
An Adaptive Master-Slave Regularized Model for
Unexpected Revenue Prediction Enhanced with

Alternative Data
Jin Xu‡ † Jingbo Zhou∗† Yongpo Jia§ Jian Li‡ Xiong Hui∗† ¶

†Business Intelligence Lab, Baidu Research, China
‡Institute for Interdisciplinary Information Sciences, Tsinghua University, China,

†National Engineering Laboratory of Deep Learning Technology and Application, China,
§Department of Earth System Science, Tsinghua University, China, ¶Rutgers University,

Email: †zhoujingbo@baidu.com, {‡jxu3425,‡lapordge,†xionghui}@gmail.com,§jiayongpo@tsinghua.edu.cn

Abstract—Revenue prediction is an essential component in
security analysis since the revenue of a company has a great
impact on the performance of its stock. For investment, one
of the most valuable pieces of information is the company’s
unexpected revenue, which is the difference between the offi-
cially reported revenue and the consensus estimate for revenue
predicted by analysts. Since it is the unexpected revenue that
indicates something exceeding or under analysts’ expectation,
it is an indispensable factor that influences the performance of
a stock. Besides conventional trading data from stock market
and companies’ financial reports, recent years have witnessed
an extensive application of alternative data for gaining an
information edge in stock investment.

In this paper, we study the challenging problem of better pre-
dicting unexpected revenue of a company via machine learning
with alternative data. To the best of our knowledge, this is the first
work studying this problem in literature. However, it is nontrivial
to quantitatively model the relations between the unexpected
revenue and the information provided by alternative data with
a machine learning approach. Thus we proposed an adaptive
master-slave regularized model, called AMS for short, to effec-
tively leverage alternative data for unexpected revenue prediction.
AMS first trains a master model upon a company graph, which
captures the relations among companies, using a graph neural
network (GNN). Then for a target company, the master model
generates an adaptive slave-model, which is specially optimized
for this target company. Finally, we use this slave-model to predict
the unexpected revenue of the target company. Besides its excel-
lent prediction performance, another critical advantage of our
AMS model lies in its superior interpretability, which is crucial
for portfolio managers to understand the predicted results. With
extensive experiments using two real-world alternative datasets,
we have demonstrated the effectiveness of our model against a
set of competitors.

I. INTRODUCTION

Since the revenue of a company is closely related to its
stock’s future worth, revenue prediction has been widely
considered as an essential but difficult component of security
analysis [1]. The revenue is a company’s total income from
its normal business activities including sales of goods and
services online and offline. In order to predict a company’s rev-
enue as accurate as possible, financial analysts usually research

∗Jingbo Zhou and Hui Xiong are corresponding authors.

thoroughly on a significant amount of data, including the
company’s business models, financial reports, industrial case
studies, and other relevant data for a compilation. Analysts also
take different factors into consideration, such as competition
from similar business, seasonal and periodic trends. Since
different analysts often have different analysis results of the
revenue of a company, we name the average of the analysts’
estimation of a company’s revenue as consensus.

Unexpected revenue refers to the amount of the officially
reported revenue of a company exceeding or under its con-
sensus. Since the unexpected revenue of a company often
indicates something beyond analysts’ expectation, it is one
of the most valuable revenue information for investment. The
relation between unexpected revenue and stock return has
been extensively investigated in the literature [2]–[6]. Existing
studies show that revenue surprises caused by unexpected
revenue can bring significant abnormal returns in stock market
[3], [5]. According to a recent study using alternative data by
J.P. Morgan [7], the unexpected revenue has been proven to
be an effective signal for trading.

Besides conventional data from stock market and financial
reports, alternative data, such as connections between compa-
nies and transaction records, has attracted great attention for
financial investment [7]. Alternative data contains information
beyond traditional financial and economic sources, and such
data is considered as the least utilized alpha source today [8].
Generally speaking, the alternative data used for investment
can be classified into three categories: data produced by indi-
viduals (such as social media posts), data generated through
business processes (such as credit card or online payment
App transaction data), and data generated by sensors (such
as GPS) [7]. Take the online transaction data as an example
of alternative data. The sum of online transaction amount
usually has a positive relationship with a company’s revenue.
In addition, location data belongs to the third category of
alternative data generated by mobile application. It records
the number of people appearing around an offline store over a
period of time by GPS devices. Generally, more people appear
around a company’s offline stores, more revenue the company

Fig. 1. Model overview. The green node is the target company and the
blue nodes are companies related to the target company (explained in Section
III-C). The master model generates the parameters of the slave-model. Then
the slave-model receives the target company and predicts the unexpected
revenue of the target company.

can get. As we can see from above discussion, alternative data
can provide additional insights of a company’s revenue. More
importantly, harnessing such data can help investors gain a
significant information edge over others.

However, it is nontrivial to use machine learning techniques
to analyze alternative data and it has attracted great attention
recently [9]–[14]. Existing studies focus on using alternative
data to predict the market trends [9]–[12] or the individual
stock trends [13], [14], mainly based on social media or news.

Arguably, predicting the unexpected revenue is one of the
most important problems in predicting the stocks’ future
return. As alternative data provides different perspectives and
insights for investment, it is desirable to use alternative data
to enhance the performance of unexpected revenue prediction.
As far as we know, there are few existing works to study on
predicting the unexpected revenue with alternative data. One
exception is the case introduced by Kolanovic et al. [7] who
simply aggregated alternative data (like the foot traffic of a
company) as a reference to help portfolio manager (PM) make
investment decisions. Therefore, an advanced model which can
quantitatively measure the relationship between the revenue
and alternative data is strongly desired. To the best of our
knowledge, our work is the first study on building a machine
learning model to quantitatively forecast the unexpected rev-
enue of a company with alternative data.

There are several challenges in predicting unexpected rev-
enue using a machine learning model with alternative data.
First, alternative data can be noisy due to the uncertainties in
data collection and processing, which may result in a model
that overfits the noise but does not generalize well. Second,
the revenue data of a company is usually sparse because of its
limited accessibility. Each company has at most four reported
revenue every year, and the reported revenue over the past
several years may become invalid since the business of the
company may have been changed. Thus it is non-trivial to train
a complex machine learning model on the alternative data with
the limited labelled financial data. Third, it is also challenging
to devise a model with a high interpretability. Since existing
deep learning based models are a kind of black-box, their
results are hard for PMs to understand. The interpretability
of the model’s forecast result is important for PMs as it can
provide sources of uncertainties and hence help PMs control
the risk better [15], [16].

To tackle the above challenges, in this paper, we first
propose a novel model, called Adaptive Master-Slave regu-
larized model (called AMS for short) for unexpected revenue
prediction with alternative data. To deal with the challenges
of data noise and data sparsity, the AMS model makes a trade
off between the model’s complexity of utilizing alternative
data and its simplicity for unexpected revenue prediction. An
overview of our AMS model is illustrated in Figure 1. The
key idea of AMS is to train a master model first, then the
master model generates an adaptive slave-model for each target
company on the fly. At the same time, the master model
also regularizes the parameters of the generated slave-model.
Note that different slave-models are generated and adaptively
optimized for each company.

In this paper, we first construct a graph of company cor-
relations, where each node corresponds to a company, and
each edge indicates the similar trend of historical revenue
between two companies. The details of constructing such a
company correlation graph is discussed in Section III-C. Then
we use a Graph Neural Network (GNN) on the company
correlation graph to construct the master model of AMS.
The GNN based master model can not only can gain more
valuable insights hidden in the company correlations, but also
offset the data noise (of alternative data) and data sparsity
(of revenue data) problems, and finally improve the capability
of AMS. To avoid overfitting of training the slave-model of
AMS, we also propose two novel regularization techniques,
called supervised linear regression (LR) generation and model
assembly, to regulate the flexibility of slave-models, which
improves the performance of AMS in practice.

For the last challenge, namely the model’s interpretability,
the result of AMS is more interpretable compared with other
black-box deep learning models. In AMS, we use linear
regression (LR) as the slave-model. Since the final result of
the unexpected revenue is predicted by an LR model, it is easy
for PMs to understand the result and estimate the sensitivity
of each feature (by observing the changes of the outcome by
increasing a small delta unit of the feature value). Our AMS
model can improve the capacity of the conventional linear
regression model while keeping its interpretability.

We summarize our contributions as follows:

• We are the first to study the unexpected revenue pre-
diction problem with machine learning approach using
alternative data.

• We first propose a novel AMS model for unexpected rev-
enue prediction. Specifically, we use a GNN on company
correlation graph as a key component to construct the
master model. Meanwhile, we also propose two novel
regularization techniques, supervised LR generation and
model assembly, to optimize the generated slave-models.

• Compared with other black-box deep learning models,
the output of our AMS model is more interpretable.

• We conducted extensive experiments on two alternative
datasets – online transaction amount data and map query
data – to demonstrate the effectiveness of our model.

The rest of the paper is organized as follows. Next, we
discuss preliminaries in Section II, followed by the detail of
AMS in Section III. Then we evaluate our model in Section
IV. Finally we discuss related work in Section V and conclude
the paper in Section VI.

II. PRELIMINARIES

In this section, we introduce preliminaries about this paper.
First, we provide an introduction to the unexpected revenue
prediction problem. Then we discuss metrics used to evaluate
our model. Finally we present a formal problem definition.

A. Unexpected revenue prediction

Unexpected revenue is defined as the amount of the re-
ported revenue of a company minus analysts’ consensus of its
revenue, which is the expectation of the analysts’ estimated
revenue whose formal definition is UR = R − E(R) where
UR is the unexpected revenue, R is the actual revenue, and
E(R) is the expected revenue of the company. Hereafter, E(R)
is also called consensus, which refers to the expectation of the
analysts’ estimation of the revenue of a company.

The unexpected revenue of a company usually leads to
abnormal stock returns. For example, if a company obtains
a higher revenue than expected, it will achieve a lower price
to earnings (PE) than the one on the current market. When
the information of its increased revenue is released, its stock
price may consequently increase, resulting in a higher return.

B. Metrics

Here we introduce two metrics to measure the quality of the
predicted unexpected revenue. Hereafter, let us denote the pre-
dicted revenue as R̂ and the actual revenue as R, the predicted
unexpected revenue as ÛR and the actual unexpected revenue
as UR. We can observe that only measuring the difference
between the ÛR and UR is not enough since whether ÛR
and UR are in the same direction is also very important
to tell whether the company meets, exceeds or misses the
market’s expectation. Therefore, here we define two metrics,
Bounded Correction (BC) and Surprise Ratio (SR), to measure
the quality of the prediction result.

Definition II.1. BC (Bounded Correction) BC is defined as
BC = I(|ÛR − UR| < |UR|) where I(·) is an indicator
function whose value is 1 when condition is true, and 0
otherwise.

Lemma II.1. If BC = 1, ÛR and UR are in the same
direction and |R̂−R| < |E(R)−R|.

Proof. When BC = 1, there are four cases as follows: (C1) if
UR > 0 and ÛR−UR > 0, we can get ÛR > 0 directly. (C2)
if UR > 0 and ÛR− UR < 0, we can get UR− ÛR < UR
because BC = 1. Then we can get ÛR > 0. (C3) if UR < 0
and ÛR − UR > 0, we can get ÛR − UR < −UR because
BC = 1. Then we can get ÛR < 0. (C4) if UR < 0 and
ÛR − UR < 0, we can get ÛR < 0 directly. In these cases,
we can always get that sign(ÛR) = sign(UR) which means
ÛR and UR are in the same direction.

We have two observations: (O1) |UR| = |R − E(R)| is
just the absolute error between analysts’ consensus and actual
revenue. (O2) |ÛR− UR| = |(R̂−E(R))− (R−E(R))| =
|R̂ − R| is just the absolute error between predicted revenue
and actual revenue. Then, based on (O1) and (O2), we can
conclude that when BC is true, |R̂−R| < |E(R)−R|.

It provides a new perspective to understand BC that the
predicted revenue is closer to actual revenue than analysts’
consensus when BC = 1.

Given a set of companies, we can further compute BA
(Bounded Accuracy):

BA =
1

N

N∑
i

BCi

where N is the number of companies. A high BA value means
that the prediction model can predict the correct direction
of the unexpected revenue with high possibility. Note that
the BA of a bad prediction model (like random guess) is
almost zero (some people may mistakenly consider it as 0.5).
For example, let’s imagine someone gives random revenue
prediction RP and professional analysts give consensus RC

before the revenue announcement of the company. After the
company announces the revenue R, we get the consensus’s
error (unexpected revenue) err = R − RC . According
to the definition of BC, we check whether RP locates in
[R− |err|, R+ |err|] which means that random prediction is
closer to revenue than consensus, and the same time we also
need to check whether both RP and R are larger or smaller
than RC which means the direction of prediction is correct.
Due to the prediction RP can be arbitrary value by random
guess, the probability that RP locates in [R−|err|, R+ |err|]
is quite low (and can be zero). So the BA of random prediction
is almost 0 (not 0.5).

We also need a quantitative metric to evaluate the model’s
prediction performance compared with analysts’ consensus.
Thus we define another metric SR (Surprise Ratio) as
follows:

Definition II.2. SR (Surprise Ratio) SR is defined as SR =
|ÛR−UR|
|UR| .

|ÛR−UR| = |R̂−R| represents the absolute error between
the predicted revenue and the actual revenue of a company. If
SR > 1, the absolute error between the predicted revenue
and the actual revenue is larger than the one between the
analysts’ consensus and the actual revenue; and vice versa.
So the smaller SR, the closer a model’s predicted revenue
is to actual revenue than analysts’ consensus. Given a set of
companies, we can further compute the average of SR.

Given a set of data, we use two metrics BA (Bounded
Accuracy) and SR (Surprise Ratio) to evaluate a model’s
performance. The higher BA, the lower SR, the better the
prediction result of the model is. A high BA score means that
the model can predict the correct direction of the unexpected
revenue within bounded error with high possibility. And a low

Fig. 2. An illustration of BC metric. If R̂ locates in range S (like P1),
Bounded Correction(BC) is 1. If R̂ (like P2) locates out of range S, BC is
0.

SR score indicates that model’s predicted revenue is closer to
actual revenue than analysts’ consensus.

C. Problem Definition

Our objective is predicting the unexpected revenue of a
company using its historical financial data and alternative data.
For the financial data of a company, we use two types of data:
the historical revenue data and the analyst’s consensus.

Formally, we have a set of data that {Rt
i, SE

t
i , SA

t
i} where

Rt
i is the revenue of company i at quarter t, SEt

i is a
set of estimated revenues of this company at quarter t by
different analysts, and SAt

i is a set of alternative data of
the company at quarter t. For a set of estimated revenue
SEt

i , we extract the mean of the estimation Et
i which is

also named analysts’ consensus, the lowest estimation LEt
i

and the highest estimation HEt
i as estimation features vector

V Et
i = (Et

i , LE
t
i , HE

t
i). For a set of alternative data, we can

only obtain an aggregate value At
i which is the total value

of the whole alternative data SAt
i (e.g. we cannot obtain the

position of each user for privacy issues, but we can get the
total number of users to a store in a quarter). We denote such
aggregated value At

i as alternative data features. Therefore,
the features of a company at quarter t can be expressed as
Ct

i = {Rt
i, V E

t
i , A

t
i}. Then the unexpected revenue prediction

task can be defined as:

Definition II.3 (Unexpected Revenue Prediction). A
company has a sequence of features Ct−k:t−1

i =
Ct−k

i , Ct−k+1
i , ..., Ct−1

i and (V Et
i , A

t
i) where V Et

i is
the estimation features at quarter t, and At

i is the alternative
data features at quarter t. We define the financial features of
the company at quarter t as Xt

i = {Ct−k:t−1
i , V Et

i , A
t
i}. Our

objective is to train a predictive model f(·) which can predict
the unexpected revenue URt

i = Rt
i − Et

i that ÛR
t

i = f(Xt
i).

Since every symbol in the above definition has a timestamp
t, by default we omit the superscript t hereafter for conve-
nience.

D. Alternative Datasets and Feature Extraction

The alternative data is the information gathered beyond
traditional financial and economic sources. We use two real-
world alternative datasets to evaluate our model.
• Online transaction amount is the amount of online

credit card transactions collected by the China UnionPay.
For each company, we collected the sum of transaction
amount in each quarter. In our dataset, there are 71
companies with transaction amount features collected

from 2014q3 to 2018q2, namely 16 quarters of data in
total.

• Map query is the number of people querying a particular
place, and such data is collected by Baidu Maps. Usually
a map query of a store on online map service indicates
a visit of this store by this user. It is important to many
types of business as higher visitation number of users
can lead to higher sales. For each company, we collect
two kinds of data – map query to store and to parking lot,
and separately collect the sum of the data in each quarter.
Store refers to the offline stores and parking lot refers to
car parking area of a company. There are 62 companies
with both map query to store and to parking lot. We have
9 quarters of companies’ map query data from 2016q2 to
2018q2.

There are almost no overlap companies between the two
datasets. In addition, such alternative data can be noisy due
to the uncertainties in data collection and processing. It is
nontrivial to use data mining and machine learning techniques
to analyze alternative data, as we can see the YoY and QoQ
(Section IV-B)’s poor performance from Table I and Table II.
This indicates the prediction of unexpected revenue requires
well-designed models.

For each company, we have its historical financial features
including revenues Rt

i and historical analysts’ estimations
V Et

i = (Et
i , LE

t
i , HE

t
i) which are the mean, lowest and

highest estimation of its revenue at each quarter. For a com-
pany, each analyst may give more than one estimations of its
revenue. We adopt his/her estimation at end of the company’s
fiscal quarter (which is before revenue announcement) into the
dataset. In addition, we apply one-hot coding for the quarter,
month and sector of the company as additional features.

As introduced in Section II-C, the financial features of the
company i at quarter t is Xt

i = {Ct−k:t−1
i , V Et

i , A
t
i}. In our

experiment, we set k = 4 in order to guarantee Xt
i to have at

least features of one year. Since each sample should contain
historical information for one year. All data is normalized by
dividing the value of the oldest features in order to capture
relative changes in price features and alternative data features,
e.g. we normalize Rt−k:t

i by dividing Rt−k
i , At−k:t

i by dividing
At−k

i . In order to strictly ensure that any information in the
future is not used, we normalize dataset with the mean and
variance from the training set in each cross-validation step.
All of the models share the same features talked above.

III. ADAPTIVE MASTER-SLAVE REGULARIZED MODEL

A. Framework overview

In this section, we first provide an overview of our AMS
framework. As shown in Figure 1, to forecast the unexpected
revenue, the first step is slave-model generation, where the
master model generates an adaptive slave-model for a com-
pany. Then the company’s financial features are fed into the
slave-model as input to predict its unexpected revenue.

In this paper, we use linear regression as the slave-model,
because: 1) linear regression has good interpretability for

analysts to observe the composition of the final prediction
result; and 2) linear regression has a simple structure which
can be handled by the master model. Therefore, hereafter we
also denote the slave-model as slave-LR. Note that in our
model, each company has its own unique slave-LR model for
predicting its unexpected revenue.

Figure 3 shows the whole process of AMS to generate the
slave-LR model for each company through the master model.
As shown in Figure 3, given a company Xi, the company’s
information is transformed by a node transform operation.
Then under the structure defined by the company correlation
graph, the company i is fed into a graph neural network to
learn a node representation. Following that, the slave-model
generation step will generate an adaptive slave-LR for each
company to predict the unexpected revenue. In AMS, the
master model has three main components, which are 1) graph
neural network on company correlation graph, 2) anchored LR
model, and 3) slave-model generation. We will introduce the
detail of the AMS model in the following sections.

B. Node transformation

Before inputting a company into the GNN, we first conduct
a node transformation on the company’s financial features.
Therefore, we use several forward layers to map the financial
features of each company into the same feature space. For
each layer of the node transformation, we use the following
transformation function:

X ′i = φnt(WntXi) (1)

where Xi ∈ RF , X ′i ∈ RF ′ and Wnt ∈ RF ′×F . φnt is
the activation function and we use ReLu(·) (Rectified Linear
Unit) as nonlinear activation function. After several such
forward layers, the final output features of the company i after
the node transformation are defined as nt(Xi). Note that node
transformation is trained in an end-to-end process as part of
the AMS model.

C. Graph neural network on company correlation graph

To generate the slave-model for each company, besides the
company’s financial features, we further use the company
graph structure information to help generate the slave-LR
model. Companies who share a similar trend of historical rev-
enue may have some potential relationships. Thus, exploiting
such graph structure can help the master model to generate a
more effective slave-LR model.

Figure 4 shows an illustration of a company correlation
graph. In the graph, the node represents a company, and the
edge of the graph represents that two companies have high
revenue correlation in history. For a company A, we first
calculate the Pearson Correlation about revenue in history
between company A and all other companies. Then we select
k companies with the largest correlations with company A,
and add an edge between the company A and these top k
companies. Here k is a hyperparameter. Note that we only
use the historical revenue to build the graph at every time
series cross-validation step to avoid data leakage.

Upon the company correlation graph, we build a graph
neural network to learn the representation of each company.
The representation of a company should take the relations
among the correlation graph into consideration for unexpected
revenue prediction. We adopt a graph attention neural network
(GAT) [17] on the company correlation graph to learn a
representation of the company based on the company graph
structure. The GAT can transform the input features of the
company into high-level representations which can be used to
generate better slave-models. Note that we use a supervised
method to learn such representations by GAT, and the whole
training process of the GAT is discussed in Section III-F

The reasons to adopt GAT as the GNN model to learn a
company’s features from the company correlation graph are
1) GAT is the state-of-the-art GNN model for representation
learning on graph; 2) GAT can be applied to graph nodes
having different degrees which is just a property of the
company correlation graph.

The building block layer of GAT is the graph attention
layer. For each graph attention layer, the input of the layer
is a set of node features S = {X1, X2, ..., Xn}, Xn ∈ RF ,
where n is the number of companies and F is the number
of features of each node.1 If it is the first graph attention
layer, then F is just the number of node features after node
transformation. The graph attention layer outputs a new set
of node features that S′ = {X ′1, X ′2, ..., X ′n}, X ′n ∈ RF ′ , and
it is possible F 6= F ′. For each layer, we define a shared
weighted transformation matrix W g ∈ RF ′×F . If node j is
adjacent to node i in the correlation graph, then we use the
shared attention mechanism to compute attention coefficients
aij = softmaxj(eij) = softmaxj(a(W gXi,W

gXj)) to
indicate the impact of node j’s features to node i, where the
attention mechanism a is a single-layer feedforward neural
network with activation function [17] and softmax is a
normalized exponential function named softmax function . The
final output features of each company is:

X ′i = φg(
∑
j∈Ni

aijW
gXj) (2)

where Ni is in the neighbourhood of company i in the com-
pany correlation graph, and φg is the activation function. In our
experiment, we set φg as ReLu(·). In the graph attention layer,
we also adopt the multi-head attention mechanism [17] which
uses H independent attention transformation of Equation 2. In
this case the final output of the graph attention layer is:

X ′i = ‖Hh=1φ
g(

∑
j∈Ni

ahijW
g
hXj) (3)

where ‖ represents concatenation. The final output layer of
GAT is a single attention head layer.

To sum up, given a set of the company S (organized as a
correlation graph), the final output features of the company i
after the GNN is denoted as g(xi) = GNN(nt(Xi)|S).

1Here the input features Xi of GAT is actually nt(Xi), which is the
output of node transformation function after several layer transform of
φnt(WntXi), however, we still use Xi to denote the input node features
to avoid introducing too many unnecessary symbols.

Fig. 3. The process of AMS model.

Fig. 4. An illustration of correlation graph (k = 5).

D. Anchored LR model training

In the master model, we also train an anchored linear
regression model on the whole training data. The anchored
LR is just a common LR model assuming the relationship
between the dependent variable URi and the financial vector
Xi is linear, which has the form:

ÛRi = XT
i Bacr (4)

To optimize the parameter of Bacr, we should minimize the
optimization function Γacr defined as follows:

Γacr = min
1

2N

N∑
i=1

||XT
i Bacr − URi||2 +

1

2
λ||Bacr||2 (5)

As we explain in next section, we will add a regularization
term for generating slave-models to ensure the parameters of
the slave models are consistent with Bacr as much as possible.
This is just the reason we call this LR model as an “anchored”
LR which is further discussed in Section III-E1.

E. Slave-model generation

After learning the node representation of a company from
GNN, as shown in Figure 3, the next step is to generate the
slave-model for this company. The objective of this step is
to generate an adaptive linear regression slave-model for each
company. Though it is simple, the linear regression method has
shown great potential in many financial predictive applications.
One reason is that it is hard to train a complex model due to
the limited amount of financial data, and another reason is
that the LR has good interpretability which is important for
the financial application scenario.

In our model, given a company i with financial features Xi,
we will generate an adaptive linear regression model for this
company. The model generation is based on the representation

of the company learned by GNN in previous section, which
can be expressed as:

βv(Xi) = M(g(Xi)) = M(GNN(Xi|S)) (6)

where the predicted unexpected revenue of the company i is
ÛRi = XT

i βv(Xi).
Now the key problem is how to train a generation model

M to predict the slave-LR model. We first define a nonlinear
transformation model with each layer having the transforma-
tion function X ′i = φm(WmXi).2 The final output of M(·) is
βv(Xi) = WmXi. Note that there is no activation function in
the final layer since our objective is to predict the parameters
of the slave-LR model.

The straightforward way to optimize M(·) is to optimize
the following objective function:

Γ1 = min
1

2N

N∑
i=1

||URi −XT
i M(g(Xi))||2 +

1

2
λ1||M · g||2

(7)
However, simply predicting a linear regression model for a
company can easily lead to overfitting in the training data since
βv(Xi) has too much flexibility as a model for Xi. We propose
two regularization techniques to tackle this problem, which
are called supervised LR generation and model assembly,
respectively.

1) Supervised LR generation: The first regularization tech-
nique is called “supervised” LR generation which restricts the
parameter space of the slave-LR’s parameters. Its essential
idea is that we make the generated LR’s parameter βv(Xi)
approach to parameters of anchored LR Bacr as much as
possible. To achieve this purpose, we add a regularization term
Γslg on the objective function to optimize the model for LR
generation, which is:

Γslg = min
1

2N

N∑
i=1

||βv(Xi)−Bacr||2

= min
1

2N

N∑
i=1

||M(g(Xi))−Bacr||2
(8)

And the objective function can be formulated as:

Γ2 = Γ1 + λslgΓslg (9)

2Here the input features Xi is actually the output of GAT, however, we
still use Xi to denote the input node features to avoid introducing too many
unnecessary symbols.

The reasons to devise such a supervised LR generation tech-
nique can be seen from two perspectives: 1) the parameter of
Bacr is already optimized over all the training dataset which
can make βv(Xi) be optimized only in near-optimal parameter
space; 2) the βv(Xi) can be adjustable with its features to
search a better parameter than the ones of Bacr.

2) Model assembly: The second regularization technique
to avoid overfitting of the slave-LR is called model assembly
which assumes M(·) is assembled by an adaptively generated
LR model and a globally optimized LR model. In this case,
the generated slave-LR model can be expressed as:

βv(Xi) = γM(g(Xi)) + (1− γ)βc (10)

The advantage of model assembly is that it can balance
the contradiction between the model’s flexibility (which may
result in overfitting) and inadaptability (which is not adaptive
to different companies). γ is a hyperparameter and it makes
a trade-off between the fully adapted slave-LR model and the
solely globally optimized LR model. Therefore, the model as-
sembly technique can stabilize the flexibility of the generated
slave-LR model.

To combine the supervised LR generation and model as-
sembly, the final objective function is:

Γmaster = min
1

2N

N∑
i=1

||URi −XT
i (γM(g(Xi)) + (1− γ)βc)||2

+ minλslg
1

2N

N∑
i=1

||M(g(Xi))−Bacr||2

+
1

2
λ1(||M · g||2 + ||βc||2)

(11)
where Bacr is a pre-trained constant vector; γ, λslg , λ1 are
hyperparameters, and the last term of the objective function is
L2 regularization.

F. Training Process of AMS
We summarize AMS’s training process in this section. There

are two steps to train the master model for generating the
slave-LR model. The first step is to train a globally optimized
anchored LR Bacr by minimizing the objective function Γacr

defined in Equation 5.
After obtaining the parameter of Bacr, the next step is to

optimize the objective function Γmaster as defined in Equation
11. We use gradient descent with Adam [18] to optimize
parameters of the model. Note that all the representations
learned by node transformation and GAT are dependent on the
optimization of the objective function Γmaster. In other words,
there are three sets of parameters to be optimized through min-
imizing Γmaster: 1) the parameters for node transformation;
2) the parameters of GAT on company correlation graph; and
3) the parameters for slave-model generation.

IV. EXPERIMENTS

A. Environment and settings
Experiments are conducted on a GPU-CPU platform. The

GPU is Tesla P40, and the CPU is Intel Xeon Gold 5117

with 206 GB memory. All the program and baselines are
implemented in Python 3.6. The deep learning models are
implemented in PaddlePaddle3.

B. Baselines

We compared AMS with several baselines which can be
classified into three groups including: 1) XGBoost, three linear
model variants (Lasso, Ridge, and Elasticnet) which have good
interpretability; 2) Multilayer Perceptron (MLP) and neural
sequence models (LSTM and GRU) which have high capacity
and can capture temporal dependency; 3) statistical model
ARIMA which uses the historical revenue for prediction, and
QoQ/YoY which uses alternative dataset. The details are as
follows:
• XGBoost [19] is a scalable implementation of Gradient

Boosting Decision Tree algorithm. We set the parameter
of “objective” in XGBoost as “reg:linear” to build a
regression model for unexpected revenue prediction.

• MLP (Multilayer Perceptron) is a multilayer feedforward
neural network. In our experiment, each node is a neuron
that uses a nonlinear activation function ReLu(·). This
model has a greater capacity than linear regression but is
uninterpretable.

• Lasso (Least Absolute Shrinkage and Selection Operator)
is a variant of linear regression model with L1 regular-
ization.

• Ridge is a variant of linear regression model with L2
regularization.

• Elasticnet is a variant linear regression model with L1
and L2 regularization.

• LSTM [20] (Long Short-Term Memory) is a sequence
deep learning model designed to efficiently capture long-
term and short-term dependencies through gating mech-
anism.

• GRU [21] (Gated Recurrent Unit) is a popular variant of
LSTM which has less parameters.

• ARIMA [22] (Autoregressive Integrated Moving Average
model) is a popular statistical model for time series
forecasting.

• QoQ (Quarter to Quarter) uses the relative change
amount of the alternative feature from quarter to quarter
to predict the unexpected revenue, which is is defined as
At

i

At−1
i

Rt−1
i − Et

i .
• YoY (Year to Year) uses the relative change amount of

the alternative feature from year to year to predict the
unexpected revenue, which is defined as At

i

At−4
i

Rt−4
i −Et

i .

C. Training Method

The random search strategy [23] is adopted on validation
data to determine the optimal hyperparameters. Models are
optimized with Adam [18]. We repeat 10 times of experiments
for training AMS model, and the average running time for
optimizing AMS is 771 seconds. Dropout [24] is applied to
models who have stacked fully connected layers like AMS and

3http://www.paddlepaddle.org/

MLP. Same as AMS, we use L2 regularization technique to
other models.

Fig. 5. Time series cross-validation at online transaction amount dataset.

We use time series cross-validation (CV) to evaluate the
model’s performance. Figure 5 is an example on online trans-
action dataset. For online transaction amount dataset, we drop
data from 2014q3 to 2015q2 due to the absence of historical
information of one year. At the initial step, we hold one’s
year historical data from 2015q3 to 2016q2 for training due to
sufficient data for rolling. We use data in 2016q3 for validation
and data in 2016q4 for testing. Next step, we use data before
2016q4 for training, data in 2016q4 for validation, and data
in 2017q1 for testing. In this way, we can evaluate models’
performance in the last seven quarters from 2016q4 to 2018q2.
For map query dataset, we also drop data from 2016q2 to
2017q1 due to the absence of historical information of one
year. Then we use data in 2017q2, 2017q3 as initial training
data, data in 2017q4 for validation, and data in 2018q1 for
testing. Next step, we use data in 2017q2, 2017q3, 2017q4
for training, data in 2018q1 for validation, and data in 2018q2
for testing. Then we can evaluate models’ performance in the
last two quarters. To sum up, we evaluate models on online
transaction amount dataset from 2016q4 to 2018q2 and map
query dataset from 2018q1 to 2018q2.

D. Model Performance

The experiments on BA and SR are summarized in Table I
and Table II. Since companies almost have no overlap between
the transaction amount and map query dataset, there is no
experiment on companies with both map query and transaction
amount data.

We conducted a significance test – pairwise t-test – between
AMS and baselines with regard to BA on transaction amount
data. The P-values are shown in Table I. We find that AMS
significantly outperforms all the baselines. Due to the limit
time length of map query dataset, we only have CV results on
2018q1 and 2018q2. Thus we cannot conduct the significance
test on map query data. We directly show the model’s results
on 2018q1 and 2018q2. On transaction amount dataset, the
BA of AMS is larger than 58%, but none of the baselines is
larger than 53%. On map query dataset, AMS also achieves
highest BA 57.258%.

TABLE I
PERFORMANCE COMPARISON ON BA (BOUNDED ACCURACY). THE FIRST

COLUMN OF BA ON EACH DATASET IS THE AVERAGE OF CROSS
VALIDATION RESULTS. THE FIRST (SECOND) LINE OF YOY/QOQ ON MAP

QUERY DATASET IS THE RESULT OF YOY/QOQ WITH MAP QUERY TO
STORE (PARKING LOT).

Dataset transaction amount map query
Model BA P-value BA BA(18q1) BA(18q2)
AMS 58.551 - 57.258 54.838 59.677

XGBoost 50.503 0.0179 45.967 45.161 46.774
MLP 51.307 0.0134 47.580 48.387 46.774
Lasso 48.088 0.0454 38.709 41.935 35.483
Ridge 52.515 0.0009 45.967 48.387 43.548

Elasticnet 52.917 0.0396 45.161 43.548 46.774
Lstm 51.710 0.0121 54.032 50.000 58.064
GRU 50.905 0.0233 50.806 51.612 50.000

ARIMA 12.273 <1e-4 15.322 17.741 12.903

YoY 28.772 <1e-4 11.290 11.290 11.290
15.322 9.677 20.967

QoQ 27.692 <1e-4 20.161 22.580 17.741
15.322 19.354 11.290

Table II illustrates the comparison results under SR metric.
For transaction amount dataset, in order to measure whether
models are significantly better than analysts’ consensus, we
apply the pairwise t-test between models and analysts’ con-
sensus with regard to SR on CV results. Except QoQ, YoY
and ARIMA are significantly worse than analysts’ consensus
(P-value is small but SR is much larger than 1), AMS is
the only one that obtains a substantially small p-value toward
significance but other models’ P-values are larger than 0.48.
Besides, AMS achieves the best performance (with lowest SR)
among all baselines. As we can see from Table II, AMS’ SR
is substantially smaller than 1. This means that AMS using
transaction amount and map query data can beat professional
analysts.

From the experimental results, we can find that ARIMA
gets poor performance. The reason is that though ARIMA can
incorporate both autoregressive and moving average features
with removing trend of the data. However, a company’s
revenue is usually affected by complex factors, which cannot
be modeled by ARIMA. What is more, simply using the
QoQ and YoY of transaction amount features are useful but
still far worse than other models. It means that predicting
unexpected revenue with transaction amount data still requires
nontrivial models. Different from the results of transaction
amount dataset, QoQ and YoY with map query features get
much worse results. This shows that the usability of map
query data is not as straightforward as the transaction amount
data. Furthermore, models, such as XGBoost, MLP, LSTM and
GRU, also get worse results compared with our model. This
demonstrates that our AMS can better capture the information
of transaction amount and map query than baselines. The
results show that AMS enhanced by the graph neural network
model can fully utilize these features’ information to improve
the prediction performance.

E. Effectiveness of Alternative Data

We also conducted an experiment to demonstrate the ef-
fectiveness of the alternative data used in our model. For

TABLE II
PERFORMANCE COMPARISON ON SR (SURPRISE RATIO). THE FIRST

COLUMN OF SR ON EACH DATASET IS THE AVERAGE OF CROSS
VALIDATION RESULTS. THE FIRST (SECOND) LINE OF YOY/QOQ ON MAP

QUERY DATASET IS THE RESULT OF YOY/QOQ WITH MAP QUERY TO
STORE (PARKING LOT).

Dataset transaction amount map query
Model SR P-value SR SR(18q1) SR(18q2)
AMS 0.9603 0.0657 0.9626 1.0071 0.9180

XGBoost 1.0177 0.5940 0.9989 1.0049 0.9929
MLP 0.9888 0.7009 1.0165 1.0205 1.0125
Lasso 1.0045 0.7264 1.0114 1.0111 1.0117
Ridge 0.9925 0.8200 1.0393 1.0625 1.0161

Elasticnet 0.9921 0.5613 1.0077 1.0185 0.9968
Lstm 0.9827 0.4892 0.9978 0.9987 0.9970
GRU 0.9913 0.7263 1.0178 1.0088 1.0267

ARIMA 5.8950 <1e-4 4.3795 3.9150 4.8439

YoY 2.4771 <1e-4 5.2282 5.6360 4.8203
5.3544 6.2700 4.4389

QoQ 4.3493 0.0076 3.4215 2.8067 4.0363
3.9063 3.1906 4.6220

this purpose, we removed all alternative features from the
data and re-trained models to run the experiments in previous
sections. We add the suffix -na to represent the model without
alternative data. In order to compare the model performance
with and without alternative data, we use the SR-m and BA-
m to denote the result of the SR and BA without alternative
data minus the SR and BA with alternative data, e.g. SR-
m of AMS-na is just got by SR of AMS-na minus SR of
AMS. Note that the larger the value of SR-m and the smaller
the value of BA-m, the more useful of the alternative features.

TABLE III
FEATURES EFFECTIVENESS AMONG VARIOUS MODELS. THE SUFFIX -NA IS

USED TO REPRESENT THE MODEL WITHOUT ALTERNATIVE DATA. THE
SR-M AND BA-M DENOTE THE RESULT OF THE SR AND BA WITHOUT
ALTERNATIVE DATA MINUS THE SR AND BA WITH ALTERNATIVE DATA.

Dataset transaction amount map query
Model SR-m BA-m(%) SR-m BA-m(%)

AMS-na 0.0269 -5.633 0.0377 -6.451
XGBoost-na -0.0013 -6.438 0.0506 -4.032

MLP-na 0.0125 -2.414 -0.0127 3.225
Lasso-na 0.0000 0.000 0.0000 0.000
Ridge-na 0.0143 -2.816 -0.0167 0.806

Elasticnet-na 0.0031 -0.804 0.0000 0.000
Lstm-na 0.0092 -0.804 0.0026 -4.838
GRU-na -0.0070 -1.408 -0.0119 -3.225

For transaction amount dataset in Table III, all models
get worse on BA and most of the models get worse on SR
without transaction amount features. XGBoost-na and GRU-
na get better results on SR but the improvement is too small to
show a significantly better performance than Table II. Overall,
models get worse performance which shows the effectiveness
of the transaction amount data. It is not unexpected that AMS’s
performance has dropped dramatically without transaction
amount features. This not only shows that transaction amount
is effective, but also shows that our model can make full use of
it. Although XGBoost-na also gets much worse results. But in
Table I XGBoost gets bad performance as well, which shows
XGBoost is not a good model for this problem.

For map query dataset in Table III, AMS’s performance also
has dropped dramatically without map query features, which
proves that AMS can fully exploit the value of alternative
data. From the results on map query, MLP-na and Ridge-na
get better performance. One possible reason is that both of the
fully connected models (Ridge and MLP) cannot exploit the
value of map query data (Ridge can be viewed as one layer
L2 regularized MLP without activation function). In this case,
map query data is noisy for Ridge and MLP.

It shows that all baselines are not able to fully utilize
the information from alternative data. Without the informa-
tion from alternative features, it is hard to predict a useful
unexpected revenue because baselines can only fit a rule of
experience from historical data. We also can observe that
Lasso and Elasticnet in some cases get the same results without
alternative features. An explanation of this phenomenon is
that Lasso with L1 regularization encourages the model to
select fewer features for prediction. The alternative features’
relationship with current revenue is not as strong as analysts’
consensus and historical revenue. Thus, Lasso chooses to
discard alternative features. Elasticnet shares the same case
with Lasso.

F. An Application of the Model – Backtest

In this section, we conduct several backtests to showcase
the usability of our proposed model for investment, and
demonstrate the superiority of our AMS model compared with
baselines enhanced with the alternative dataset.

The stock price reflects the current expectations of the
company’s revenue. Based on whether the predicted unex-
pected revenue showing a positive surprise, we can judge
whether the company’s current revenue is underestimated by
the market. In this case, the company’s stock price may
be undervalued. Thus after the revenue report is announced,
the stock price will rise to a normal value. If the revenue
is underestimated, our strategy is to buy the stock on long
position, i.e. to buy stocks at end of the company’s fiscal
quarter (which is before revenue announcement) and sell them
a month later. If the revenue is overestimated, our strategy is
to short sell the stock, i.e. to sell the stock at the end of the
company’s fiscal quarter and buy it back a month later. In
reality, the fundings a company’s stock attracts is positively
correlated with its market capitalization. In this paper, we
simply classify companies into three categories based on their
market capitalization with two boundaries of 1 billion and 10
billion and set the ratio of money for investing as 1:2:3 to
different categories accordingly.

In order to compare their performance, we calculate the
earning, Max Drawdown (MDD), Sharpe Ratio and Excess
Return (ER) during the whole trading period. MDD measures
the maximum loss of assets in the whole quarter from a peak
to a through of a given portfolio strategy defined as:

MDD = max
l∈(0,T)

[max
t∈(0,l)

[St − Sl]]

where St is the assets and T is end of the date. The smaller
the MDD means the strategy performs better. Sharpe Ratio is

a risk-adjusted profit measure which measures the return per
unit of deviation relative to our AMS model defined as:

SharpeRatio =
AV G(RB −RAMS)

STD(RB −RAMS)

where RAMS is time series vector of daily return given by
AMS, RB is time series vector of daily return given by
baseline model B, AVG is average of the vector and STD is
the standard deviation of the vector. If Sharpe Ratio is smaller
than 0, it means the strategy on method B cannot obtain excess
return than the one on AMS.

In order to judge whether AMS is better than other baselines
at every end of the quarter, we calculate Average Excess
Return (AER) in this paper. Excess Return is the excess
earning baselines earns over AMS at the end of the quarter.
AER is average of the Excess Return at every end of the
quarter.

Fig. 6. Strategy performance on transaction amount dataset from 2016q4 to
2018q2.

TABLE IV
BACKTEST RESULTS FROM 2016Q4 TO 2018Q2 ON TRANSACTION

AMOUNT DATASET.

Model Earning(%) MDD(%) Sharpe Ratio AER(%)
AMS 2.1707 5.8010 - -

XGBoost -7.6668 9.7786 -0.0706 -4.8013
MLP -7.0645 7.4250 -0.0737 -4.8435
Lasso -13.3881 13.7267 -0.0770 -8.4646
Ridge 0.7887 6.5520 -0.0176 -0.2632

Elasticnet -9.3145 12.3236 -0.0835 -3.6364
Lstm -7.5981 9.3912 -0.0639 -5.3055
GRU -8.0377 9.7075 -0.0629 -5.3068

As from Table IV, AMS can beat all of the baselines
with highest earning 2.1707% and lowest MDD 5.8010%. In
terms of Sharpe Ratio, what the best baseline can achieve
is -0.0176, still lower than 0. Therefore, the strategies based
on all baseline models do not obtain excess returns over the
one on AMS. Furthermore, the result of AER shows that our
model’s average performance at different quarters during the
whole trading period can beat all baselines. Figure 6 shows
that asset curve given by AMS exceeds other baselines at most
of the time. This is also consistent with the result in Section
IV-D where AMS achieves highest BA and lowest SR.

Fig. 7. Strategy performance on map query dataset from 2018q1 to 2018q2.

TABLE V
BACKTEST RESULTS FROM 2018Q1 TO 2018Q2 ON MAP QUERY DATASET.

Model Earning(%) MDD(%) Sharpe Ratio AER(%)
AMS 2.7772 0.8687 - -

XGBoost -1.5919 2.3056 -0.2185 -3.4804
MLP -0.8722 2.3462 -0.2319 -2.0195
Lasso -4.5401 6.0639 -0.1461 -4.4512
Ridge -0.4117 2.2115 -0.1632 -2.1341

Elasticnet -3.6408 5.2510 -0.1395 -3.7569
Lstm 0.8608 1.6638 -0.0751 -1.7009
GRU 1.9363 1.6707 -0.0326 -0.2810

The backtest results on map query dataset are shown in Ta-
ble V and Figure 7. It is not unexpected that AMS reaches the
highest earning 2.7772% and lowest MDD 0.8687%. Besides,
the best sharpe ratio of baselines is -0.0730. Therefore, with
map query data the strategy on all baseline models cannot
obtain excess returns over the one on AMS. Figure 7 shows
that stable asset curve given by AMS. This result is also
consistent with the result in Table I that AMS achieves high
BA at both of the quarters.

Since different dataset’s companies and trading period are
different, it is meaningless to compare each model’s perfor-
mance on Earning, MDD, Sharpe Ratio and AER between
transaction amount dataset and map query dataset. Note that
the earning rankings of baselines are not strictly consistent
with the BA rankings of baselines in Table I. In a real-
world scenario, the market does not always change in the
direction we expect, due to company management, company’s
expectation for next quarter, news, market sentiment, etc.
But the more accurately our model predicts the unexpected
revenue, the higher the expectation of profit we can get.

G. Interpretability of AMS

Different from traditional deep learning models, a key
advantage of our AMS model is the interpretability of the final
linear regression’s adaptive weight produced by the master
model. Here we output the companies’ weight in the slave-
LR model on the test dataset to illustrate the interpretability of
AMS in Figure 8. In order to highlight the difference between
different companies’ weight in the same feature and for the
convenience of visualization, we linearly scale the value along

with the feature to [0, 1] in selected companies. We randomly
selected three companies (C) on each dataset.

(a) Online transaction amount

(b) Map query to store (sq) and to parking lot (pq)

Fig. 8. Visualization of features’ weight produced by AMS’s master
model on different dataset. Features with suffix dqk represent features
in k quarters ago.

The different weights of alternative features among com-
panies are shown in Figure 8. We can find that, different
from the traditional linear regression with fixed weight for
the same feature dimension, features’ weight produced by
AMS is not the same among companies. AMS utilizes the
information in graph and company’s features together to output
a unique weight for each company. At the same time, the
original features are kept for the final linear regression model,
so the weight measures the outcome changes if increasing a
small delta unit of each feature. From this point of view, the
slave-model of AMS is interpretable because the impact of
fluctuations in each unit of the feature can be interpretable on
the final result.

V. RELATED WORK

A. Alternative data in financial applications

Alternative data can be classified into three categories: data
produced by individuals (such as social media posts), data
generated through business processes (such as credit card or
online payment apps transactions data), and data generated by
sensors (such as GPS) [7]. How to utilize such alternative data
for investment has attracted great research attention in recent
years. However, most of research efforts are spent on how to
extract stock market’s alpha signals from the first category of
data, i.e. data produced by individuals such as social media
data [9], [10], web search query data [11], [12] and news data
[13], [14]. Though there are some case studies about how
to utilize the second and third category data (i.e. generated
through business processes and generated by sensors) for
investment [7], all of these methods simply aggregate the
information from the data, and use the aggregated value as a
reference indicator to help portfolio managers make decisions.

Some authors in their pioneering papers also studied how
to use alternative data to forecast values of macro economic
indicators like unemployment claims from web query data
[25], population from map search query [26], poverty and
wealth from mobile phone data [27] and satellite imagery data
[28]. Such methods cannot be easily extended to support the
analysis of company activities. Different from such methods,
our model focuses on the micro economic data, i.e. unexpected
revenue of a company. As far as we know, our model is the

first attempt to utilize the business process data and map query
data for unexpected revenue prediction via machine learning.

B. Adaptive prediction model

Another research topic related to our model is the adaptive
prediction model. Most of existing adaptive prediction models
are the models which can be adjusted after observing the
“truth” of each individual. We name these models as “passive
adaptive model” since it only updates the model after the be-
havior of the individual has changed. One kind of the machine
learning algorithm for the passive adaptive models is based on
online gradient descent, which simultaneously processes an
observation and learns to perform better [29], [30]. Such solu-
tions usually adaptively tune the model parameters as the data
sequence is progressively revealed [31]. The passive adaptive
prediction model is also related to transfer learning since the
passive adaptive prediction algorithm adaptively modifies the
model when different types of pattern drifts are detected [32],
or adaptively updates the model when the environments and
population are gradually changed. However, a key point of
the passive adaptive model is that such models can only be
adaptive for an individual when the ground truth is revealed
and the algorithm suffers a loss. Another similar methods
related with our master-slave model is the semi-lazy learning
approach [33]–[35]. Instead of generating slave models by a
master model, semi-lazy learning approach tries to optimize an
individual model upon a small set of data points generated by
any nearest neighbor search method like [36]. The weakness
of such previous adaptive or semi-lazy learning models in
our application is that it cannot have enough information to
adaptively update the model since the financial data is usually
very sparse.

Our AMS model tries to adaptively generate a slave-model
for each individual, and the slave-model can consider the
special characteristic for the individual. In this paper, we gen-
erate a linear regression model for each individual company.
From this point of view, we can consider our adaptive model
as “aggressive adaptive model” who adjusts the model even
without seeing the ground truth. As far as we know, we are the
first to study such aggressively adaptive model with the master-
slave model architecture for the financial machine learning
applications.

C. Graph neural network

In this paper, we use a graph neural network as the main
component of the master model. The graph neural network has
arisen at the intersection of deep learning and graphs recently.
According to the functions for relational reasoning over the
graph, the graph neural networks can be classified as full
connect graph network [37], independent recurrent network
[38], message-passing neural network [39], non-local neural
network [17], relation network [40] and deep sets [41]. Since
our main objective of graph neural network is to compact
the graph structure information into the node (i.e. company)
features, we use the non-local neural network to model the

relationship between companies. The graph attention mecha-
nism is also used to handle the pairwise-interaction between
companies. We refer readers to a comprehensive survey [42]
for a detailed discussion about the graph neural network.

VI. CONCLUSION

In this paper, we propose AMS, an adaptive master-slave
regularized model for unexpected revenue prediction using
alternative data. The key idea of AMS is to employ a master
model to generate a slave-LR model to predict the unexpected
revenue of a company with alternative data. We devise several
novel techniques in our model, including the GNN on com-
pany correlation graph, supervised slave-LR generation and
model assembly. Besides, our AMS is more intepretable than
other black-box deep learning approaches. The experiments
conducted on transaction data and map query data demonstrate
the effectiveness of our model.

VII. ACKNOWLEDGEMENTS

The research is supported in part by the National Natural
Science Foundation of China Grant 91746301, 61822203,
71531001 and the Zhongguancun Haihua Institute for Frontier
Information Technology and Turing AI Institute of Nanjing.

REFERENCES

[1] K.-P. Lin, P.-F. Pai, Y.-M. Lu, and P.-T. Chang, “Revenue forecasting
using a least-squares support vector regression model in a fuzzy envi-
ronment,” Information Sciences, vol. 220, pp. 196–209, 2013.

[2] Y. Ertimur, J. Livnat, and M. Martikainen, “Differential market reactions
to revenue and expense surprises,” Review of Accounting Studies, vol. 8,
no. 2-3, pp. 185–211, 2003.

[3] N. Jegadeesh and J. Livnat, “Revenue surprises and stock returns,”
Journal of Accounting and Economics, vol. 41, no. 1-2, pp. 147–171,
2006.

[4] U. Chandra and B. T. Ro, “The role of revenue in firm valuation,”
Accounting Horizons, vol. 22, no. 2, pp. 199–222, 2008.

[5] I. Kama, “On the market reaction to revenue and earnings surprises,”
Journal of Business Finance & Accounting, vol. 36, no. 1-2, pp. 31–50,
2009.

[6] A. S. Manikas and P. C. Patel, “Managing sales surprise: The role
of operational slack and volume flexibility,” International Journal of
Production Economics, vol. 179, pp. 101–116, 2016.

[7] M. Kolanovic and R. Krishnamachari, “Big data and ai strategies:
Machine learning and alternative data approach to investing,” JP Morgan
Global Quantitative & Derivatives Strategy Report, 2017.

[8] A. H. Monk, M. Prins, and D. Rook, “Rethinking alternative
data in institutional investment,” Available at SSRN:
https://ssrn.com/abstract=3193805, 2018.

[9] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock
market,” Journal of computational science, vol. 2, no. 1, pp. 1–8, 2011.

[10] J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, and X. Deng, “Exploiting topic
based twitter sentiment for stock prediction,” in ACL, vol. 2, 2013, pp.
24–29.

[11] C. Curme, T. Preis, H. E. Stanley, and H. S. Moat, “Quantifying the
semantics of search behavior before stock market moves,” PNAS, vol.
111, no. 32, pp. 11 600–11 605, 2014.

[12] T. Dimpfl and S. Jank, “Can internet search queries help to predict stock
market volatility?” European Financial Management, vol. 22, no. 2, pp.
171–192, 2016.

[13] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-driven
stock prediction.” in IJCAI, 2015, pp. 2327–2333.

[14] Z. Hu, W. Liu, J. Bian, X. Liu, and T.-Y. Liu, “Listening to chaotic
whispers: A deep learning framework for news-oriented stock trend
prediction,” in WSDM. ACM, 2018, pp. 261–269.

[15] V. Sokolov, “Discussion of ’deep learning for finance: deep portfolios’,”
Applied Stochastic Models in Business and Industry, vol. 33, no. 1, pp.
16–18, 2017.

[16] J. Heaton, N. Polson, and J. H. Witte, “Deep learning for finance: deep
portfolios,” Applied Stochastic Models in Business and Industry, vol. 33,
no. 1, pp. 3–12, 2017.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in KDD. ACM, 2016, pp. 785–794.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[22] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[23] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” JMLR, vol. 13, no. Feb, pp. 281–305, 2012.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[25] H. Choi and H. Varian, “Predicting the present with google trends,”
Economic Record, vol. 88, pp. 2–9, 2012.

[26] J. Zhou, H. Pei, and H. Wu, “Early warning of human crowds based
on query data from baidu maps: Analysis based on shanghai stampede,”
in Big Data Support of Urban Planning and Management. Springer,
2018, pp. 19–41.

[27] J. Blumenstock, G. Cadamuro, and R. On, “Predicting poverty and
wealth from mobile phone metadata,” Science, vol. 350, no. 6264, pp.
1073–1076, 2015.

[28] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon,
“Combining satellite imagery and machine learning to predict poverty,”
Science, vol. 353, no. 6301, pp. 790–794, 2016.

[29] L. Bottou, “Online learning and stochastic approximations,” On-line
learning in neural networks, vol. 17, no. 9, p. 142, 1998.

[30] E. Hazan, A. Rakhlin, and P. L. Bartlett, “Adaptive online gradient
descent,” in NIPS, 2008, pp. 65–72.

[31] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and self-confident
on-line learning algorithms,” Journal of Computer and System Sciences,
vol. 64, no. 1, pp. 48–75, 2002.

[32] J. Liu and E. Zio, “An adaptive online learning approach for support
vector regression: Online-svr-fid,” Mechanical Systems and Signal Pro-
cessing, vol. 76, pp. 796–809, 2016.

[33] J. Zhou and A. K. Tung, “Smiler: A semi-lazy time series prediction
system for sensors,” in SIGMOD. ACM, 2015, pp. 1871–1886.

[34] J. Zhou, A. K. Tung, W. Wu, and W. S. Ng, “A semi-lazy approach to
probabilistic path prediction in dynamic environments,” in KDD. ACM,
2013, pp. 748–756.

[35] ——, “R2-d2: a system to support probabilistic path prediction in
dynamic environments via semi-lazy learning,” PVLDB, vol. 6, no. 12,
pp. 1366–1369, 2013.

[36] J. Zhou, Q. Guo, H. Jagadish, L. Krcal, S. Liu, W. Luan, A. K.
Tung, Y. Yang, and Y. Zheng, “A generic inverted index framework
for similarity search on the gpu,” in ICDE. IEEE, 2018, pp. 893–904.

[37] J. B. Hamrick, K. R. Allen, V. Bapst, T. Zhu, K. R. McKee, J. B.
Tenenbaum, and P. W. Battaglia, “Relational inductive bias for physical
construction in humans and machines,” in CogSci, 2018.

[38] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable
physics engines for inference and control,” in ICLR, 2018.

[39] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” arXiv preprint
arXiv:1704.01212, 2017.

[40] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A simple neural network module for
relational reasoning,” in NIPS, 2017, pp. 4967–4976.

[41] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in NIPS, 2017, pp. 3391–3401.

[42] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

