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Abstract—Creating an efficient and economic trip plan is the most annoying job for a backpack traveler. Although travel agency

can provide some predefined itineraries, they are not tailored for each specific customer. Previous efforts address the problem by

providing an automatic itinerary planning service, which organizes the points-of-interests (POIs) into a customized itinerary.

Because the search space of all possible itineraries is too costly to fully explore, to simplify the complexity, most work assume that

user’s trip is limited to some important POIs and will complete within one day. To address the above limitation, in this paper, we

design a more general itinerary planning service, which generates multiday itineraries for the users. In our service, all POIs are

considered and ranked based on the users’ preference. The problem of searching the optimal itinerary is a team orienteering

problem (TOP), a well-known NP-complete problem. To reduce the processing cost, a two-stage planning scheme is proposed. In

its preprocessing stage, single-day itineraries are precomputed via the MapReduce jobs. In its online stage, an approximate

search algorithm is used to combine the single day itineraries. In this way, we transfer the TOP problem with no polynomial

approximation into another NP-complete problem (set-packing problem) with good approximate algorithms. Experiments on real

data sets show that our approach can generate high-quality itineraries efficiently.

Index Terms—Map reduce, trajectory, team orienteering problem, itinerary planning, location-based service

Ç

1 INTRODUCTION

TRAVELING market is divided into two parts. For casual
customers, they will pick a package from local travel

agents. The package, in fact, represents a pregenerated
itinerary. The agency will help the customer book the
hotels, arrange the transportations, and preorder the tickets
of museums/parks. It prevents the customers from con-
structing their personalized itineraries, which is very time-
consuming and inefficient. For instance, Fig. 1 lists a four-
day package to Hong Kong, provided by a Singapore
agency. It covers the most popular POIs for a first-time
traveler and the customers just need to follow the itinerary
to schedule their trips.

Although the travel agencies provide efficient and
convenient services, for experienced travelers, the itineraries

provided by the travel agents lack customization and cannot
satisfy individual requirements. Some interested POIs are

missing in the itineraries and the packages are too expensive
for a backpack traveler. Therefore, they have to plan their
trips in every detail, such as selecting the hotels, picking

POIs for visiting, and contacting the car rental service.
Therefore, to attract more customers, travel agency

should allow the users to customize their itineraries and

still enjoy the same services as the predefined itineraries.

However, it is impossible to list all possible itineraries for
users. A practical solution is to provide an automatic
itinerary planning service. The user lists a set of interested
POIs and specifies the time and money budget. The
itinerary planning service returns top-K trip plans satisfy-
ing the requirements. In the ideal case, the user selects one
of the returned itineraries as his plan and notifies the agent.

However, none of the current itinerary planning algo-
rithms (e.g., [1] and [2]) can generate a ready-to-use trip
plan, as they are based on various assumptions.

First, current planning algorithms only consider a
single day’s trip, while in real cases, most users will
schedule an n-day itinerary (e.g., the one shown in Fig. 1).
Generating an n-day itinerary is more complex than
generating a single day one. It is not equal to constructing
n single-day itineraries and combining them together, as a
POI can only appear once in the itinerary. It is tricky to
group POIs into different days. One possible solution is to
exploit the geolocations, for example, nearby POIs are put
in the same day’s itinerary. Alternatively, we can also rank
POIs by their importance and use a priority queue to
schedule the trip.

Second, the travel agents tend to favor the popular POIs.
Even for a city with a large number of POIs, the travel
agents always provide the same set of trip plans, composed
with top POIs. However, those popular POIs may not be
attractive for the users, who have visited the city for several
times or have limited time budget. It is impossible for a user
to get his personal trip plan. The travel agent’s service
cannot cover the whole POI set, leading to few choices for
the users. In our algorithm, we adopt a different approach
by giving high priorities to the selected POIs and generating
a customized trip plan on the fly.

Third, suppose we have N available POIs and there are
m POIs in each single day’s itinerary averagely. We will end
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up with N!
ðN�mÞ!m! candidate itineraries. It is costly to evaluate

the benefit of every itinerary and select the optimal one.
Therefore, in [1] and [2], some heuristic approaches
are adopted to simplify the computation. However, the
heuristic approaches are based on some assumptions
(e.g., popular POIs are selected with a higher probability).
They only provide limited number of itineraries and are not
optimized for the backpack traveler, who plans to have a
unique journey with his own customized itinerary.

Last but not the least, handling new emerging POIs were
tricky in previous approaches. The model needs to be
rebuilt to evaluate the benefit of including the new POIs
into the itinerary. For systems based on the users’ feedback
[2], we need to collect the comments for the new POIs from
the users, which is very time-consuming.

To address the above problems, in this paper, a novel
itinerary planning approach is proposed. The design
philosophy of our approach is to generate itineraries that
narrow the gap between the agents and travelers. We
reduce the overhead of constructing a personalized itiner-
ary for the traveler; and we provide a tool for the agents to
customize their services. Fig. 2 shows an overall architec-
ture of our trip-planning system. Specifically, our approach
can be summarized as follows.

In the preprocessing, POIs are organized into an
undirected graph, G. The distance of two POIs is evaluated
by Google Map’s APIs.1 Given a request, the system
provides interfaces for the user to select preferred POIs
explicitly, while the rest POIs are assumed to be the
optional POIs. Different ranking functions are applied to
different types of POIs. The automatic itinerary planning
service needs to return an itinerary with the highest
ranking. Searching the optimal itinerary can be trans-
formed into the team orienteering problem (TOP), which is
an NP-complete problem without polynomial approxima-
tions [3]. Therefore, a two stage scheme is applied.

In the preprocessing stage, we iterate all candidate
single-day itineraries using a parallel processing frame-
work, MapReduce [4]. The results are maintained in the
distributed file system (DFS) and an inverted index is
built for efficient itinerary retrieval. To construct a
multiday itinerary, we need to selectively combine the
single itineraries. The preprocessing stage, in fact, trans-
forms the TOP into a set-packing problem [5], which has
well-known approximated algorithms. In the online stage,
we design an approximate algorithm to generate the
optimal itineraries. The approximate algorithm adopts the

initialization-adjustment model and a theoretic bound is
given for the quality of the approximate result.

To evaluate the proposed approach, we use the real data
from Yahoo Travel.2 The experiments show that our
approach can efficiently return high-quality customized
itineraries. The remainder of this paper is organized as
follows: In Section 2, we formalize the problem and give an
overview of our approach. Then, Section 3 and Section 4
present the preprocessing stage and online stage of our
approach, respectively. We evaluate our approach in
Section 5 and review previous work in Section 6. Finally,
the paper is concluded in Section 6.

2 OVERVIEW

2.1 Problem Statement

In the itinerary planning system, the user selects a set of
interested POIs, Sp, and asks the system to generate a k-day
itinerary. We use ðSp; kÞ to denote a user’s request. To
model the planning problem, we organize the POIs into a
complete graph, the POI graph.

Definition 1 (POI Graph). In the POI graph G ¼ ðV ;EÞ, we
generate a vertex for each POI and every pair of vertices are
connected via an undirected edge in E. In G, the vertex and
edge have the following properties:

1. 8vi 2 V , wðviÞ denotes the weight (importance) of the
POI and tðviÞ is the average time that tourists will
spend on the POI.

2. 8ðex ¼ vie> vjÞ 2 E, tðexÞ is the cost of the edge,
computed as the average traveling time from vi to vj.

Fig. 3 shows a POI graph with five nodes. Each node
denotes a POI and has two properties: the weight and travel
time (shown in the red blocks). The nodes are connected via
weighted edges. The edge’s weight is set to the average
traveling time for the shortest path between the correspond-
ing POIs in the map. In fact, there are two types of edges.
The first type represents that the two nodes are directly
connected in the map (no other POI exists in their shortest
path, e.g., 0e>1). The second type contains multiple shortest
paths in the map (e.g., 0e>3 ¼ ð0e>1Þ � ð1e>3Þ). Transforming
the POI graph into a complete graph reduces the processing
cost of our itinerary algorithm.

The definition of POI graph assumes that the costs of
edges are symmetric. Namely, the traveling time from vi to
vj is equal to the time from vj to vi. In fact, as our approach
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Fig. 2. Architecture of a trip planning system.

Fig. 1. A four-day trip to Hong Kong.

1. https://developers.google.com/maps/. 2. http://travel.yahoo.com/.



does not rely on the assumption, it can be directly applied
to the case of nonsymmetric cost (e.g., traffics are different
for vie> vj and vje> vi).

Let wðviÞ denote the weight (importance) of POI vi. The
initial weight of vi is generated from the users’ reviews (e.g.,
in Yahoo Travel, users can specify score ranging from 0 to 5
for each POI. We accumulate the scores and use the average
values as the initial weight).

Users can also select a set of preferred POIs, denoted
as Sp. Given a request ðSp; kÞ, if vi is selected by the
request (vi 2 Sp), we intentionally increase its weight to
�ðwðviÞ þ 1Þ, where � can be set to an arbitrary integer.
The intuition is that user-selected POIs are far more
important than any other POIs.

For a request ðSp; kÞ, if k ¼ 1, we just need to generate a
single-day itinerary. A single-day itinerary is represented as
L ¼ v0e> � � � e> vne> hj, where hj is a hotel POI. The elapsed
time is estimated as

tðLÞ ¼
Xn
i¼0

tðviÞ þ
Xn�1

i¼0

tðvie> viþ1Þ þ tðvne> hjÞ:
In the rest of the discussion, we remove the hotel part and
focus on how to merge the POIs into itineraries. After all
other POIs are fixed, we will solve the hotel-selection
problem.

Assume there are H available hours per day for
traveling. The itinerary L must satisfy that tðLÞ � H. For a
common traveling request, it always includes a k-day
(k � 1) trip, which is defined as

Definition 2 (k-Day Itinerary). Given a POI graph G and time
budget k, a valid k-day itinerary consists of k single-day
itineraries, L ¼ fL1; L2; . . . ; Lkg, which satisfies that

1. 8i8j, Li and Lj do not share a POI.
2. tðLiÞ � H for all 1 � i � k.

Based on the POIs included in the itinerary, the score of a
k-day itinerary can be computed as

wðT Þ ¼
Xk
i¼1

X
vj2Li

wðvjÞ: ð1Þ

The goal of our itinerary planning algorithm is to find the
k-day itinerary with the highest score. However, we will
show that finding the optimal itinerary is an NP-complete
problem, which is equivalent to the team orienteering

problem [3]. Even approximate algorithm within constant
factor does not exist. The existing work [6] solves the
problem by employing heuristic algorithms, which may
generate arbitrarily bad results.

2.2 System Architecture

In our system, instead of trying to propose new algorithms
for the TOP, we transform the optimal itinerary planning
problem into a set-packing problem by an offline
MapReduce process and an approximate algorithm is
applied to solve the set-packing problem. If the maximal
number of POIs in the single-day itinerary is bounded by
m, the optimal result can be approximated within factor of
2ðmþ1Þ

3 (m is the maximal number of POIs in each single-
day itinerary).

Fig. 2 shows the architecture of our trip-planning system.
In the first step, POI graph is constructed via the road
network and POI coordinates. The Google Map’s APIs are
used to evaluate the distance between POIs. The average
elapsed time of a POI is estimated from users’ blogs and
travel agency’s schedules.

After the POI graph is constructed, a set of MapReduce
jobs are submitted to iterate all possible single-day itiner-
aries in the preprocessing. The number of itineraries is
exponential to the number of POIs. However, using parallel
processing engine, such as MapReduce, we can efficiently
generate all itineraries in an offline manner. To speed up the
single-day itinerary retrieval, an inverted index is built.
Given a POI, all single-day itineraries involving the POI can
be efficiently retrieved.

For a user request ðSp; kÞ, POIs’ weights are updated
based on Sp and we compute the scores for each single-day
itinerary. The problem of finding optimal k-day itinerary is
transformed to select k single-day itineraries that maximize
the total score. We show that the new problem can be
reduced to the weighted set-packing problem, which has
polynomial approximate algorithms. Therefore, we simu-
late the approximate algorithm for set-packing problem to
generate the k-day itinerary. The algorithm uses a greedy
strategy to create an initial solution, which is continuously
refined in the adjustment phase. The adjustment phase
scans the index to find a potentially better solution.

In the next two sections, we first present how we apply
the MapReduce framework to generate and index the
single-day itineraries. The parallel processing engine en-
ables us to search the optimal solution in a brute-force
manner. Next, we show after the preprocessing, the
complexity of TOP is reduced and approximate algorithms
are available.

3 PREPROCESSING

The preprocessing includes two steps. In the first step, a set
of MapReduce jobs are submitted to produce all possible
single-day itineraries. In the second step, the single-day
itineraries are reorganized as an itinerary index, which
supports efficient itinerary search.

3.1 Intractability of Optimal Itinerary Algorithm

Given a user request ðSp; kÞ, the goal of an itinerary
planning algorithm is to provide an itinerary, which ranks
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highest among all possible itineraries. The score of the
itinerary is computed based on the POI weights. However,
as shown in the following theorem, this is an NP-complete
problem and no polynomial time algorithm exists.

Theorem 1. Finding optimal k-day itinerary in a POI graph
G ¼ ðV ;EÞ is an NP-complete problem.

Proof (Sketch). The optimal k-day itinerary can be reduced
to the TOP [3], which is a well-known NP-complete
problem. Consider a simple scenario where,

1. k vehicles are created, which start from the same
position.

2. Each vehicle has a time limit (1 day) for traveling
the POIs.

3. Each vehicle collects the profit by visiting the
POIs.

4. The POI accessed by a vehicle will not be
considered by other vehicles.

5. The POI’s profit is equal to its weight.

The TOP is to find the traveling plan that generates
the most profits. The results of the TOP are also the best
k-day itinerary. tu

Due to the complexity of TOP, it is impossible to find the
exact solution. Instead, previous work focuses on proposing
heuristic algorithms. The basic idea is to generate an initial
plan and then adjust it based on some heuristic rules. Those
algorithms have three drawbacks. First, the heuristic
algorithms need many iterations to get a good enough
result, which incur high computation cost [7]. Second, the
adjusting rules are too complicated and the potential gains
are unknown. Finally, there is no bound of the approximate
result, which may be arbitrarily bad in some cases.

In this paper, we reduce the complexity of the TOP by
transforming it into a set-packing [8] problem. As the
transformation is done in an offline manner, the perfor-
mance of online query processing is not affected.

3.2 Single-Day Itinerary

The basic idea of transformation is to iterate all possible
single-day itineraries. This is done by a set of MapReduce
jobs. In the first job, we generate jPj initial itineraries for the
POI set P. Each initial itinerary only consists of one POI.
Iteratively, the subsequent MapReduce job tries to add one
more POI to the itineraries. If no more single-day itineraries
can be generated, the process terminates. In current
implementation, we allow maximally m MapReduce jobs
in the transformation process to reduce the overheads.
Therefore, a single-day itinerary contains at most m POIs.
This strategy is based on the assumption that users cannot
visit too many POIs in one day. In our crawled data set from
Yahoo travel, setting m to 10 is enough for Singapore data,
which include more than 400 POIs. Only a few single-day
itineraries can contain more than 10 POIs.

Algorithms 1 and 2 show the pseudocodes of the
MapReduce job. The mappers load the partial paths from
the DFS, which are generated in the previous MapReduce
jobs. We try to append new POI to the existing itineraries.
For each new path, we test whether it can be completed
within one day. If not, we will discard the new path. If the

old path cannot result in any new path, we will output the
old path. For the last MapReduce job (the mth job), all
the candidate itineraries are used as the results. The output
key-value pair is using the sorted POIs in the itinerary as
the key.

Algorithm 1. map(Object key, Text value,

Context context).

// we allow maximally m� round MapReduce jobs, i.e.,

the maximally length of path is m

//value: existing path, each MapReduce job tries to add one

more POI to the path

1: Path P ¼ parsePath(value)

2: for i ¼ 0 to POIGraph.POINumber do

3: if isConnected(P , i) and !P .contains(i) then

4: Path newPath ¼ P .append(i)

5: cost ¼ P .cost þ POIGraph.getCost(P .endPOI, i)

þ POIGraph.getCost(i)

6: weight ¼ P .weight þ POIGraph.getWeight(i)

7: newPath.cost ¼ cost

8: newPath.weight ¼ weight

9: if newPath.cost � H then

10: Key newKey ¼ parsePath(newPath).sort();

11: context.collect(newKey, newPath)

12: else

13: DFS.write(resultFile, P )

Algorithm 2. reduce(Key key, Iterable values,

Context context).
1: bestCost ¼ 1
2: bestPath ¼ NIL
3: for Path P : values do

4: if P:cost < bestCost then

5: bestPath ¼ P
6: bestCost ¼ P:cost
7: context.collect(key, bestPath)

In the mappers, to compute the weight and cost of new
itinerary, we load the POI graph table from the DFS. As the
graph table is small, each reducer maintains a copy in its
memory. The table’s schema is as follows:

ðS POI;E POI; S weight; E weight; S cost; E cost; costÞ;

where S_POI and E_POI denote the two POIs linked by a
specific edge, cost is the traveling cost from S_POI to E_POI,
and S_POI is the primary key of the table.

In the reducers (Algorithm 2), we select the path with
smallest cost of paths with the same POIs. In each reducer,
all the paths have the same POIs. We only keep the path
with smallest cost and output such path for the next round.
Note that since all the paths have the same POIs, these paths
have the same weight.

After all itineraries have been generated, a clean process is
invoked to remove the duplication. For two itineraries
(L0 ¼ v0e> � � � e> vn andL1 ¼ v00e> � � � e> v0n),L0 containsL1, iff

8v0j 2 L1 ! 9vi 2 L0ðvi ¼ v0jÞ:

Namely, all POIs in L1 are also included by L0. If L0

contains L1, we will only keep L0, as it provides more POIs
for the users.
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3.3 Itinerary Index

To efficiently locate the single-day itineraries, an inverted
index is built. The key is the POI and the values are all
itineraries involving the POI. By scanning the index, we can
retrieve all the itineraries. Fig. 4 illustrates the index
structure. We create an index file for each POI in the DFS.
The file includes all single itineraries involving the POI,
which are sorted based on their weights. For example, in
Fig. 4, “1.idx” contains all itineraries for the first POI. The
itinerary “1j5j20j12j40” is the most important itinerary in
the index file with weight 320.

The inverted index is constructed via a MapReduce job.
Algorithms 3 and 4 show the process. The mappers load the
single-day itinerary and generate key-value pairs for each
involved POI. The reducers collect all itineraries for a specific
POI and sort them based on the weights before creating the
index file. In our system, the size of the index file may vary a
lot. Some POI may have an extremely large index file, due to
its popularity and short visit time. In reducers, those POIs may
result in the exception of memory overflow in the sorting
process. To address this problem, in the map phase, instead of
using the POI as the key, we generate the composite key by
combining the POI and the itinerary weight.

Algorithm 3. map(Object key, Text value,

Context context).

//value: single-day itinerary

1: Itinerary it ¼ parse(value)

2: for i ¼ 0 to it.POISize() do

3: int nextPOI ¼ it.getNext(i)

4: Key key ¼ new CompositeKey(nextPOI, it.weight/
bucketSize)

5: context.collect(key, it)

Algorithm 4. reduce(Key key, Iterable values,

Context context).

1: CompositeKey ck ¼ key, Set s ¼ ;
2: for Itinerary it: values do

3: s.add(it)

4: sort(s)

5: DFSFile f ¼ new DFSFile(ck:firstþ “ ”þck:second)

6: f .write(s)

In particular, we partition the itineraries into n buckets.
The bucket ID is used as a part of the composite key. In this
way, we split the itineraries of a POI into n groups and
each group can be efficiently sorted in the memory. Each
group will result in an index file. However, it is not
necessary to merge the files, as the files are partitioned
based on the weights. By scanning all files from the nth

bucket to the 1th bucket, we can get a sorted list for all
itineraries involving a POI.

To simplify the index manipulation, an index manager is
built in our query engine. The index manager only provides
one interface scan(POI), where POI denotes the owner of
the index. The interface returns an iterator, which can be
used to retrieve all itineraries of the POI. A memory buffer
is established to cache the used itineraries and the LRU
strategy is applied to maintain the buffer.

3.4 Discussion: Why MapReduce

Although the input data set (POI graph) is small in size, the
partial results of the possible itineraries are extremely large
(more than 100G or even 1T). The computation is also
intensive, which cannot be completed by a single machine.
MapReduce is the solution to partition the partial results and
generate the itineraries in parallel. Its advantages are twofold:

1. Parallel computing effectively reduces the running
time of preprocessing. The search space explodes,
when the number of POIs and traveling days
increases. It is impractical to generate all possible
itineraries. But by exploiting the power of MapRe-
duce, we can share and balance the workload between
multiple machines. The scalability is achieved by
adding more nodes into the cluster. In our experi-
ment, the running time of preprocessing is signifi-
cantly reduced with the number of nodes (see Fig. 12)

2. MapReduce algorithms can remove the duplicated
itineraries in a simple way. In Algorithm 2, by
leveraging the framework of MapReduce, we map
all the itineraries with the same POIs into the same
reducer and only keep one itinerary with the lowest
cost. This approach can prune the low-benefit partial
itineraries as early as possible and lead to less input
for the next round of computation.

4 GREEDY-BASED APPROXIMATION ALGORITHM

After the itinerary indexes are constructed, the user request
ðSp; kÞ can be processed by selecting k best itineraries
from the indexes. Namely, the problem of generating
optimal k-day itinerary is transformed into a weighted
set-packing problem as shown in the following theorem.

Definition 3 (Weighted Set-Packing Problem). In a universe
U , we assume that each element in U has a weight and the
weight of any subset of U equals to the sum of the element
weights in the subset. Given a family S of U’s subsets, the set-
packing problem is to select a subfamily S’ from S, where all
subsets in S’ are disjoint and the weight of S’ is maximal
among all possible selections.

Theorem 2. Finding optimal k-day itinerary can be reduced to
the weighted set-packing problem.

Proof (Sketch). By solving the set-packing problem, we can
also get the optimal k-day itinerary, as

1. Each single-day itinerary can be considered as a
subset of the POI set P.

2. The subsets selected by the set-packing problem
are disjoint, and hence in the k-day itinerary, we
will not visit a POI twice.
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3. Each subset is replicated k� 1 times and thus, we
have k identical itineraries. For the ith itinerary, a
virtual POI xi is appended, denoting that the
itinerary is designed for the ith day.

4. Apply the algorithm of set-packing to get the
optimal solution. Let Sr be the result set. If
jSrj > k, there must be two itineraries for the
same day and they are not disjoint. If jSrj < k, we
still have available days for traveling and new
itineraries can be added. Therefore, jSrj ¼ k and
Sr can be considered as a k-day itinerary.

tu
In step 3 of our proof, we replicate the itinerary k� 1

times. That is to guarantee that the solution of set-packing
problem returns exactly k subsets. Fig. 5 illustrates the idea.
Suppose we have four index files and want to generate a
two-day itinerary. Without the replication, the set-packing
algorithm may return a three-day itinerary, such as “5j1j6,”
“2j8j9,” and “3j7j4.” By replicating the itineraries and
adding the virtual elements X1 and X2, the above selection
cannot work, as two itineraries will share at least one virtual
element. In this case, the set-packing algorithm will return
another solution (e.g., “1j2j4jX1” and “7j5j3jX2”), which
satisfies our time requirement.

Although set-packing is also an NP-complete problem,
different from the TOP, in a special case, set-packing
problem has approximate algorithms. As mentioned in
the preprocessing, we set the maximal number of
MapReduce jobs in generating the single-day itineraries
to m. Therefore, each itinerary can have at most m POIs.
It was shown that when the size of subsets is bounded by
a constant, the weighted set-packing problem can be
solved by polynomial approximations [8], [9]. By follow-
ing the above ideas, in this paper, we design a variant of
the approximate algorithm in [8], which provides a
bound of 2ðmþ1Þ

3 for the quality of the approximate
answers. The algorithm includes an initialization phase
and an adjustment phase.

4.1 Initialization

For the user request ðSp; kÞ, we adjust the weights of POIs in
Sp to emphasize the user’s selection. If vi 2 Sp, vis weight is
increased to �ðwðviÞ þ 1Þ, where � is an integer larger than 0
and wðviÞ is the original weight of POI vi. Algorithm 5
shows how we generate the seed itineraries using the
greedy strategy.

Algorithm 5. Initialization(POIList L, Day k).

1: sortByWeight(L)

2: int i ¼ 0, Set seed ¼ ;, Set rev ¼ ;
3: while i < k and L.size() > 0 do

4: int poi ¼ L.nextPOI();
5: Set group ¼ new Set()

6: group.add(poi)

7: int lastpoi ¼ poi
8: while not L.isEmpty() do

9: int newpoi ¼ getNearest(lastpoi; L)

10: int time ¼ getTravelTime(group; newpoi)

11: if time � one day then

12: group.add(newpoi)
13: L.remove(newpoi)

14: lastpoi ¼ newpoi
15: else

16: break;

17: i++, seed.add(group)

18: for i ¼ 0 to seed.size() do

19: Set group ¼ seed.get(i)

20: IndexIterator iter ¼ indexManager.scan(group.
get(0))

21: while iter.hasMoreElements() do

22: Itinerary I ¼ iter.next()

23: if I.contains(group) then

24: removeReplicatedPOI(I, rev)

25: rev.add(I)

26: break

27: return rev

We first sort the selected POIs by their weights (line 1).
Then, in each iteration, we try to form a group, which
contains a subset of POIs that can be accessed within one
day (line 3-17). We greedily select the POI with shortest
distance and add it into our group (line 9-14). There are
maximally k groups generated. All groups are used as our
seeds for searching the index. We will use the first itinerary
that contains all the POIs in the group as our candidate
itinerary (line 18-26). Although after the weight adjustment,
itineraries in the index file are no longer sorted by the
weights. We can still retrieve the itinerary with maximal
weight as shown in the following theorem.

Theorem 3. Given a list of POIs L ¼ fv0; v1; . . . ; vng that can be
accessed within one day, by scanning the index of vi in L, we
can get the itineraries that contain all POIs in L and the first
candidate is the itinerary with maximal weight.

Proof (Sketch). Because L can be finished within one day,
there must be some itineraries containing all the POIs in
L. Let I0 and I1 be first and second candidate itineraries,
respectively. I0s weight is larger than I1s, as before
weight adjustment, I0 has a higher weight than L1 and
after weight adjustment, both of them receive the same
weight boost. tu

To improve the weights of the obtained itineraries in the
greedy algorithm, we adopt the adjustment phase.

4.2 Adjustment

In the adjustment phase, new solutions are searched and used
to replace the greedy itineraries. The process repeats until no
improvement can be obtained. In the following discussion,
we discard the virtual POIs to simplify our representations.
Suppose idxðvjÞ returns the itineraries in the index of POI vj.
We define the neighborhood of an itinerary as
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Definition 4 (Neighborhood). Given an itinerary Li, its
neighborhood ngbðLiÞ is an itinerary set satisfying:

ngbðLiÞ ¼
[
vj2Li

idxðvjÞ:

For example, in Fig. 5,

ngbð1j2j4Þ ¼ f5j1j6; 5j2j4; 2j8j9; 4j2j1; 3j4j5g: ð2Þ

The neighborhood of Li represents the candidate itineraries
that can replace Li. However, some itineraries share the
common POIs, which cannot coexist in the result. Therefore,
we define the independent set as

Definition 5 (Independent Set). An independent set ISðLiÞ is
a subset of ngbðLiÞ. Any two itineraries in ISðLiÞ do not share
a common POI. Namely, 8L0; L1 2 ISðLiÞ ! ðL0 and L1 are
disjoint).

Neighborhood of each itinerary can have multiple
independent sets and each set denotes a different adjust-
ment strategy. Let S be the initial itinerary set returned by
Algorithm 5. An alternative solution S0 can be constructed
from S by replacing the itineraries by their independent
sets. More formally,

S0 ¼ S � fðS; ngbðLiÞÞ þ ISðLiÞ;

where fðSa; SbÞ returns a subset of Sa, which shares at least
one POI with itineraries in Sb.

For itinerary “1j2j4” in Fig. 5, its independent set is
f2j8j9; 3j4j5g. If S ¼ f1j2j4; 7j5j3g, after the adjustment, we
will get S0 ¼ f2j8j9; 3j4j5g. All itineraries are replaced by
new ones. To avoid the case of cascading replacement, the
size of ISðLiÞ should be less than k, as only k single-day
itineraries are required. In our implementation, we limit
the size of ISðLiÞ to k

2 . Namely, at most half of the
itineraries are replaced.

The benefit of itinerary adjustment is computed as

B ¼ weightðS0Þ � weightðSÞ:

If B > 0, we assume that the adjustment improves the
quality of the results. Hence, a better itinerary can be
produced by replacing the old itineraries with correspond-
ing independent sets.

Algorithm 6 summarizes the idea of adjustment process.
We set a threshold for the maximal number of adjustments.
In each iteration, we find the independent sets for the
existing itineraries. If one itinerary has multiple indepen-
dent sets, we will select the one with maximal weight
(line 6). The new results are then computed by performing
the replacement (line 7) and we record the benefit (line 8).
After all possible replacement strategies have been checked,
we will select the one with maximal benefit. If the benefit is
larger than 0, the result itineraries are updated as the new
ones (line 13). Otherwise, we will perform the updates, only
with a small probability (line 15-16). The idea is to simulate
the hill-climbing algorithm to avoid the suboptimal solu-
tion. The algorithm guarantees the quality of the returned
itinerary as shown in the below theorem.

Algorithm 6. Adjustment(Set S, double P, int step).
1: int j ¼ 0;

2: while j < step do

3: Set cand ¼ ;, int max ¼ �1, int idx ¼ �1

4: for i ¼ 0 to S.size() do

5: Set ngb ¼ S.get(i).getNeighborhood()

6: Set ind ¼
getIndependentSetWithMaximalWeight(ngb)

7: Set S0 ¼ S � fðS; ngbÞ þ ind
8: double B ¼ weightðS0Þ � weightðSÞ
9: cand.add(S0)

10: if B > max then

11: max ¼ B, idx ¼ i
12: if max > 0 then

13: S ¼ cand.get(idx)

14: else

15: if randProb() > P then

16: S ¼ cand.get(idx)

17: j++

Theorem 4. Algorithm 6 returns a k-day itinerary, which
approximates the optimal solution with the bound � ¼ 2ðmþ1Þ

3 .

Proof. (sketch) In Algorithm 6, we add a virtual POI to each
itinerary to mark its traveling day. Therefore, the adjust-
ment algorithm at most returns k disjoint itineraries.
Otherwise, there are two itineraries sharing the same
virtual POI. Namely, they are supposed to be traveled in
the same day, which is not possible. If the algorithm
returns less than k itineraries, we can still repeat the
initialization and adjustment to fill in the left days. In
this way, we guarantee that Algorithm 6 returns exactly a
k-day itinerary. Based on Theorem 2, the problem of
selecting the k-day itinerary can be reduced to the
weighted set-packing problem. Therefore, in Algorithm 6,
we simulate the heuristic set-packing algorithm. The
heuristic algorithm has been analyzed in [8]. Suppose
there areX iterations in the algorithm. Let Ii be the results
of theX � i� 1 iteration. I1 will be the final result. Let di be
the payoff factor of each iteration. We have

ðmþ 1ÞwðI1Þ � 2� 1

d1
þ 1

2d2
1

� �
wðoptÞ;

where wðI1Þ and wðoptÞ represent the weights of the
itinerary returned by the heuristic algorithm and the
optimal itinerary, respectively. The right side of
the equation is minimized when d1 ¼ 1. In that case,
we have

ðmþ 1ÞwðI1Þ � 1þ 1

2

� �
wðoptÞ:

Therefore, we have a bound � ¼ 2ðmþ1Þ
3 for the heuristic

approach, where m is the maximal number POIs in the
itinerary (m is the number of MapReduce jobs in our
preprocessing). tu
The most expensive operations in Algorithm 6 are

retrieving the neighborhood sets. We need to scan the
indices of involved POIs to find all itineraries. We find that
as Algorithm 6 only selects one independent set for each
itinerary, we can save I/O costs by scanning a small portion
of the index file. Therefore, in our implementation, we read

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 3, MARCH 2014



the first n itineraries of an index file in batch and if
independent sets are found, the process stops. Otherwise,
we will continue to load the next n itineraries.

4.3 Hotel Selection

In fact, hotels can be considered as a special type of POIs. It
must appear as the last POI in the itinerary. We need to
calculate the traveling time from other POIs to the hotel
POIs. Hotel POIs do not incur access cost and their weights
are set as users’ rankings for the hotels. Based on the user’s
preference, we have two processing strategies.

4.3.1 Multiple Hotels

If the user does not insist on staying in the same hotel (e.g.,

he can select k different hotels, one for each day), we can

extend the preprocessing algorithm to handle the hotels. In

the MapReduce jobs, when a new itinerary Li is generated,

we test every hotel POI and try to append it to the end of Li.

Given a hotel POI hj, we use Lijhj to represent the combined

itinerary. Lijhj is considered as a single-day itinerary, if

1. The total traveling time of Lijhj is less than H. H is
the average traveling time per day.

2. For any other nonhotel POI �v which is not included
by Li, Lij�vjhj cannot be completed within H time.

When we detect a new single-day itinerary, we output it

to the DFS for indexing.
The itinerary generation algorithm is exactly the same,

except that the hotel POI can appear in different itineraries.

In Algorithm 6, we do not consider the hotel POIs, when

performing the disjoint test for itineraries. The output

itinerary may contain multiple hotels (hi represents the

hotel POI):

2j5j10jh1; 3j7j8jh1; 9j10j0jh2:

4.3.2 Single Hotel

If the user prefers to stay in the same hotel, the itinerary
generation problem cannot be easily reduced to the set-
packing problem. Instead, we adopt a best-effort solution.
In particular, we still apply Algorithm 6 to find the
candidate k-day itinerary without hotel POIs. After that,
we invoke Algorithm 7 to append the hotel POI.

Algorithm 7. HotelSelection(Set hotels,

Set itinerarySet).

1: double max ¼ 0, Set result ¼ ;
2: for i ¼ 0 to hotels.size() do

3: Hotel hi ¼ hotels.get(i)

4: Set copy ¼ itinerarySet
5: for j ¼ 0 to copy.size() do

6: Set Lj ¼ copy.get(j)

7: while getTravelTime(Lj; hiÞ > H do

8: Lj.removelast()

9: Lj.append(hi)
10: double weight ¼ getTotalWeight(copy)

11: if max < weight then

12: max ¼ weight
13: result ¼ copy
14: return result

The idea is to discard a few POIs from the end of each

itinerary and try to append the hotel POIs to the shortened

itinerary. In line 7-8, the itinerary progressively removes the

last POI, until it can include the hotel POI to form a single-

day itinerary. For example, the total traveling time is less

than H. In line 10, we will get a new set of k itineraries,

where all itineraries contain the same hotel POI. We will

generate such a k-day itinerary for each hotel. After

comparing weights of the itineraries, the one with maximal

weight is returned as our final k-day itinerary.

5 EXPERIMENT EVALUATIONS

5.1 Data Set Description

To evaluate the performance of our proposed approaches,

we crawl the traveling information from Yahoo Travel

(http://travel.yahoo.com). In particular, we focus on the

Singapore POIs. Fig. 6 illustrates our crawling strategy.

Yahoo classifies the POIs into hotels, things to do, and cities.

We use the first two types in our experiments, as the last

one is the geolocations for the city. Things to do contains 254

POIs of Singapore and hotels contain 276 hotels from

unranked to five stars. After removing the duplicated and

meaningless POIs, we keep 400 POIs for our experiments.

As far as we know, this is the largest data set for the

automatic itinerary generation. In [2], the largest data set

only contains 163 POIs.
The POI’s weight is also crawled from Yahoo Travel. As

shown in Fig. 7, for each POI, Yahoo maintains a page for

users’ reviews. We accumulate the user scores for each POI

as its weight. If a POI has not been reviewed, we assign it an

initial weight (e.g., 1).
The average visiting time of a POI is estimated from the

shared travel plans in Yahoo Travel. The edge cost between

any two POIs are estimated using Google Map. Specifically,

the public transit time for the shortest path between two

POIs is used as the edge cost. We assume that each user will

spend at most 8 hours for traveling per day.
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In our experiments, the query is ðSp; kÞ, where Sp is
randomly selected from the nonhotel POIs. We allow
the users to select the same hotel POIs for different days.
The traveling time is set to three days by default. For
comparison, we implement the original TOP algorithm
proposed in [3].

Table 1 lists the parameters used in our experiments.

The experiments are conducted on our in-house cluster,

Awan (http://awan.ddns.comp.nus.edu.sg/ganglia/). We

use 64 nodes exclusively. Each node has one Intel X3430

2.4-GHz processor, 8-GB memory, two 500-GB SATA hard

disks, and gigabit ethernet. Hadoop [10] is used as our

MapReduce engine.

5.2 Single-Day Itinerary Generation

In the preprocessing, m MapReduce jobs are submitted
sequentially to iterate all possible single-day itineraries. The
input are our crawled POIs and the output contain all
single-day itineraries. This is, in fact, a brute-force search
strategy, but we exploit the parallel processing engine to
reduce its cost. After the single-day itineraries are gener-
ated, we start another MapReduce job to remove the
duplicate itineraries. We call it the Dup-Clean job (the
previous m jobs are named MR-Scan). Dup-Clean generates
a special namespace for each itinerary by combining its
POIs. The namespace is used as the key in the shuffling

phase. All duplicated itineraries will be shuffled to the same
reducer, where a local clean process is conducted.

Fig. 8 shows the accumulate costs of all m jobs and the
cost of the clean job. We vary the number of POIs in the
preprocessing from 100 to 400. The cost of the MR-Scan
increases for a larger POI set. However, even for 400 POIs,
the preprocessing only takes less than 1 hour. This is an
offline process and only needs to be invoked once. In fact,
most travel agencies do not maintain such a large number
(400) of POIs for a single city. Interestingly, the performance
Dup-Clean is not correlated to the POI number. Its cost
is neutralized by the parallel processing strategy. We
observe that most nodes are not fully exploited in Dup-
Clean. Fig. 9 shows the scalability of the MapReduce jobs
(MR-ScanþDup-Clean). We vary the number of nodes in our
cluster from 8 to 64 and we observe a near-linear
improvement over the performance. Therefore, to handle
a larger POI-graph, we can simply add more processing
nodes into our cluster.

In the preprocessing, the maximal number of MapReduce
jobs (m) is set to 10. Namely, each single-day itinerary can
contain at most 10 POIs. m is a configurable parameter.
As shown in Fig. 10, in our data set, most itineraries
consist of 4-7 POIs. Setting m to 10 can iterate most
itineraries in our case.

5.3 Itinerary Indexing

The second step of preprocessing is to build the itinerary
index. The index process only requires one MapReduce job
and is much faster than the itinerary iteration process. In
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Fig. 11, we show the indexing cost for different sizes of POI
graphs. We can efficiently recreate the index within a few
minutes. Fig. 12 conducts the scalability test for the
indexing process. The indexing process benefits from a
larger cluster. Fig. 13 shows the total index size for different
POI graphs. The size of index increases exponentially with
the size of POI graph. But even for the graph with 400 POIs
(a large enough POI graph for most cities), only 12 GB index
data are generated. The index is maintained in the DFS and
hence, the storage cost is not the system bottleneck.

5.4 Effect of POI Graph Size

In the experiments, we compare our approach (MR-Set)
with the original TOP approach in [3]. To evaluate the query
performance, two metrics, processing time, and weight ratio
are adopted. The weight ratio is used to measure the quality
of the generated itineraries. In particular, let Wi and Wj

denote the total weights of MR-Set and TOP, respectively.
The weight ratio is defined as Wi

Wj

3.
We first vary the graph size to test the query performance.

Figs. 14 and 15 show the processing time and weight ratio,
respectively. Our new approach significantly reduces the
processing cost, as we have already computed the single-day
itineraries in the preprocessing. The previous TOP approach
is not scalable. The query cost increases linearly with the
number of POIs. If more POIs (e.g., restaurants) are added in

the set, the TOP approach may fail to provide a satisfied
performance. On the contrary, our technique enables the
itinerary to be generated within 30 milliseconds. It is not
affected by the POI graph size. Moreover, the traveling plan
system is accessed by multiple users concurrently. In the
case of 400 POIs, the TOP approach can serve up to two
requests per second, while our approach can provide a
throughput of 40 requests per second. Our approach is more
scalable and feasible for the real-time processing.

In fact, our approach not only reduces the processing
overhead, it also provides results with higher qualities.
Fig. 15 shows the change of weight ratio. We have 20 to
80 percent improvement over the original TOP algorithm.
The gap increases for a larger POI graph, as our approach
can efficiently exploit the POI combinations. More POIs
indicate a higher possibility of finding a good itinerary.

5.5 Effect of Selected POIs

In our query model, we allow the user to explicitly select
some POIs as their preferences. The weights of the selected
POIs are adjusted to reflect the selection. This strategy may
increase the importance of some unpopular POIs and
avoids generating the itinerary with the same set of top-
popular POIs. This is how the users customizes their
itineraries in our system. Figs. 16 and 17 show the effect of
varied number of selected POIs (from 5 to 25). The default
traveling time is set to three days. In fact, most people will
not select too many POIs (e.g., 25) for a three-day itinerary.
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Fig. 14. Effect of graph size (processing time).

Fig. 15. Effect of graph size (quality).

Fig. 16. Effect of selected POIs (processing time).

3. In idea case, we should compare the approximate results with the
optimal ones. However, it is impossible to generate the optimal results,
given the size of POI graph and complexity of the problem.



In Fig. 16, the cost of MR-Set increases for a larger
number of selected POIs. This is because in the adjustment
phase, MR-Set needs to look up the index of the
corresponding POIs to search for the replacements. Index
is maintained by the DFS and the I/O costs dominate the
query cost. However, MR-Set is still much more efficient
than the original TOP.

Fig. 17 reveals that the quality gap between MR-Set and
the TOP approach enlarges, when the user selects more
POIs as his preference. MR-Set can effectively find the
itinerary that includes as many selected POIs as possible. It
can optimize the way of how to combine the selected POIs
and other POIs into the itinerary.

5.6 Effect of Traveling Budget

Besides the POIs, the user can change his expected traveling
time as well. With more time budget, his itinerary can
include more interested POIs. Figs. 18 and 19 show the
effect of varied time budgets. The original TOP algorithm
incurs a higher overhead for the increased time budget,
because it needs to generate and refine each single-day
itinerary progressively. MR-Set adopts a different strategy.
When it tries to adjust the itinerary, it may replace multiple
single-day itineraries with new ones. It considers the k-day
itinerary as a whole solution, instead of treating each single-
day itinerary independently. It is interesting to observe that
Fig. 19 shows a different result from Fig. 17. The weight
ratio decreases, when more traveling budget is given. In
fact, the TOP algorithm benefits from a loose time budget,

as it can arrange more high-weight POIs into different
single-day itineraries.

5.7 Effect of Adjustment

The query processing of MR-Set splits into the initialization

phase and adjustment phase. The initialization phase

applies the greedy-based heuristic approach to generate a
k-itinerary as the seed, which is further improved in the

adjustment phase by replacing the itineraries with their
independent sets. In this experiments, we show the effect of

the adjustment phase. We vary the number of selected POI

from 1 to 15.
Fig. 20 shows that the adjustment phase greatly increases

the processing cost. Algorithm 6 may repeat for several
iterations before converging to a high-quality result. As
mentioned before, in the adjustment phase, the query
engine loads the itinerary index from the DFS, which incurs
high I/O cost. One way to reduce the cost is to increase the
index buffer size. After an indexed itinerary is loaded from
the DFS, we cache it in the buffer. If the buffer is full, we
apply the LRU strategy to remove the less used entries.

In Fig. 22, we change the number of buffered single-day
itineraries in the index buffer and test the query perfor-
mance. Not surprisedly, we can get a huge performance
boost by deploying a large enough index buffer. In fact, the
single-day itinerary is less than 64 bytes and caching
5 million entries only takes about 300 M memory. Any
modern server can effectively reduce the processing cost by
employing a large buffer.

524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 3, MARCH 2014
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Fig. 19. Effect of traveling time (quality).

Fig. 18. Effect of traveling time (processing time).

Fig. 20. Effect of adjustment (processing time).

Fig. 21. Effect of adjustment (quality).

Fig. 22. Buffer size.



Although the adjustment phase incurs high processing
cost, it can significantly improve the result quality. As
shown in Fig. 21, the adjustment phase can double the
weight of generated itinerary if more than 15 POIs are
selected.4 With more POIs selected, the adjustment phase
can generate more replacement itineraries and therefore,
has a better chance of finding the high-quality result.

5.8 Effect of Single Hotel Selection

In this section, we justify the effectiveness of hotel selection
algorithm. In Algorithm 7, we adopt a “best-effort” solution
to append the hotel to the end of each itinerary. To evaluate
the performance of such a solution, we define a new
metric, the hotel weight ratio. In particular, let Wm and Ws

denote the total weights of generated itineraries in the
multiple hotel case and single hotel case, respectively. The
hotel weight ratio is defined as Ws

Wm
. Our “best-effort”

solution still provides high-quality results. Fig. 23 shows the
change of the hotel weight ratio. We can see that, in the
single hotel case, the total weight of generated itineraries is
penalized as each single-day itinerary should end in the
same hotel POI. However, the “best-effort” solution can
provide an approximate result with 85-90 percent of the
total weight as in the multiple hotel case. This indicates that
Algorithm 7 is still able to find good itineraries with the
single hotel constraint.

5.9 User study

To evaluate the quality of the generated itineraries, we
conduct a user study, which asks the users to manually rank
the itineraries. Our study hires 20 undergraduate students as
the users. Given a set of selected POIs, we use the TOP and
MR-Set methods to generate 20 groups of itineraries (three-
day itineraries in the experiment). Each participant assigns a
score (ranging from 1 to 5) to each itinerary in his group. The
average ranks are then computed for the itineraries
generated by different approaches. Fig. 24 shows the results.
Most users prefer the results generated by MR-Set. We also
observe that the ratings of both the TOP and MR-Set are
reduced, when more POIs are selected as the necessary POIs.
It is because that some of the user selected POIs are missing
in the itineraries due to the constraint of travel time.

6 RELATED WORK

Most existing work on itinerary generation take a two-step
scheme. They first adopt the data mining algorithms to

discover the users’ traveling patterns from their published
images, geolocations and events [11], [12], [13]. Based on the
relationships of those historical data, new itineraries are
generated and recommended to the users [14], [15], [16].
This scheme leverages the user data to retrieve POIs and
organize the POIs into itinerary, which is based on a
different application scenario to ours. We help the traveling
agency provide the customized itinerary service, where all
details of POIs are known and each user prefers different
itinerary instead of adopting the most popular ones. In our
case, the itinerary generation problem is a search problem
for the optimal POI combinations.

In fact, searching for the optimal single-day itinerary has
been well studied. It can be transformed into the traveling
salesman problem (TSP) [5], which is a well-known NP-
complete problem. For example, in [17], given a set of POIs,
the system will generate a shortest itinerary to access all the
POIs. If the distance measure is a metric and symmetric,
the TSP has the polynomial approximate solution [18], but
the approximate solution incurs high overhead for a large
POI graph [19]. Therefore, some heuristic approaches [1] are
adopted to simplify the computation.

Some interactive search algorithms [2], [20] are proposed
in recent years. These algorithms still focus on optimal
single-day itinerary planning. To reduce the computation
overhead and improve the quality of generated itineraries,
users’ feedbacks are integrated into the search algorithm.
The search algorithm works iteratively. It proposes new
itineraries for users based on their previous feedbacks and
the users can adjust the weights of POIs in the itinerary or
select new POIs into the itinerary. In the next iteration, the
algorithm will refine its results based on the collected
information. Those work can be considered as variants of
optimal single-day itinerary planning problems, whereas
our algorithms focus on generating multi-day itineraries.
Moreover, interactive algorithms pose requirements for the
users, who may be reluctant to provide the feedbacks.

To the best of our knowledge, no previous work studied
the problem of generating multiday itinerary. This problem
is more challenging than the single-day itinerary, because
simply combining multiple optimal single-day itineraries
may result in a suboptimal solution. The multiday itinerary,
as shown in this paper, can be reduced to the team orienting
problem (TOP) [3], which is an NP-complete problem with
no approximate solution. Therefore, many heuristic ap-
proaches are proposed [6], [21], [22]. The heuristic ap-
proaches cannot guarantee the quality of generated
itineraries. To address the problem, in this paper, we apply
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4. In this figure, the weight ratio is computed between the MR-Set with
adjustment and MR-Set without adjustment.



the MapReduce framework to generate the single-day

itineraries. The parallel engine of MapReduce allows us to

solve some NP-complete problems more efficiently. Other

work [23], [24] also try to leverage the power of MapReduce

to reduce the processing cost of NP-complete problems. The

beauty of our approach is that after the transformation, the

itinerary planning problem is reduced to the weighted set-

packing problem, which has approximate solutions under

some contraints.

7 CONCLUSION

In this paper, we present an automatic itinerary generation

service for the backpack travelers. The service creates a

customized multiday itinerary based on the user’s pre-

ference. This problem is a famous NP-complete problem,

team orienting problem, which has no polynomial time

approximate algorithm. To search for the optimal solution,

a two-stage scheme is adopted. In the preprocessing stage,

we iterate and index the candidate single-day itineraries

using the MapReduce framework. The parallel processing

engine allows us to scan the whole dataset and index as

many itineraries as possible. After the preprocessing stage,

the TOP is transformed into the weighted set-packing

problem, which has efficient approximate algorithms. In

the next stage, we simulate the approximate algorithm for

the set-packing problem. The algorithm follows the

initialization-adjustment model and can generate a result,

which is at most 2ðmþ1Þ
3 worse than the optimal result.

Experiments on real data set from Yahoo’s traveling

website show that our proposed approach can efficiently

generate high-quality customized itineraries.
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