that our approach is intu-
itively reasonable and empirically beneficial, compared with
other approaches. Currently, we only solve a multi-source
mono-task learning problem using the presented framework.
In the future, we will extend it to the context of multi-source
multi-task learning.
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