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Abstract

The Retrieval-Augmented Language Model (RALM) has
demonstrated remarkable performance on knowledge-
intensive tasks by integrating external knowledge during
inference, which mitigates the factual hallucinations in-
herited in large language models (LLMs). Despite these
advancements, challenges persist in the implementation of
RALMs, particularly in terms of reliability and traceability.
Specifically, the irrelevant document retrieval may result
in unhelpful responses or even deteriorate the performance
of LLMs, while the lack of appropriate citations in outputs
complicates efforts to verify the trustworthiness of the
models. To this end, we propose a novel self-reasoning
framework aimed at improving the reliability and traceability
of RALMs, whose core idea is to leverage reasoning
trajectories generated by the LLM itself. The framework
involves constructing self-reasoning trajectories through
three processes: a relevance-aware process, an evidence-
aware selective process, and a trajectory analysis process.
We evaluated our framework across four public datasets (two
short-form QA datasets, one long-form QA dataset, and one
fact verification dataset) to demonstrate its superiority. Our
method can outperform existing state-of-the-art models and
achieve performance comparable with GPT-4, using only
2,000 training samples.

Introduction
The Retrieval-Augmented Language Model (RALM), also
known as Retrieval-Augmented Generation (RAG), has be-
come a crucial enhancement for Large Language Models
(LLMs) by integrating external knowledge during inference.
Despite their advanced capabilities in language understand-
ing and generation (Brown et al. 2020; Touvron et al. 2023),
LLMs are prone to producing hallucinated and inaccurate
content, especially in knowledge-intensive tasks (Ji et al.
2023). Augmenting LLMs with relevant information ob-
tained from external sources like Wikipedia and search en-
gines has proven effective in reducing these inaccuracies
(Guu et al. 2020; Lewis et al. 2020; Borgeaud et al. 2022;
Izacard et al. 2022; Asai et al. 2024). This approach has
proven effective in mitigating the factual hallucinations that
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Document 1: … painted surface, was started in 
1568 by Giorgio Vasari and Federico Zuccari and 
would last till 1579. The upper portion, near the 
lantern, representing The 24 Elders of Apocalypse 
was finished by Vasari before his death …

Trajectory Analysis Process 
The ceiling of the Florence Cathedral was painted 
by Federico Zuccari and his collaborators, beginning 
in 1568 and completing in 1579. The work was 
started by Giorgio Vasari and later continued by 
Federico Zuccari, with contributions from various 
artists, including Domenico Cresti [1][3]

This piece indicates that the painting of the Florence 
Cathedral was started in 1568 by Giorgio Vasari and 
Federico Zuccari, which directly answers the 
question.

Giorgio Vasari, Federico Zuccari

Final Answer

      SELF-REASONING

Documents

Figure 1: An example of how SELF-REASONING framework
generates reasoning trajectories.

are inherent in LLMs (Kwiatkowski et al. 2019; Petroni et al.
2021; Ram et al. 2023).

Nevertheless, there are still limitations associated with
RALMs, particularly concerning reliability and traceability.
Firstly, the reliability of the retrieved information remains a
substantial concern. Previous studies have shown that noisy
retrieval can adversely affect the performance of an LLM
(Menick et al. 2022; Li et al. 2023), as irrelevant data can
lead to misguided responses and disturb the model’s abil-
ity to leverage its intrinsic knowledge effectively. Secondly,
the interpretability and traceability of outputs generated by
RALMs need to be improved. Although RALMs incorporate
retrieved documents during both the training and inference
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phases, they may fail to explicitly cite these documents, thus
complicating the process of tracing and verifying the claims
made by LLMs. To improve the retrieval robustness, recent
studies have explored incorporating external tools such as
natural language inference (NLI) models (Honovich et al.
2022) and document summarization models during infer-
ence (Yoran et al. 2023; Xu et al. 2024). However, the effec-
tiveness of these external tools largely influences the overall
performance of RALMs. Additionally, training and optimiz-
ing these auxiliary models require additional costs. Conse-
quently, identifying the most appropriate training and selec-
tion methods for NLI and summarization models remains a
critical challenge in leveraging these approaches.

To address the above limitations, we propose a novel end-
to-end SELF-REASONING framework to improve the per-
formance of RALMs. For convenience, we will also re-
fer to this framework as SELF-REASONING RAG and use
the terms interchangeably. Our intuition is that the explicit
self-reasoning trajectory crafted by LLMs can improve both
the retrieval robustness and accuracy in question answering.
During the pre-training phase, while an LLM primarily fo-
cuses on knowledge acquisition, it does not learn to reason
from retrieved documents to generate answers. To address
this, a feasible approach is to incorporate reasoning trajecto-
ries into a post-training phase. Such an approach could po-
tentially teach the model to reason and distinguish relevant
and irrelevant documents, thereby enhancing its query re-
sponse accuracy. An example of how our SELF-REASONING
framework generates reasoning trajectories is illustrated in
Figure 1. In contrast, as shown in the middle part of Figure
2, the conventional RALM methods gather all documents
in a non-selective manner, leading to the distraction of the
LLM by irrelevant content and consequently resulting in the
generation of erroneous answers.

Our framework constructs self-reasoning trajectories
comprising three processes: 1) a Relevance-Aware Process
(RAP), which instructs the LLM to judge the relevance
between the retrieved documents and the question, 2) an
Evidence-Aware Selective Process (EAP), which directs the
LLM to choose and cite relevant documents, and then auto-
matically select snippets of key sentences as evidence from
the cited documents, 3) a Trajectory Analysis Process (TAP),
which requires the LLM to synthesize a concise analysis
based on all gathered self-reasoning trajectories generated
by previous two processes and subsequently provide the
final inferred answer. Furthermore, we propose a gradual
training method by employing stage-wise masking strategies
to enhance the performance of our framework. We summa-
rize our contributions as follows:

• We propose a novel end-to-end SELF-REASONING
framework that improves the robustness of RALMs by
leveraging reasoning trajectories generated by the LLM
itself, without the need for external tools.

• We carefully design three processes to enhance the in-
terpretability and traceability of RALMs by requiring
LLMs to explicitly generate snippets and citations from
documents, and further explain the reason why cited doc-
uments can help answer the question.

• We evaluate our framework on four public datasets (two
short-form QA, one long-form QA, and one fact verifica-
tion), demonstrating that our method surpasses existing
state-of-the-art models in performance using only 2,000
training samples.

Related Work
Retrieval-augmented LMs
Many studies have investigated augmenting the performance
of LLMs with externally retrieved information (Izacard et al.
2022; Guu et al. 2020; Borgeaud et al. 2022) and some of
them pre-train language models with retrieved passages. For
works focusing on RALMs with citations, Menick et al.
(2022); Nakano et al. (2021) instruct or train an LLM to
answer questions with retrieved documents while providing
citations. Gao et al. (2023b) proposes an end-to-end system
to retrieve supporting evidence and generate answers with
citations, while only focusing on prompting without updat-
ing their model weights. Other works instruct or fine-tune
LLMs to use external tools to retrieve dynamically (Schick
et al. 2023; Yao et al. 2023; Jiang et al. 2023), which of-
fers an adaptive method of when and what to search. Gao
et al. (2023a) improves the attribution and factuality of lan-
guage models by taking outputs of LLMs and applying a
post-process retrieve-and-edit approach.

Robustness for RALMs
To improve the robustness of RALMs, previous works can
be divided into two categories. The first category utilizes re-
trieved documents to enhance the Chain of Thought (CoT).
For example, IRCoT (Trivedi et al. 2023) iteratively uses re-
trieved documents to generate CoT, which is then used to
retrieve further documents in subsequent steps. ReAct (Yao
et al. 2023) introduces an iterative CoT paradigm that in-
tegrates reasoning with search results. However, irrelevant
retrievals may produce misguided CoT, adversely affecting
LLM performance (Menick et al. 2022; Li et al. 2023).

To address the issue of irrelevant retrieval information, the
second category proposes using external modules to process
retrieved documents during inference. For instance, Yoran
et al. (2023) utilize a natural language inference model to
filter out irrelevant documents, Yan et al. (2024) employ a
retrieval evaluator to classify documents based on their qual-
ity, and Xu et al. (2024) and Yu et al. (2023) apply models
to filter out or compress retrieved documents. Baek et al.
(2023) deploy a separate small language model as a veri-
fier to detect and correct errors in LLMs during retrieval.
A method presented by Asai et al. (2024), which appears
most similar to our approach, develops a technique that in-
structs models to retrieve information using specifically de-
signed reflection tokens. However, this approach needs to
train extra critic models and generator models to predict the
reflection tokens, which requires tens of thousands of extra
training samples.

Unlike the second group of works, which rely on exter-
nal tools or additional modules to eliminate irrelevant infor-
mation, the SELF-REASONING RAG method integrates self-
reasoning directly into the model’s architecture, thereby en-
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Cite content:
[1] … the original start date was 
January 2002, but was pushed to 
February 7 in Los Angeles, …

Reason to cite:
This piece provides information on 
the commencement and location of 
filming for 'Catch Me If You Can', 
indicating that it started in April 2002
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If	You	Can	made?
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Retrieved documents

(Relevant Aware Process） (Evidence Aware Selective Process） (Trajectory Analysis Process）

Basic LLMs

Retrieval Augmented  LLMs

1989
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Relevant: 
True

Relevant Reason: 
The provided documents 
are relevant with question.

Cite content:
[1] … the original start date was 
January 2002, but was pushed to 
February 7 in Los Angeles, …
Reason to cite:
This piece provides information on 
the commencement and location of 
filming for 'Catch Me If You Can', 
indicating that it started in April 2002.

Analysis:
The film 'Catch Me If You Can' was made in 
2002. It started filming in April 2002 in Park 
Avenue, just outside the Waldorf-Astoria 
Hotel, and moved to Orange, New Jersey, 
before returning to Brooklyn for bank and 
courthouse scenes [1].

(Self-Reasoning Short Answer）

(RAG Answer）

(Raw LLM Answer）

Self-Reasoning with Trajectories 

the film due to her busy 
schedule. The original start 
date was January 2002, but 
was pushed to February 7 

Input Question Output ❌

❌

✅

Figure 2: An illustration of the SELF-REASONING framework. The upper is the basic LLMs which answer the question by
inherent knowledge. The middle is the standard retrieval augmented LMs, which use retrieved documents to help answer the
question. The bottom is our SELF-REASONING framework which uses self-generated reason trajectories to output answers.

hancing the performance of LLMs and providing a more ef-
ficient and scalable solution. Further related works on LLMs
for reasoning are discussed in the Appendix.

Preliminary
We formally define the problem of retrieval augmented gen-
eration with self-reasoning. Given a query q and a corpus of
documents D, an LLM-generated answer with m statements
and n tokens can be defined as y = (s1, s2, · · · , sm) =
(w1, w2, · · · , wn), where si is the i-th statement and wj is
the j-th token in the generated answer. In addition, for long-
form QA settings, each statement si should cite a list of doc-
uments Ci = {c(1)i , c

(2)
i , ...}, where c

(k)
i ∈ D. In our work,

we train an LLM (e.g. LLaMA2) to first generate reasoning
trajectories τ through self-reasoning and then to generate an-
swers y∗ (short-form answers) on condition of τ . The model
output is y = concat(τ, y∗), which is the concatenation of
τ and y∗. Note that the generations of τ and y∗ are done in
a single pass within the SELF-REASONING framework.

Method
Here we provide a detailed implementation of the self-
reasoning process which involves three processes: 1) a
Relevance-Aware Process (RAP), 2) an Evidence-Aware Se-
lective Process (EAP), and 3) a Trajectory Analysis Process
(TAP). An illustration of our SELF-REASONING framework
is shown in Figure 2. Additionally, we outline the process of
data generation and quality control, and present the specifics
of model training.

Relevance-Aware Process
In this work, we choose DPR (Karpukhin et al. 2020) and
Contriever (Izacard et al. 2021) as default retrievers R to
recall the top-k relevant documents. When presented with
a question and a set of documents, people can determine
whether the question is relevant to the retrieved documents.
Therefore, we first instruct the model to judge the relevance
between the retrieved documents D and the given question q.
We further request the model to explicitly generate reasons
explaining why given documents are identified as relevant.
The output should include two fields as relevant and rele-
vant reason, as depicted in Figure 2. If all of the retrieved
documents are irrelevant, the model should provide an an-
swer based on the internal knowledge acquired during its
pre-training phase. We define the self-reasoning trajectories
generated by RAP as τr.

Evidence-Aware Selective Process
When answering a question, people generally first identify
the crucial sentences from the provided documents and then
cite or highlight them as key points. This process of cit-
ing the document facilitates reading comprehension and can
serve as a technique for combining multiple short answers
to address various aspects. While people may carry out this
selective process and citation instantaneously, LLMs need to
formulate the self-reasoning trajectories explicitly.

In our work, we require the LLM to explicitly state the
reason why the selected sentence is supportive and plausible
in answering the question. We define the selected sentence
as evidence in our paper. Specifically, after retrieving the
top-k documents, the self-reasoning method for Evidence-
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Aware Selective Process can be formulated as follows: First,
we instruct the LLM to choose relevant documents and au-
tomatically select snippets of key sentences for the selected
documents. Then, we request the LLM to output the reason
why the selected snippets can answer the question. The in-
termediate output is a list containing multiple contents, each
content should include two fields, as cite content and rea-
son for cite, which is illustrated in Figure 2. We define the
self-reasoning trajectories generated by EAP as τe.

Trajectory Analysis Process
Finally, we consolidate all the self-reasoning trajectories (τr
and τe) in the previous processes together to form a chain
of reasoning snippets, thereby enhancing the overall perfor-
mance of the retrieval augmentation generation. Specifically,
we ask the LLM to analyze the reasoning trajectories within
itself and ultimately to output a concise analysis and a short
answer. We instruct the LLM to output content with two
fields as analysis and answer, which is shown in Figure 2.
We define the self-reasoning trajectories generated by TAP
as τa. In this work, the analysis output is defined as a long-
form answer, and the answer output is defined as a short-
form answer. In the experiment section, we further explored
the performance of long-form and short-form QA settings.

Data Generation and Quality Control
Training Data Generation. For the Relevance-Aware
Process data generation, as manually labeling the relevant
and irrelevant documents is label-intensive, we request GPT-
4 (OpenAI 2023) to generate answers as ground truth.
Specifically, we instruct GPT-4 to generate labels regarding
irrelevant fields, and further to output the reasons why the
given documents cannot answer the question. We concate-
nate the given question and the retrieved documents as pos-
itive samples. For negative samples, we randomly select a
different question from the training set and retrieve the top-k
documents related to it. These documents are then concate-
nated with the initial question to form negative samples. To
avoid order bias in the training data, we shuffle the order of
the documents.

For the EAP and TAP data generation, manually annotat-
ing the citation and writing the self-reasoning process for
each question is not feasible in practice. Therefore, we fol-
low a similar process to RAP, we first instruct GPT-4 to
generate a snippet of selected documents and subsequently
output the reasoning process as trajectories. The method for
constructing the EAP training data is the same as RAP ex-
cept that the instructions given to GPT-4 are different. The
details of the instructions are shown in the Appendix.

Data Quality Control. For training data generation, cor-
rect and comprehensive reasoning trajectories are very im-
portant. When training an LLM, the quality of the train-
ing samples is more important than the quantity (Zhou
et al. 2023). As we cannot guarantee the correctness of self-
reasoning trajectories and citations by GPT-4, we develop
two efficient methods to control the quality of data gener-
ation: 1) The first method is to use the off-the-shelf tools
Gao et al. (2023b) to automatically verify the performance

of data generation for document citations. We calculate the
citation precision and recall score for each training sample
and filter out scores lower than our pre-defined thresholds
δp and δr, for citation precision and recall, respectively. 2)
Second, though the validation of self-reasoning trajectories
and citations generated by GPT-4 is challenging, verifying
the correctness of the final answer is straightforward. There-
fore, we filter out the trajectories that lead to the incorrect
answers and only keep the correct ones. We totally generate
10,000 training samples by GPT-4, after the filtering strat-
egy by quality control, we finally keep 2,000 training sam-
ples with high quality. More details and pseudo-codes can
be found in the Appendix.

Model Training
We train the self-reasoning RAG model ϕ by our constructed
corpus which is augmented with self-reasoning trajectories
τ using the standard language modeling objective, maximiz-
ing likelihood:

max
ϕ

E(q,τ,y)∼Dsr
log pϕ(y | τ, q)pϕ(τ | q) (1)

where τ = τr⊕τe⊕τa are the self-reasoning trajectories, ⊕
is a concatenation operator, τr, τe, τa are trajectories gener-
ated by above three processes respectively. q is the provided
question, and y is the model output, including the intermedi-
ate reason trajectories and the final answer. Dsr is the train-
ing corpus augmented with self-reasoning trajectories.

During training, we observed that it is more challenging
to ensure the correctness of an LLM with 13B parameters
when generating long reasoning trajectories than short ones.
We hypothesize that an LLM’s effective reasoning length is
limited and exceeding this limit might lead to error accumu-
lation during the inference stage. Therefore, we propose a
gradual training method by employing stage-wise masking
strategies to gradually learn to generate long trajectories.

Specifically, we propose a stage-wise training process
while we train the LLM stage by stage. In the first stage, we
mask the trajectories produced by the next two stages (EAP
and TAP) and train the model with a learning rate ra. Then
in the second stage, we only mask the trajectories generated
by TAP and train the model with a learning rate rb. Finally,
we concatenate the reasoning trajectories from all stages and
put them into a self-reasoning LLM for end-to-end training
with a learning rate rc. Hyper-parameters for training are
described in the Appendix.

Experiments
Datasets and Settings
To demonstrate the effectiveness of our proposed SELF-
REASONING framework, we conduct an extensive experi-
mental evaluation on two short-form QA datasets (Natu-
ralQuestion (Kwiatkowski et al. 2019) and PopQA (Mallen
et al. 2023)), one long-form QA dataset (ASQA (Stelmakh
et al. 2022)), and one fact verification dataset (FEVER
(Thorne et al. 2018)). Detailed descriptions of the datasets
can be found in the Appendix. We explore off-the-shelf
retrievers. We use DPR (Karpukhin et al. 2020) and
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Models NaturalQuestion PopQA FEVER ASQA

(acc) (acc) (acc) (em-recall) (precision) (recall)

Baselines without retrieval

LLaMA27B 19.2 18.4 23.2 10.2 - -
LLaMA213B 24.0 22.6 25.3 15.3 - -
LLaMA27B-chat 20.2 21.5 26.5 16.3 - -
LLaMA213B-chat 23.2 25.9 28.4 18.3 - -

Baselines with retrieval

LLaMA27B 27.8 47.8 39.8 28.5 13.6 9.59
LLaMA213B 34.0 48.1 35.2 26.8 21.8 16.3
LLaMA27B-chat 27.4 52.9 43.4 25.3 34.5 33.2
LLaMA213B-chat 32.7 53.5 53.4 26.4 39.4 38.4
Vicuna7B (Chiang et al. 2023) 28.0 55.2 62.4 24.3 45.7 40.8
Vicuna13B (Chiang et al. 2023) 35.4 56.1 60.6 27.3 51.3 50.2
LLaMA2-FT7B 36.8 54.4 67.5 28.5 47.2 45.4
ReAct (Yao et al. 2023) - - 64.6 - - -
RECOMP (Xu et al. 2024) 38.4 - - - - -
Self-RAG7B (Asai et al. 2024) 37.2 54.9 70.2 30.0 66.9 67.8
Self-RAG13B (Asai et al. 2024) 38.8 55.8 72.1 31.7 70.3 71.3

SELF-REASONING7B 38.0 54.2 78.6 33.9 66.3 70.8
SELF-REASONING13B 41.4 57.3 83.9 35.2 71.2 72.3

GPT-4 46.6 62.5 87.7 41.3 75.6 68.5

Table 1: Performance comparisons with different baseline models on two short-form QA datasets, a long-form QA dataset, and
a fact verification dataset. The numbers with bold black represent the best results excluding GPT-4. The results are averaged
over five runs, and presented with standard variance values omitted (all ≤ 2%).

Contriever-MS MARCO (Izacard et al. 2021) to retrieve the
top five documents from Wikipedia.

By default, we use DPR as a retriever for the NQ, as DPR
has been fine-tuned on the high-quality NQ data. On the
PopQA, where question and answer pairs are created based
on Wikipedia in 2022, therefore, for the PopQA, we use the
December 2020 preprocessed Wikipedia corpus provided by
(Izacard et al. 2022) and use Contriever as a retriever. For the
ASQA dataset, we use GTR (Ni et al. 2022) as a retrieval
that corresponds to the experimental settings in (Gao et al.
2023b). More settings can be found in the Appendix.

Evaluation Metrics
We use different evaluation metrics for short-form QA, long-
form QA, and fact verification tasks.

Short-form QA metrics. We report accuracy for short-
form QA tasks, which is based on whether ground-truth
answers are included in the model predictions instead of
strictly requiring exact matching, following Mallen et al.
(2023); Schick et al. (2023).

Long-form QA metrics. For long-form QA tasks, we re-
port the EM recall as a correctness metric, and the citation
recall and the citation precision for citation quality, which
are the same as the metrics in (Gao et al. 2023b).

Fact verification metrics. For the fact verification task,
we report the accuracy as a metric, which is a three-class
classification accuracy, following Thorne et al. (2018).

Baseline Models
Baseline models without retrieval. We evaluate strong
open-source pre-trained LLMs as baseline models. For basic
LLMs, we test LLaMA2-7B, LLaMA2-13B (Touvron et al.
2023) and its instruction-tuned chat version LLaMA2-Chat-
7B, LLaMA2-Chat-13B.

Baseline models with retrieval. First, we benchmark the
models using the LLaMA2 and the Vicuna (Chiang et al.
2023) series models for baselines. Additionally, for a fair
comparison, we also include LLaMA2-FT, where LLaMA2
is fine-tuned on all the training samples generated by GPT-
4 except the self-reasoning trajectories. To establish strong
baselines, we compare our method against RECOMP (Xu
et al. 2024), ReAct (Yao et al. 2023), and Self-RAG (Asai
et al. 2024), all of which are trained with extra GPT-4 gener-
ated samples or external tools. We also compare our frame-
work with GPT-4 (OpenAI 2023). We include categorical
comparisons with the baseline models in the Appendix.

Main Results
Table 1 shows the performance comparisons with different
methods on the four public datasets. For short-form QA
evaluations, the performance of LLMs with augmented re-
trieval is consistently better than that of basic ones, affirm-
ing the effectiveness of the augmented approach. Notably,
under the same order of magnitude parameters, our SELF-
REASONING framework outperforms most of the strong
baseline LLMs. Specifically, compared to the Self-RAG, our
framework is an end-to-end system trained with only 2,000
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Figure 3: Noise robustness experiment results on three different datasets: (a) On the left is the NQ dataset, (b) in the middle is
the PopQA dataset, and (c) on the right is the FEVER dataset. The Self-RAG and Vicuna are 13B parameter size models.

self-reasoning trajectory samples. In contrast, the Self-RAG
requires training additional critic LMs to predict reflection
tokens using an additional 46,000 instances generated by
GPT-4. This efficiency not only simplifies the training pro-
cess but also significantly reduces resource consumption.

In the context of long-form QA evaluations, for the met-
rics of EM recall, it needs to comprehend multiple docu-
ments and merge answers. The EAP and TAP are specifi-
cally designed for multi-document reading comprehension,
enabling our performance to surpass other baselines. In
terms of citation evaluation metrics, the SELF-REASONING
RAG can achieve better results than GPT-4 in ASQA cita-
tion recall metrics (72.3 vs. 68.5). This is largely due to the
reasoning trajectories generated in the EAP, which can en-
hance the recall and precision of citation evaluation, leading
to more interpretable and traceable generations.

For fact verification evaluations, we observed that SELF-
SEASONING is dominantly superior to all baseline models.
Our method achieves a much higher accuracy rate than the
Self-RAG model (83.9 vs. 72.1). The RAP in our framework
is designed to judge the relevance between the retrieved doc-
uments and the question, which leads to a notable enhance-
ment in accuracy for this fact verification task.

To clearly demonstrate the practical applications and ben-
efits of our SELF-REASONING framework, we provide a case
study for a more in-depth analysis in Appendix, which illus-
trates how our framework operates in real-world scenarios.

Analysis
Ablation Study
We conduct an ablation study on two short-form QA datasets
and a fact verification dataset to analyze the individual
contributions of each process within our proposed SELF-
REASONING framework. We further explore the effective-
ness of the gradual learning (GL) method and the qual-
ity control (QC) of data generation (a detailed analysis de-
scribed in the Appendix). The main ablation study results
are shown in Table 2 and Table 3.

Models NQ PopQA FEVER

(acc) (acc) (acc)

ORIGIN 41.4 57.3 83.9
w/o (RAP) 39.9 54.3 72.2
w/o (EAP) 37.2 53.2 78.4
w/o (TAP) 38.2 53.4 81.2
w/o (GL) 39.5 55.3 81.2
w/o (QC) 37.7 54.2 80.8

Table 2: The ablation study on two short-form QA datasets
and a fact verification dataset with 13B parameter size mod-
els. In the table, the ORIGIN represents our self-reasoning
model enhanced with self-generated trajectories.

Models NQ PopQA FEVER

(acc) (acc) (acc)

LLaMA2 32.7 53.5 53.4
+ trajectory 38.3 54.2 79.2

Vicuna 35.4 56.1 60.6
+ trajectory 38.5 56.4 79.6

Table 3: The analysis on the effectiveness of self-reasoning
trajectories with 13B parameter size models. In the table,
the +trajectory indicates the result of the baseline model is
enhanced with self-generated trajectories by our framework.

Effectiveness of RAP. First, we evaluate the effect of
the RAP. The removal of the RAP causes the overall per-
formance to drop in two short-form QA datasets and a
fact verification dataset, suggesting that preliminary con-
sideration of the relevance between questions and retrieved
documents can help improve performance. We notice that
the performance declines most significantly in the FEVER
dataset. Detecting irrelevant documents is critical in the fact-
verification task. Our model will immediately output NotE-
noughInfo if it detects that all documents are irrelevant.
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Effectiveness of EAP. Then we evaluate the effect of the
EAP. Removing the EAP causes the overall performance of
the average accuracy to decline from 60.9 to 56.3 in three
short-form QA datasets, which indicates that snippets of key
sentences and document citations generated through self-
reasoning are instrumental in boosting accuracy.

Effectiveness of TAP. Finally, we evaluate the effect of
the TAP. When excluding the TAP, we can observe a per-
formance decline on all three datasets, demonstrating that
self-analysis based on two previous processes generated tra-
jectories can also improve the performance of LLMs. Note
that the analysis content generated by TAP is indispensable
for the long-form QA evaluation.

Effectiveness of Self-Reasoning Trajectory. To verify
whether the trajectories generated by the self-reasoning
framework are truly effective, we put the trajectories gener-
ated by our SELF-REASONING framework into the original
baseline models as input prompts, and then use the baseline
models to regenerate the answers. We observe that incorpo-
rating self-generated trajectories can significantly enhance
performance in short QA tasks and fact verification tasks.

Retrieval Robustness Analysis
Retrievers are not perfect and past work has shown that noisy
retrieval can have negative effects on the performance of
LLMs (Petroni et al. 2020; Li et al. 2023). In this section,
we design two kinds of settings to validate the robustness
of RALMs. In the first setting, we test whether the order of
the retrieved documents will affect the performance of the
RALMs. Specifically, after retrieving the top-k documents
using retrievals with a descending relevance score, we ran-
domly shuffle the order of the retrieved documents and then
input them to an LLM. In the second setting, we test how
noisy documents impact the performance of LLMs. When
retrieving the top-k documents from the given question, we
randomly replace 50% of the retrieved documents with other
documents sampled from a different question in the dataset.

Figure 3 shows the noise robustness experiment results
on three datasets. Our SELF-REASONING framework con-
sistently outperforms the Self-RAG and Vicuna models. We
observe that random shuffling of retrieved documents has a
minimal impact on the performance of RALMs. If the pro-
vided documents are supportive, it is trivial for a RALM
to determine the correct answer. However, when presented
with noisy documents, all models experience a decline in
performance. The performance drop in our self-reasoning
framework is relatively minimal, demonstrating the robust-
ness of our method even when handling noisy documents.

Citation Analysis
As the automatic evaluation by the NLI model cannot de-
tect partially supported citations, we discuss the analysis of
citations with human evaluation in this section. Similarly to
Liu, Zhang, and Liang (2023), we conduct a human eval-
uation on two dimensions: 1) citation recall: annotators are
given a statement and all documents that the statement refers

Figure 4: Human citation quality evaluation vs. automatic
citation evaluation on the long-form ASQA dataset.

to and are asked to judge whether the documents fully sup-
port the given statement; 2) citation precision: given a state-
ment and one of its citations, annotators are asked to vali-
date whether the citation fully supports, partially supports
or does not support the statement. As shown in Figure 4, the
relative rankings by human evaluation align well with those
from the automatic evaluation, and the human evaluation of-
ten yields a closely higher score when compared with the
automatic evaluation. Details of human annotation can be
found in the Appendix.

Latency Analysis
We also compared the inference latency of SELF-
REASONING RAG with that of Self-RAG and GPT-4. The
results show that our method maintains comparable latency
to Self-RAG while delivering substantial performance gains.
Detailed results are available in the Appendix.

Conclusion
RALMs can effectively enhance the performance of LLMs
in handling knowledge-intensive tasks. Despite their effec-
tiveness, notable concerns about their reliability and trace-
ability persist. To address these limitations, we propose a
novel SELF-REASONING framework to improve the perfor-
mance of RALMs by using reasoning trajectories generated
by the LLM itself. It is comprised of a relevance-aware pro-
cess, an evidence-aware selective process, and a trajectory
analysis process. We conduct extensive experiments on four
public datasets to demonstrate the superiority of our frame-
work over existing state-of-the-art models.
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