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Urban land use, intrinsically linked to people’s daily activities, undergoes continuous evolution, presenting

a complex interplay that remains partially understood. To bridge this gap, our study leverages fine-grained

humanmobility data to predict these changes, adopting a novel approach that conceptualizes “community-level”

land use shifts as a regression problem and represents citywide changes through dynamic graphs. We harness

recent advancements in graph neural networks (GNNs), which, despite their success in various applications,

face challenges in directly predicting land use changes due to the temporal mismatch between the slow

evolution of urban land and the immediacy of human mobility data. Our research stands out by introducing a

temporal skeleton for dynamic GNNs to synchronize human activity graphs with urban land use changes,

a dynamic heterogeneous GNN approach for integrating diverse human activity data to capture essential

temporal dependencies, and a novel algorithm powered by causal inference to elucidate the primary factors

influencing land use predictions at the community level, all of which contribute to a training process informed

by the generated causal graph. Empirically validated on three real-world datasets, our model demonstrates a

performance leap over state-of-the-art baselines, marking a pivotal step toward understanding and predicting

the dynamics of urban land use.
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(a) June 2020 (b) June 2021

Fig. 1. An illustrative example of urban land use change.

1 INTRODUCTION
Predicting urban land use change is vital for anticipating future land use patterns and crafting sus-

tainable development strategies. This task requires an analysis of land use transformations between

consecutive time points to project these changes into the future, as highlighted by Eastman [9].

Understanding a city’s historical land development trends is essential for city planners to formulate

plans that support sustainable growth. Stanilov and Batty [32] underscored the significance of

recognizing both rapid and gradual dynamics influencing urban land use alterations, advocating for

an enhanced comprehension of the underlying mechanisms. Given its profound impact on human

habitation and productivity, producing accurate land use predictions has become increasingly

urgent.

Over recent decades, numerous studies have focused on modeling land use change, traditionally

employing physical models like cellular automata [19, 42] to simulate and forecast land use dynamics.

With the advent of deep learning, artificial neural network (ANN)-based methods [24, 34] have

gained popularity. These methods typically approach land-use change prediction as a classification

task, using single-label or multi-label classification to predict changes over long periods. However,

this “coarse-grained” approach often falls short in predicting short-term, community-level land

use changes, which are becoming increasingly common with the development of smart cities, as

illustrated in Fig. 1. Additionally, the static nature of classified land use labels fails to capture the

nuanced dynamics of urban land use changes. In response, our work redefines community land use

as a real-valued portfolio, enabling us to model community-level land use changes as a regression

problem, thereby capturing the more granular changes.

Urban development is recognized to be influenced by human activities, a relationship that has

become clearer with the advent of big data over recent decades [13, 31, 43]. Traditional urban models

use numerical functions to simulate human mobility, but these methods often fall short in predicting

land use changes driven by mobility. In response, we propose a data-driven approach utilizing

multifaceted, fine-grained human mobility data to enhance land use predictions. Integrating this

intricate and heterogeneous human activity data into land use change models presents significant

challenges, yet our approach aims to address these by harnessing the latest advancements in data

analytics to improve the accuracy and efficiency of urban planning models.

In this work, we introduce a novel data-driven approach, dubbed ExHAGN, which features

distinctive methodologies such as temporal skeletonization through dynamic graph clustering,

heterogeneous dynamic graph aggregation, and causal inference to elucidate prediction results.
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Specifically, we develop a temporal skeletonization mechanism that adaptively summarizes fast-

evolving dynamic graphs, effectively capturing the informative dependencies found in numerous

snapshots of citywide human activities. This process ensures that the dynamics of various human

activities are seamlessly aligned with land use changes, maintaining the integrity of inherent

“timing rules” of human behaviors. Furthermore, we introduce a heterogeneous dynamic graph

neural network (HDGNN) that explores the diversity and temporal evolution of dynamic graphs.

Additionally, our model includes an algorithm leveraging causal inference to explain predicted

land use changes, with the generated causal graphs also aiding in the training process. Empirical

validation on three real-world datasets demonstrates that ExHAGN significantly surpasses state-of-

the-art baselines. We highlight our contributions as follows:

• We reformulate the land use change prediction as a regression problem and introduce a

data-driven approach, ExHAGN, to address this task.

• We propose a temporal skeletonization mechanism in ExHAGN that automatically aligns

varying human activities with target land use changes, respecting the inherent “timing rules”

of daily human life.

• Leveraging mined high-quality human activity patterns, we design a graph neural network

module in ExHAGN to extract informative properties for prediction, complemented by a causal

inference module to elucidate key factors influencing the outcomes.

• Empirically, we demonstrate that ExHAGN significantly outperforms state-of-the-art (SOTA)

baselines across three real-world datasets.

2 RELATEDWORK
2.1 Land Use Change Modeling
2.1.1 Traditional Methods. Previous studies on urbanization and land use changes have primarily

utilized satellite imagery and GIS data, broadly categorizing the approaches into static (operational)

models and dynamic models like cellular automata. Operational models view the urban system

as a network of market interactions, aiming to link land use with various driving forces and

often simulate interactions among different industrial sectors. However, these models lack a solid

theoretical foundation, which limits their ability to capture the underlying dynamics of urban

development. In contrast, dynamic models, particularly cellular automata, have gained prominence

for their effectiveness in modeling the dynamics of land use changes [2, 3, 36], though their

simulation of macroscopic urban changes poses challenges for empirical validation.

2.1.2 Machine Learning Methods. With its universal approximation capabilities, machine learning

has beenwidely applied to model land-use changes. SVM [46], classification trees [35], and KNN [25]

have been employed for predictive tasks. However, the emergence of deep learning has introduced

more sophisticated models for urban land use change prediction. Free from the constraints of

stationary assumptions, deep learning approaches are adept at handling nonlinearities. Initially,

DNN-based models became standard in this domain, exemplified by Tayyebi and Pijanowski [34].

Later, RNN-based and CNN-based models were introduced to better leverage correlated information,

such as the model by Mu et al. [24] that combines RNNs with cellular automata for simulating land

cover changes. Despite their effectiveness, these deep learning models still struggle with capturing

the complex temporal dynamics of land use changes.

2.2 Clustering Algorithms
Clustering techniques can be categorized into three types: partition methods [16, 26], density-based

methods [10, 29], and hierarchical methods [7, 33]. Partition-based methods, like K-means [16],

segment data into distinct subsets where each data point belongs to one subset, optimizing the
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centroids of these clusters. Density-based methods, exemplified by DBSCAN [10], identify clusters

as dense regions of points, delineated by areas of lower density. Hierarchical methods structure

data into a tree of nested clusters, with approaches like the one proposed by Szekely [33], which

minimizes joint between-within cluster distances. Recently, the integration of deep learning for en-

hancing data representations has become prevalent in clustering [51], with learned representations

being combined with traditional models for improved clustering outcomes [27, 39]. Despite these

advancements, limitations persist: partition-based methods require a predetermined number of

clusters, density-based approaches are sensitive to parameter settings, and hierarchical methods

demand high computational resources. These constraints make them less adaptable to scenarios

that involve varying rhythm time-series data.

2.3 Temporal Graph Neural Networks
Temporal graph neural networks can be categorized into static and dynamic methods. Static meth-

ods use graph neural networks (GNNs) to model static graphs and capture node features through

convolutional neural networks (CNNs) or recurrent neural networks (RNNs). For example, Li

et al. [20] integrate diffusion graph convolutions with RNNs, while Yu et al. [48] employ graph

convolutions alongside temporal gated convolutions to capture temporal dependencies. More

recently, dynamic methods have been developed for modeling evolving temporal graph scenar-

ios. VGRNN [14] introduces a node embedding method for dynamic graphs using a variational

autoencoder. Similarly, Rossi et al. [30] develop a generic inductive GNN that incorporates memory

mechanisms for dynamic graphs. Despite their effectiveness, these approaches struggle to align the

slow dynamics of urban land use changes with the rapid fluctuations in human mobility data, a

critical issue in our research context.

2.4 Explanation for Deep Models
In the realm of deep learning interpretability, most existing methods are either feature- or sample-

based. For instance, self-explanatory models like attention-based methods highlight the significance

of inputs from the model’s perspective [1, 17, 23, 44], while model-independent interpreters examine

changes in variables under certain assumptions [12, 40, 47, 49]. Unlike traditional land-use change

prediction, which relies on expert-defined rules [3, 32], these methods do not provide a holistic

understanding. Motivated by conventional approaches, we aim to automatically discover globally

defined rules (i.e., concept-based explanations), as simply identifying key features or samples for

specific predictions does not reflect the model’s overall behavior. Although causal inference models,

which consider counterfactuals, have gained popularity for concept-based explanations [5, 45],

applying these effectively in land use scenarios, where causal relationships may not be strictly

defined, remains challenging.

3 PRELIMINARIES
This section formally introduces the urban land use change prediction problem and defines essential

concepts to facilitate understanding of our proposed approach.

Let R represent a set of regions within a city, defined as R = {𝑟1, 𝑟2, . . . , 𝑟𝑁 }, and C denote

the set of urban land use categories, C = {𝑐1, 𝑐2, . . . , 𝑐Γ}. In this study, we focus on 10 volatile

and commonly observed urban land use categories, represented by C, which include: business,
commercial, administrative, residential, recreational, health care, public facility, municipal utility,
industrial, and educational.

Definition 1 (Land Use). Given a region 𝑟 ∈ R, the land use of 𝑟 is a portfolio vector x =

(𝑥1, 𝑥2, · · · , 𝑥Γ) where 𝑥𝛾 (𝛾 ∈ [1, Γ]) denotes the weight of 𝛾-th land use category within region 𝑟 .
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Urban land use is characterized by the activities it accommodates and their spatial intensity. Histor-

ically, when human movement in cities was primarily on foot, urban activity nodes were densely

agglomerated, resulting in compact urban forms with mixed land uses. Moreover, urbanization and

subsequent land use changes are influenced by evolving social, economic, and technological factors.

Let X ∈ R𝑁×Γ
represent the matrix of land use in a city, encapsulating the notion that the land use

X evolves over time.

Definition 2 (Land Use Change). At time point 𝑡𝑚 , the land use matrix of the region set R is
denoted asX(𝑡𝑚). Then, the sequenceX = {X(𝑡1), X(𝑡2), · · · ,X(𝑡𝑚), · · · ,X(𝑡𝑀 )} denotes the observed
land use change of the set of regions R in a city where𝑀 is the length of the observation sequence.

A multitude of functions, such as production, consumption, and distribution, are tied to diverse

urban activities occurring at specific locations within the urban activity system. These include

routine and occasional human behaviors related to passenger mobility, and crucial freight-related

activities like manufacturing and distribution. The geographical dispersal of these activities drives

the movements of both passengers and freight, supported by modern location-based services such

as transportation systems and web services. In this context, we analyze the impact of these activities

on land use changes through the dynamic graph.

Definition 3 (Dynamic Graph). A dynamic graph G evolves across time with varying nodes and
edges, which is denoted by G = {𝐺 (𝑠1),𝐺 (𝑠2), · · · ,𝐺 (𝑠𝑙 ), · · · ,𝐺 (𝑠𝐿)}, and 𝐺 (𝑠𝑙 ) = (V(𝑠𝑙 ), E(𝑠𝑙 )) is
the snapshot of G at time point 𝑠𝑙 withV(𝑠𝑙 ) and E(𝑠𝑙 ) being the corresponding node and edge sets,
respectively.

In this work, to thoroughly explore the diverse and complex activities associated with land

use change, we utilize multiple dynamic graphs, each representing different aspects of the urban

activity system. We construct dynamic graphs from three distinct perspectives: movement, (travel)

demand, and traffic, denoted by G𝜇
, G𝛿 , and G𝜏 . It is important to note that these graphs evolve

at a finer temporal resolution than land use changes, reflecting the more immediate and dynamic

nature of these activities compared to the gradual shift in land use.

Essentially, given the land use change X and related dynamic activity graphs G𝜇
, G𝛿 and G𝜏

observed within the region set R in a city, the objective of land use change prediction is to forecast

future land use at subsequent time steps. Formally, we define this as:

Problem 1 (Land Use Change Prediction). Given land use changeX(𝑡1:𝑀 ), and dynamic activity
graphs G𝜇 , G𝛿 and G𝜏 , the goal of land use change prediction is to forecast land use at a time step
𝑡𝑀+1 via a learned model F :

F (X(𝑡1:𝑀 ),G𝜇,G𝛿 ,G𝜏 ) → X̂(𝑡𝑀+1) .

4 METHODOLOGY
As illustrated in Fig. 2, ExHAGN processes dynamic graphs G and land use changes X as inputs. It

consists of four primary modules: activity graph segmentation, temporal skeletonization, DHGNN,

and explanation.

• Activity Graph Segmentation. Activity graphs track daily human activity changes, but

these patterns may not align with monthly land use changes due to weekly routines or events

that shift peak days. To better capture urban rhythms, we use a data-driven approach to

match activity graphs with land use timelines by identifying natural shifts in activity patterns.

This module identifies the start and end points of activity graphs, ensuring alignment with

land use changes. By segmenting these graphs, we synchronize human activity timing with

urban development.
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Fig. 2. The framework overview of ExHAGN.

• Temporal Skeletonization.While segmentation aligns activity graphs monthly, they retain

daily granularity. Temporal Skeletonization clusters these segments to capture essential

patterns, reduces noise and preserves key dependencies, enabling better integration with

land use data. This module simplifies the complexity of the segmented activity graphs by

condensing dynamic graphs. It captures essential temporal patterns while preserving the

critical dependencies of citywide activities.

• DHGNN.Urban activities and land use changes are inherently diverse and complex, requiring

amodel that can handle this variety effectively. This module integrates the diverse dynamics of

activity graphs and land use changes. It also uses a causal relation matrix from the explanation

module to improve predictions by incorporating causal relationships.

• Explanation. Given that land use changes are influenced by a range of environmental and

social factors, understanding the causal links between these elements is crucial for meaningful

predictions. This module goes beyond simple feature correlations by constructing a causal

relation matrix that identifies key relationships among observed factors. This matrix offers the

drivers of land use dynamics and interpretable "rules", which enhances the model’s predictive

capacity by grounding it in the actual factors shaping urban evolution over time.

Overall, we first ensure that the timing of human behaviors is accurately represented in alignment

with land use changes through segmentation and skeletonization. In the activity graph segmentation

module, the dynamic graphs G are segmented in a heuristic way, and these segmented graphs

are subsequently clustered in the temporal skeletonization module using land use changes X as

input as well. Next, a dynamic heterogeneous graph neural network (DHGNN) is employed to

integrate the complex dynamics and heterogeneity present across the graphs and land use changes.

Additionally, the explanation module generates causal explanations, constructing a causal relation

matrix𝐴. This matrix informs both the final predictions and the generation of explanations, creating

a feedback loop that enhances model robustness. Each module is described in detail in the following

subsections.
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(a) (b)

Fig. 3. Different strategies for segmenting time series of activity graphs. (a) Distance curves of STSAG w/ and
w/o sliding window. (b) Encoding the activity graph time series with the adjacency matrix’s eigen-, mean-,
and std.-value.

4.1 Segmenting Activity Graphs
Before clustering activity graphs, we must identify the start and end points of corresponding

activity graphs based on a land use change snapshot X(𝑡), such that the timing of human behaviors

can be accurately represented in alignment with land use changes. This involves segmenting the

series of activity graphs to align with the dynamics of land use change.

We develop a change point detection method to segment time-series of activity graph, namely

STSAG, utilizing time-series change point detection algorithm [18, 37]. Following this, for a given

land use change snapshot X(𝑡𝑚), the resulting segmented sequence is denoted as G (𝑚) = {𝐺 (𝑠𝑙𝑚 ),
𝐺 (𝑠𝑙𝑚+1), · · · ,𝐺 (𝑠𝑙𝑚+1−1)}, where G (𝑚) ⊆ G and 𝑙𝑚+1 − 𝑙𝑚 > 0 denotes the length of segmented

sub-series.

To develop an efficient change point detection algorithm for G, we begin by embedding each

snapshot, 𝐺 (𝑠𝑙 ), into a low-dimensional vector space. We analyze the eigenvector of its adjacency

matrix, selecting the top-𝜂 eigenvalues as the representative vector for 𝐺 (𝑠𝑙 ). A sliding window of

size𝑤 , moving with a stride of 𝜄 time steps, is used to partition the original series. For each 𝑖-th

window, we aggregate all snapshots within to create a column vector, v𝑖 ∈ R(𝜂 ·𝑤 )×1
. This process

results in the matrix V = [v1, v2, · · · , v⌊ 𝐿−𝑤+1

𝜄
⌋], which encapsulates the input activity graphs.

Subsequently, we employ an auto-encoder to extract latent features from the input series V.
Specifically, the auto-encoder maps V to a latent feature set 𝒇 and reconstructs the original input,

denoted by Ṽ = AutoEncoder(V), using a deep learning model. The reconstruction loss is

L𝑠 = ∥V − Ṽ∥2. (1)

We now calculate the distance between features of consecutive time windows,

𝐷𝑖𝑠𝑡 𝑗 = ∥𝒇𝑗 − 𝒇𝑗−1∥2, 𝑗 = 2, · · · , ⌊𝐿 −𝑤 + 1

𝜄
⌋ . (2)

By plotting a distance curve and identifying local maxima as change points, we can effectively

segment the series of activity graphs. In Fig. 3, we compare the efficacy of various change point

detection methods. The gray dashed lines indicate natural months, where land use changes monthly,

showing that we achieve temporal alignment monthly with land use changes. The results indicate

that the sliding window mechanism (Fig. 3a) provides more satisfactory change point detection

, Vol. 1, No. 1, Article . Publication date: January 2018.



8 Fan et al.

Fig. 4. The architecture of temporal skeletonization.

outcomes. Additionally, the series of activity graphs are more effectively partitioned when paired

with land use change data using eigenvalue-based encoding, as demonstrated in Fig. 3b.

4.2 Temporal Skeletonization
After synchronizing the time resolution of evolving activity graphs with land use change dynamics,

we further reduce the temporal cardinality of segmented activity graphs to emphasize temporal

patterns. To capture the complex dimensional structure of activity graphs, we employ a temporal

skeletonization algorithm facilitated by graph neural networks (GNNs). This integration into

the deep learning framework enhances the utility of downstream deep models. Additionally, we

account for the continuity in dynamic graphs. As depicted in Fig. 4, we initially establish cluster

centers using a “top-down” partition strategy and then create clusters through a “divide-and-merge”

strategy. Following the approach in [21], we apply sparsity-constrained optimization to finalize the

clustering outcomes.

4.2.1 Initializing Candidate Cluster Centers. Utilizing GNN models, for each 𝑚-th segmented

activity graph G (𝑚)
, we generate representations for each graph 𝐺 (𝑠𝑙 ) ∈ G (𝑚)

as follows:

e(𝑙) = Mean(GNN(𝐺 (𝑠𝑙 ),X(𝑡𝑚))), (3)

where X(𝑡𝑚) represents the snapshot of land use change associated with G (𝑚)
, and Mean(·)

performs a row-wise 1-D average operation. “GNN” refers to any graph neural network model, e.g.,

GCN [41] or GraphSAGE [15]. The graphs of G (𝑚)
are partitioned into clusters of fixed size 𝑢, and

the averaged embeddings are used to represent each cluster center. Specifically, the 𝑘-th center,

c(𝑘), where 𝑘 = 1, · · · , 𝐾 and 𝐾 = ⌈ 𝑙𝑚+1−𝑙𝑚
𝑢

⌉, is calculated as follows:

c(𝑘) = 1

𝑢

𝑘 ·𝑢∑︁
𝑙=(𝑘−1)𝑢+1

e(𝑙) . (4)

4.2.2 Cluster Membership Determination. Using the candidate cluster centers 𝐶 = {𝑐 (𝑘) |1 ≤ 𝑘 ≤
𝐾}, we implement a “divide-and-merge” strategy to finalize the temporal clusters. Specifically, to
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(a) Case 1: temporal clusters of segmented G (𝛿 ) in 01/2020.

(b) Case 2: temporal clusters of segmented G (𝜏 ) in 03/2020.

Fig. 5. Showcase the temporal clustering results. The polar plots of clustering results are provided (in the left
column). Besides, the corresponding graph embeddings are also plotted with Principal Component Analysis
(PCA).

ensure the smoothness of the resulting clusters, we partition the activity graphs in G (𝑚)
into small

groups, each containing 𝑣 (𝑣 > 1 and 𝑣 < 𝑢) consecutive graphs:𝑔( 𝑗) = {𝐺 (𝑠𝑙 ) | ( 𝑗−1)·𝑣+1 ≤ 𝑙 ≤ 𝑗 ·𝑣}
( 𝑗 = 1, 2, · · · , 𝐽 − 1) or 𝑔( 𝑗) = {𝐺 (𝑠𝑙 ) | (𝐽 − 1) · 𝑣 + 1 ≤ 𝑙 ≤ 𝑙𝑚} ( 𝑗 = 𝐽 ) where 𝐽 = ⌈ 𝑙𝑚+1−𝑙𝑚

𝑣
⌉. We then

calculate the distance between 𝑔( 𝑗) and 𝑐 (𝑘). A group 𝑔( 𝑗) is assigned to cluster center 𝑐 (𝑘) based
on the following criterion:

𝑚𝑖𝑛
𝑘

∑︁
𝐺 (𝑠𝑙 ) ∈𝑔 ( 𝑗 )

𝑑𝑙𝑘 , (5)

where𝑑𝑙𝑘 = ∥e(𝑙)−c(𝑘)∥2. Cluster centers not assigned to any graphs are automatically disqualified

and removed. For simplicity, we denote the resulting graph clusters in G (𝑚)
as 𝐶 (𝑚) = {𝑐 (𝑘) |1 ≤

𝑘 ≤ 𝐾}.

4.2.3 Smoothing Clustering Results. To mitigate the negative impacts of irregularities in activity

graphs, we apply sparsity-constrained optimization to the temporal clusters 𝐶 (𝑚)
. We construct

a distance matrix 𝐷 (𝑚) ∈ R | G (𝑚) |×𝐾
to assess the pairwise distance between cluster centers and
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10 Fan et al.

activity graphs. This matrix helps partition G (𝑚)
into ≥ 𝐾 sub-sequences. For a smoother version

of 𝐷 (𝑚)
, denoted by 𝑌 (𝑚)

, we optimize the following sparsity-constrained alignment:

L𝑐𝑙 =
| G (𝑚) |∑︁
𝑠=1

𝐾∑︁
𝑘=1

𝑌
(𝑚)
𝑠𝑘

𝐷
(𝑚)
𝑠𝑘

,

s.t.

1

|G (𝑚) |

| G (𝑚) |−1∑︁
𝑠=1

∥𝑌 (𝑚)
𝑠 − 𝑌 (𝑚)

𝑠+1
∥1 ≤ 𝜌,

𝐾∑︁
𝑘=1

𝑌
(𝑚)
𝑠𝑘

= 1, 𝑌
(𝑚)
𝑠𝑘

⩾ 0 ,

(6)

where 𝜌 is a tuning parameter for the smoothness of 𝑌 . We illustrate the temporal clustering results

in Fig. 5. The clusters shown in the left column of Figs. 5a and 5b align well with the scatter plots

of graph embeddings (right column of Figs. 5a and 5b), demonstrating the effectiveness of our

temporal clustering approach.

After obtaining 𝐾 temporal clusters for G (𝑚)
, the graph series is transformed into a smoother

sequence. For example, as illustrated in Fig. 5a, a segmented sequence from the demand activity

graph G (𝛿 )
can be encoded as 𝐴, · · · , 𝐴, 𝐵, · · · , 𝐵, while for the traffic activity graph G (𝜏 )

(Fig. 5b),

the sequence is represented by three symbols𝐴, · · · , 𝐴, 𝐵, · · · , 𝐵,𝐶, · · · ,𝐶,𝐴, · · · , 𝐴, 𝐵, · · · , 𝐵. These
sequences can then be further compacted to 𝐴, 𝐵 and 𝐴, 𝐵,𝐶,𝐴, 𝐵, respectively. Subsequently, for

the graphs in G (𝑚)
associated with X(𝑡𝑚), we merge consecutive graphs sharing the same label to

form a skeletonized evolving activity graph, denoted as
¯G (𝑚) = 𝐺 (1),𝐺 (2), · · · ,𝐺 (Λ𝑚), where Λ𝑚

represents the length of the re-encoded sequence.

4.3 Dynamic Heterogeneous Graph Neural Network
In the𝑚-th skeletonized dynamic graph (

¯G (𝑚)
), each “fused” graph, 𝐺 (𝜆) ∈ ¯G (𝑚)

, is formed by

averaging the adjacency matrices of consecutive graphs that share the same cluster label, using the

operation𝐺 (𝜆) = Mean(𝐺 |𝐺 ∈ G (𝑚)
𝜆

). Here,G (𝑚)
𝜆

represents the 𝜆-th group of graphs andMean(·)
performs an element-wise average. These “summarized” graphs are then input into a downstream

GNN model. To effectively capture the temporal dynamics and heterogeneity among different

activities, we devise a dynamic heterogeneous graph neural network (DHGNN). Before modeling

the intra-dynamics of
¯G (𝑚)

, we first need to establish the representation of each 𝐺 (𝜆) ∈ ¯G (𝑚)
.

4.3.1 Representing the “Summarized” Graph within G (𝑚) . To effectively represent 𝐺 (𝜆) within
¯G (𝑚)

, we utilize GraphSAGE [15] to capture node and structural information. Specifically, each

node 𝜈 inV(𝐺 (𝜆)) is processed using the following aggregation mechanism:

z0

𝜈 = X(𝑡𝑚, 𝜈) = x𝜈 (𝑡𝑚),
zℎ
𝑁 (𝜈 ) = Mean(zℎ−1

𝜐 , 𝜐 ∈ 𝑁 (𝜈)), ℎ ∈ {1, · · · , 𝐻 },

zℎ𝜈 = 𝜎 (wℎ · (zℎ−1

𝜈 ∥zℎ
𝑁 (𝜈 ) ∥Φ𝜆)),

(7)

where x𝜈 (𝑡𝑚) is the land use attribute of node 𝜈 at time 𝑡𝑚 , 𝜎 represents a nonlinearity, wℎ denotes
the trainable weights of the ℎ-th layer, and 𝑁 (𝜈) is the neighborhood of 𝜈 . Additionally, to encode

temporal patterns, we employ the positional embedding Φ𝜆 , defined for each cluster within the

sequence as follows:

Φ𝜆 = c(𝑘) + PE(𝜆), (8)
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where PE(𝜆) is the positional encoding technique inspired by Transformer [38], and c(𝑘) is the
embedding of the cluster center to which 𝐺 (𝜆) belongs. The resulting node embeddings generated

by GraphSAGE are denoted as z𝜈 (𝜆) for each node 𝜈 inV(𝐺 (𝜆)).

4.3.2 Modeling Intra-Dynamics of Activity Graph. Given the short length of
¯G (𝑚)

, we employ a

short memory network that combines a recurrent structure with a multilayer perceptron (MLP). The

structure of the MLP is 𝑓 (𝑥) = 𝜎 (𝑤2 · 𝜎 (𝑤1 · 𝑥 + 𝑏1) + 𝑏2), where𝑤1,𝑤2, 𝑏1, 𝑏2 are parameters, and

𝜎 represents the ReLU activation function. Specifically, for each node 𝜈 in V(𝐺 (𝜆)), the recurrent
structure is defined as follows:

h𝜈 (𝜆) = MLP(z𝜈 (𝜆), h𝜈 (𝜆 − 1)), 𝜆 = 2, · · · ,Λ𝑚 . (9)

Here, we apply a minibatch setting [15] to learn the representation h𝜈 (𝜆) (∀𝜆 ∈ {1, · · · ,Λ𝑚}). Then
we take the final embedding h𝜈 (Λ𝑚) as the outcome embedding h𝜈 (𝑡𝑚), which is also treated as

the activity representation corresponding to land use x𝜈 (𝑡𝑚). Moving forward, we will omit the

subscript “𝜈” when discussing nodes (or regions) in a citywide activity graph.

In this work, we examine citywide activities from three perspectives, i.e., human movement (G𝜇
),

travel demand (G𝛿 ), and traffic (G𝜏 ). Therefore, ∀𝑚 ∈ {1, · · · , 𝑀}, we derive h𝜇 (𝑡𝑚), h𝛿 (𝑡𝑚), and
h𝜏 (𝑡𝑚) to encapsulate the complex activities influencing citywide land use changes.

4.3.3 Heterogeneous Activities and Long-Term Dynamics. For each region 𝑟 ∈ R, we integrate

h𝜇 (𝑡𝑚), h𝛿 (𝑡𝑚), and h𝜏 (𝑡𝑚) with the land use change snapshot x(𝑡𝑚) to create a new embedding,

which can describe the portrait of regional land use and associated heterogeneous activities:

h̃(𝑡𝑚) = h(𝜇 ) (𝑡𝑚)∥h(𝛿 ) (𝑡𝑚)∥h(𝜏 ) (𝑡𝑚)∥x(𝑡𝑚).
Then, we employ a GRU [6] to capture long-term dynamics across various land use change snap-

shots:

H̃ = [h̃(𝑡1), h̃(𝑡2), · · · , h̃(𝑡𝑀 )], z̃ = GRU(H̃ × A), (10)

where H̃ ∈ R𝑀×𝐷
represents the sequence of embeddings, and A ∈ R𝐷×𝐷

is the correlation matrix,

derived from causal inference (refer to Section 4.4). Finally, we predict the land use at time step

𝑡𝑀+1 using the following equation:

x̂𝑡𝑀+1
= z̃w𝑥 , (11)

where w𝑥 are the trainable parameters. We train the parameters of DHGNN in a minibatch manner,

optimizing the loss defined as follows:

L𝑝 = ∥x(𝑡𝑀+1) − x̂(𝑡𝑀+1)∥2

2
. (12)

Overall, DHGNN captures both the heterogeneity of different citywide activities and their

temporal dynamics. By representing activities as dynamic graphs and integrating temporal patterns,

the model adapts to varying activity types and efficiently handles large-scale data, ensuring a

nuanced understanding of urban activity patterns.

4.4 Causal-Inference-Guided Explanation
Land use change is correlated with environmental contexts, which has been validated by the

community [3, 32]. To better understand the “rules” governing land-use change prediction, we

move beyond traditional feature- or sample-based interpretaters [47]. Instead, we introduce a

disentangled representation learning module, inspired by CausalVAE [45], as depicted in the bottom

right block of Fig. 2. Specifically, with the adjacency matrix A representing causal relationships

among concepts of interest within observations X, the causal generation layer is defined as follows:

z = A𝑇 z + 𝜀, 𝜀 ∼ N(0, I), (13)

, Vol. 1, No. 1, Article . Publication date: January 2018.



12 Fan et al.

Algorithm 1: Training procedure of ExHAGN.
Input: Land use change X(𝑡1:𝑀 ), temporal dynamic graphs G

1 Initialize model parameter Θ, correlation matrix A;
2 Segments temporal dynamic graphs G by STSAG;
3 for number of training iterations do
4 // Cluster the segmented graph;
5 ¯G (1:𝑀 )

=TemporalCluster(X(𝑡1:𝑀 ),G (1:𝑀 )
);

6 Calculate the constrain L𝑐𝑙 in Eq. (6);

7 // Predict the land use change X̂(𝑡𝑀+1), z̃=DHGNN(X(𝑡1:𝑀 ), ¯G (1:𝑀 ) ,A);
8 Calculate the prediction loss L𝑝 in Eq. (12);

9 // Generate causal-inference-guided explanation A=Causal(̃z,X(𝑡1:𝑀 ),G);

10 Calculate the causal loss L𝑐𝑎 in Eq. (15);

11 Update the whole framework by Eq. (16);

12 end

where the Gaussian variable 𝜀 denotes independent exogenous factors and z ∈ R𝐷 is the structured

causal representation of 𝐷 concepts. Since the concepts are causally structured by a directed acyclic

graph (DAG), A can be permuted into an upper triangular matrix. Besides, exogenous factors 𝜀 can

be drawn from the distribution of outcome latent variable z̃ (generated with Eq. (10)) as follows:

𝜀 ∼ 𝑝 (̃z;w𝑧), (14)

where w𝑧
are the learnable parameters.

4.4.1 Supervision Signals. As suggested by [45], supervisory signals help learn the structural

causal representation, such that the identifiability issues caused by unsupervised learning [22]

can be avoided. We take the labels of land use categories (C) plus activity graph types (𝜇, 𝛿 , and

𝜏) as additional signals (denoted by u), which also correspond to the concepts of interest to be

disentangled. We build the supervision signals as follows:

u = AVG1d (X)∥AVG2d (G (𝜇 ) )∥AVG2d (G (𝛿 ) )∥AVG2d (G (𝜏 ) ),
where AVG1d (·) and AVG2d (·) denote 1-D and 2-D average pooling operations, respectively.

4.4.2 Learning Strategy for Causal Representation. We utilize the optimization strategy from

CausalVAE [45] to concurrently learn the causal representation z and the causal structure A.
Specifically, we use the following loss function as the objective for causal representation learning

1
:

L𝑐𝑎 = −ELBO + 𝑙𝑢 + 𝑙𝑚 + H(A) , (15)

where ELBO denotes the reformulated evidence lower bound introduced by [45], 𝑙𝑢 and 𝑙𝑚 are two

constraints that ensure A can describe the causal relations among labels. Besides, H(A) denotes
the constraint that controls the “DAGness” of A.

4.5 Optimization
We outline the training process in Algorithm 1. Initially, we train the change point detection method

STSAG by optimizing Eq. (1). Then, with Eqs. (6), (12) and (15), we jointly optimize the following

objective function:

LExHAGN = L𝑐𝑙 + L𝑝 + L𝑐𝑎 + ∥Θ∥2. (16)

1
For more technical details on causal representation learning, please see [45].
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Table 1. Statistical descriptions of the datasets.

Data Statistics Beijing Shanghai Chengdu

Land Use

#Regions 39,942 42,856 29,272

#POIs per Month 1,273K ±137K 1,578K ±170K 1,063K ±115K

Activity

Movement

#Records per Day 18,318K ±5,713K 17,586K ±4,106K 15,011K ±4,008K

#Daily Records per User 2.44 ±0.76 2.43 ±0.57 3.54 ±0.95

Travel Demand

#Records per Day 3,213K ±1,052K 2,962K ±834K 566K ±306K

#Daily Records per User 0.43 ±0.14 0.41 ±0.12 0.13 ±0.07

Traffic

#Records per Day 979K ±590K 1,277K ±355K 1,746K ±579K

#Daily Records per User 0.13 ±0.07 0.17 ±0.05 0.42 ±0.14

Here, we adopt 𝐿2 regularization to prevent overfitting.

5 EXPERIMENT
5.1 Experimental Setup
Datasets. We conducted empirical studies using datasets collected from Beijing, Shanghai, and

Chengdu in China, detailed in Table 1. Initially, we partitioned these cities into non-overlapping

regions based on road networks [50]. Subsequently, POIs were collected through a third-party

location-based service (LBS) app from April 2019 to June 2020. We then constructed land-use

portfolios for the regions over the same period using the TF-IDF algorithm. Simultaneously, from

April 2019 to June 2020, we collected user behavioral data via the same LBS App to develop three

types of activity graphs: G𝜇
, G𝛿 , and G𝜏 . Specifically, we recorded users’ check-ins to analyze

human movements, forming G𝜇
. Searches within the app indicating users’ travel intent were used

to create the travel demand activity graph G𝛿 . Additionally, data on users’ origins, destinations,

and transportation modes were gathered to construct the traffic activity graph, G𝜏 . We divided all

datasets into training, validation, and testing sets, allocating 80%, 10%, and 10%, respectively, by re-

gion. The training sets were initially z-normalized, and this normalization setting was subsequently

applied to the validation and testing sets.

Dataset Preprocessing. In this section, we will describe the land use change data generation

process. We have the following data:

• Block: A region is divided into blocks with road network information.

• Land Use Feature: We define land use features based on the “Code for Classification of Urban

and Rural Land Use and Planning Standards of Development Land”
2
. We process and select

the ten most active types for our dataset: business, commercial, administrative, residential,

recreational, health care, public facility, municipal utility, industrial, and educational.

• POI: POI data is aligned with land use features as per national standards
1
. The number of

POIs and the area of POIs (AOI) corresponding to each feature are key inputs for feature

value generation.

We then define the numerical expression of land use features x = [𝑥1, 𝑥2, . . . , 𝑥𝐷 ] where each 𝑥𝑖 is
calculated as:

𝑥𝑖 = 𝑎𝑖𝑏𝑖 (17)

Here, 𝑎𝑖 and 𝑏𝑖 represent the area and frequency weights of each feature, respectively.

For area weight, we define the area of property 𝑎𝑖 as
𝑝𝑖
𝑝
, where 𝑝 is the region’s total area. If all

area proportions are less than the hyperparameter 𝛼 , the weight is set to 1. If the area proportions

2
https://www.mohurd.gov.cn/gongkai/fdzdgknr/zqyj/201805/20180522_236162.html
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greater than and less than 𝛼 coexist within the region, the weights are assigned as follows:

𝑎𝑖 =

{
1

𝑛
(1 − 𝑝𝑎

𝑝
) 𝑝𝑖

𝑝
< 𝛼

𝑝𝑖
𝑝

𝑝𝑖
𝑝
> 𝛼

(18)

where 𝑝𝑎 =
∑

𝑝𝑖
𝑝
>𝛼 𝑝𝑖 represents the total area of properties exceeding 𝛼 , and 𝑛 is the count of

properties with area proportions smaller than 𝛼 . We empirically set 𝛼 = 0.05.

For frequency weight, we use the term frequency-inverse document frequency (TF-IDF) model:

TF-IDF(𝑚𝑖 ,𝑚,M) = TF(𝑚𝑖 ,𝑚) × IDF(𝑚𝑖 ,M) (19)

where𝑚𝑖 is the number of POIs corresponding to feature 𝑖 in the region,𝑚 is the total number of

POIs across all features in the region, and M is the total number of all POIs across all regions. The

term frequency TF(𝑚𝑖 ,𝑚) is calculated as
𝑚𝑖

𝑚
. The inverse document frequency (IDF) is given by:

IDF(𝑚,M) = |M|
|𝑚 ∈ M :𝑚𝑖 ∈𝑚 | (20)

where |𝑚 ∈ M :𝑚𝑖 ∈𝑚 | is the count of regions where the feature𝑚𝑖 appears.

Baselines. We evaluated ExHAGN against six baseline methods: two statistical approaches (ARIMA

and LightGBM), two state-of-the-art spatiotemporal deep learning methods (STGCN and DCRNN),

and two dynamic GNN methods (VGRNN and TGN). Each method is briefly described as follows:

• ARIMA [4] is a popular time series forecasting model built upon moving average and auto-

regression.

• LightGBM [11] is a well-known approach for regression, and it is built on top of ensemble

methods.

• STGCN [48] integrates ChebNet [8] into convolution networks with a predefined graph. We

implemented it by aggregating the dynamic graphs into a static graph.

• DCRNN [20] merges diffusion graph convolutions with RNNs for spatiotemporal prediction.

We apply the same predefined graph as used in STGCN.

• VGRNN [14] integrates graph convolutional networks with RNNs within a VAE framework to

model dynamic graphs. In our implementation, we use land use changes as node features in

dynamic graphs, predicting these changes from the output embeddings.

• TGN [30] is a dynamic graph model that encodes interactions and introduces a memory

mechanism to capture temporal dependencies. We use this model to predict land use changes

based on the output embeddings.

Evaluation Metrics . In this work, we represent a region’s land use as a portfolio, quantified as a

vector of real numbers. We use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)

as our evaluation metrics, distinguishing between micro- and macro-metrics as follows:

MAE𝑚𝑖𝑐𝑟𝑜 =

∑Γ
1

∑𝑁
𝑛=1

|𝑥𝛾,𝑛 − 𝑥𝛾,𝑛 |
𝑁 × Γ

,

RMSE𝑚𝑖𝑐𝑟𝑜 =

√︄ ∑Γ
1

∑𝑁
𝑛=1

(𝑥𝛾,𝑛 − 𝑥𝛾,𝑛)2

𝑁 × Γ
,

MAE𝑚𝑎𝑐𝑟𝑜 =
1

Γ
∑Γ

1

∑𝑁
𝑛=1

|𝑥𝛾,𝑛 − 𝑥𝛾,𝑛 |
𝑁

,

RMSE𝑚𝑎𝑐𝑟𝑜 =
1

Γ
∑Γ

1

√︄ ∑𝑁
𝑛=1

(𝑥𝛾,𝑛 − 𝑥𝛾,𝑛)2

𝑁
.
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Table 2. Performance comparison of our model against baselines, highlighting the best results in bold in each
row. The last column details the improvement of our model over the best-performing baseline.

Dataset Metric ARIMA LightGBM STGCN DCRNN VGRNN TGN ExHAGN Improvement

Beijing

MAE𝑚𝑖𝑐𝑟𝑜 8.03E-3 7.47E-3 7.20E-3 7.14E-3 7.45E-3 6.96E-3 6.31E-3 9.34%

RMSE𝑚𝑖𝑐𝑟𝑜 6.89E-2 6.15E-2 4.94E-2 4.65E-2 5.34E-2 4.19E-2 3.84E-2 8.30%

MAE𝑚𝑎𝑐𝑟𝑜 1.03E-2 8.16E-3 8.00E-3 7.52E-3 7.74E-3 7.01E-3 6.28E-3 10.34%

RMSE𝑚𝑎𝑐𝑟𝑜 6.51E-2 5.23E-2 4.27E-2 4.01E-2 3.79E-2 3.20E-2 2.86E-2 10.56%

Shanghai

MAE𝑚𝑖𝑐𝑟𝑜 7.52E-3 7.27E-3 6.83E-3 6.98E-3 7.24E-3 6.44E-3 6.12E-3 5.04%

RMSE𝑚𝑖𝑐𝑟𝑜 8.39E-2 7.82E-2 6.53E-2 6.49E-2 7.27E-2 5.60E-2 5.23E-2 6.66%

MAE𝑚𝑎𝑐𝑟𝑜 7.11E-3 6.74E-3 6.05E-3 5.95E-3 5.25E-3 4.58E-3 4.13E-3 9.96%

RMSE𝑚𝑎𝑐𝑟𝑜 4.68E-2 4.07E-2 3.54E-2 3.75E-2 3.92E-2 3.20E-2 2.89E-2 9.72%

Chengdu

MAE𝑚𝑖𝑐𝑟𝑜 7.61E-3 6.57E-3 5.37E-3 5.32E-3 5.55E-3 5.11E-3 4.70E-3 7.92%

RMSE𝑚𝑖𝑐𝑟𝑜 6.41E-2 5.72E-2 4.38E-2 4.12E-2 4.72E-2 3.73E-2 3.40E-2 8.79%

MAE𝑚𝑎𝑐𝑟𝑜 6.06E-3 5.31E-3 4.51E-3 4.79E-3 4.99E-3 4.40E-3 3.98E-3 9.37%

RMSE𝑚𝑎𝑐𝑟𝑜 4.61E-2 3.23E-2 2.77E-2 2.99E-2 2.89E-2 2.57E-2 2.30E-2 10.82%

Implementation Details. We adopt an Adam optimizer with an initial learning rate of 0.001 and

a batch size of 512, incorporating early stopping within 300 epochs to optimize training. For the

STSAG module, we represent each graph using the top 20 eigenvalues (𝜂 = 20). In Beijing, the

sliding window size𝑤 and stride 𝜄 are set to (10, 5), (8, 6), (10, 4) for movement, traffic, and demand

graphs, respectively. In Shanghai, these parameters are (10, 6), (6, 6), (14, 8), and in Chengdu, they

are (8, 6), (16, 6), (10, 5). The temporal skeletonization module uses partition sizes of 𝑢 = 5, 5, and 4

for Beijing, Shanghai, and Chengdu, respectively, with a uniform group size 𝑣 = 3 across all three

datasets. For the DHGNN, we use 2 aggregator layers with a sample size of 10 in the GraphSAGE

aggregator. In the causal-inference-guided explanation module, we define the number of concepts

𝐷 = 13, encompassing 10 land use categories and 3 types of activities. Baseline implementations

utilize source code provided by the original authors.

5.2 Land Use Change Prediction Results
Table 2 displays the superior performance of ExHAGN compared to baseline methods across three

datasets. ExHAGN consistently outperforms all alternatives, reducing errors by 5.04%-10.56% across

all evaluation metrics compared to the second-best results.

Generally, deep learning methods outperform statistical ones due to their ability to model non-

linearities. Among the deep methods, VGRNN performs the poorest, likely because it emphasizes

graph variability, which is more suited for link prediction rather than land use change. While

STGCN and DCRNN effectively model spatial and temporal dependencies for forecasting, they

are still outperformed by TGN, which enhances performance by integrating dynamic graphs with

memory mechanisms. However, TGN can distort the alignment of temporal patterns in dynamic

graphs and land use changes. In contrast, ExHAGN aligns dynamic graphs with land use changes,

preserving inherent temporal patterns, and utilizes a causal graph to enhance prediction accuracy.

Overall, by synthesizing dynamic graph modeling, temporal pattern preservation, and causal

inference, ExHAGN offers a more robust and effective solution compared to competing methods.

5.2.1 Category-Specific Prediction Results. This section additionally explores the prediction of

category-specific land use changes. We start by comparing ExHAGN to baseline methods and then

conduct a robustness analysis. We focus on three key land use categories: commercial, industrial,

and residential, based on the classification by Rodrigue et al. [28]. They categorized land use into

core, central, and peripheral activities. Core activities include tertiary and quaternary sectors such

as business, commercial, and recreational. Central activities encompass production and distribution
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Table 3. Category-specific performance of ExHAGN on the Beijing dataset.

Land Use Metric ARIMA lightGBM STGCN DCRNN VGRNN TGN ExHAGN

Commercial

MAE𝑚𝑖𝑐𝑟𝑜 4.21E-3 2.67E-3 4.76E-3 4.72E-3 4.43E-3 4.14E-3 2.52E-3
RMSE𝑚𝑖𝑐𝑟𝑜 2.18E-2 1.81E-2 2.16E-2 1.99E-2 2.39E-2 1.88E-2 1.79E-2

Residential

MAE𝑚𝑖𝑐𝑟𝑜 9.56E-3 7.13E-3 9.96E-3 9.75E-3 9.74E-3 8.66E-3 4.86E-3
RMSE𝑚𝑖𝑐𝑟𝑜 3.04E-2 2.53E-2 2.72E-2 2.50E-2 3.07E-2 2.37E-2 2.17E-2

Industrial

MAE𝑚𝑖𝑐𝑟𝑜 3.56E-3 2.97E-3 3.91E-3 3.88E-3 3.69E-3 3.40E-3 2.16E-3
RMSE𝑚𝑖𝑐𝑟𝑜 2.31E-2 1.92E-2 1.27E-2 1.16E-2 1.40E-2 1.10E-2 9.65E-3

Table 4. ExHAGN’s performance in three proportions on the Beijing dataset.

Land Use Metric Low Medium High

Commercial

MAE𝑚𝑖𝑐𝑟𝑜 3.04E-3 3.23E-3 3.33E-3

RMSE𝑚𝑖𝑐𝑟𝑜 1.90E-2 2.04E-3 1.76E-2

Residential

MAE𝑚𝑖𝑐𝑟𝑜 3.82E-3 3.93E-3 4.08E-3

RMSE𝑚𝑖𝑐𝑟𝑜 2.08E-2 1.85E-2 2.15E-2

Industrial

MAE𝑚𝑖𝑐𝑟𝑜 2.20E-3 2.11E-3 2.29E-3

RMSE𝑚𝑖𝑐𝑟𝑜 6.79E-3 6.64E-3 6.12E-3

Table 5. Performance comparison of ExHAGN and its three variants w.r.t. different activities on three datasets,
highlighting the best performance in bold.

Dataset Beijing Shanghai Chengdu

Metric MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜 MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜 MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜

w/o movement 6.87E-3 4.07E-2 6.66E-3 5.54E-2 5.12E-3 3.60E-2

w/o demand 6.84E-3 3.97E-2 6.63E-3 5.41E-2 5.10E-3 3.52E-2

w/o traffic 6.58E-3 3.89E-2 6.38E-3 5.30E-2 4.93E-3 3.44E-2

ExHAGN 6.31E-3 3.84E-2 6.12E-3 5.23E-2 4.70E-3 3.40E-2

functions, like industrial and administrative roles. Peripheral activities typically involve residential

areas or cater to local needs, including healthcare, public facilities, municipal utilities, and education.

Table 3 displays the performance of ExHAGN and baselines in category-specific land use predic-

tion. ExHAGN consistently outperforms the baselines across all metrics on the Beijing dataset. To

assess the robustness of our model, we further evaluate its performance across land use categories

at different frequency levels: high, middle, and low. We categorize each land use based on its

occurrence frequency, and the comparison results are detailed in Table 4. The results demonstrate

minimal variation across frequency levels in ExHAGN, indicating its ability to reliably predict land

use changes regardless of the category’s frequency. This robustness stems from both the temporal

skeletonization module, which captures essential patterns across different frequencies, and the

causal explanation module, which extracts stable rules to enhance prediction consistency. Together,

they ensure ExHAGN ’s adaptability to diverse scenarios.

5.3 Ablation Study
5.3.1 Impacts of Different Activities. We evaluate the impact of different temporal dynamic graphs

on land use change prediction by comparing several variants of ExHAGN. Each variant is created

by removing one type of temporal dynamic graph from ExHAGN.
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Table 6. Performance comparison of ExHAGN and its variants w.r.t. different modules on three datasets. The
best-performing one is highlighted in bold.

Dataset Beijing Shanghai Chengdu

Metric MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜 MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜 MAE𝑚𝑖𝑐𝑟𝑜 RMSE𝑚𝑖𝑐𝑟𝑜

w/o segment 6.62E-3 3.91E-2 6.42E-3 5.41E-2 4.91E-3 3.43E-2

w/o cluster 6.93E-3 4.10E-2 6.67E-3 5.54E-2 5.13E-3 3.71E-2

w/o causal 6.75E-3 4.02E-2 6.51E-3 5.46E-2 4.95E-3 3.61E-2

ExHAGN 6.31E-3 3.84E-2 6.12E-3 5.23E-2 4.70E-3 3.40E-2

The performance of ExHAGN and its three variants across all datasets is presented in Table 5.

The variant without movement data consistently underperforms across all metrics and datasets,

highlighting human movement as a critical factor in predicting land use changes. This may be due

to human movement directly reflecting behavioral patterns and preferences more effectively than

the other activities. Human movement routes are essential for accurate predictions, whereas travel

demand and traffic data offer more indirect insights, such as popular destinations. Overall, the

complete model, which integrates all three dynamic graphs, significantly outperforms its variants

on all evaluation measures.

5.3.2 Impacts of Different Modules. To assess the impact of activity graph segmentation (STSAG),

temporal skeletonization, and causal-inference-guided explanation in our model, we compare

ExHAGN against three variants:

• w/o segment omits STSAG, aligning activity graphs with land use changes using natural

monthly segmentation.

• w/o cluster eliminates the temporal skeletonization mechanism, treating segmented graphs as

a whole rather than as clustered evolving activity graphs.

• w/o causal omits the correlation matrix A from Eq. (10).

The comparison results in Table 6 show that𝑤/𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 has the poorest performance among

the variants, highlighting the significance of the temporal skeletonization module in integrating

graphs with temporal pattern information to enhance downstream deep models. The temporal

skeletonization module plays a key role by condensing the temporal complexity of dynamic graphs

and extracting critical temporal dependencies. Removing this module limits the model’s ability

to capture essential timing patterns, resulting in poorer performance. Additionally, 𝑤/𝑜 𝑐𝑎𝑢𝑠𝑎𝑙
underperforms𝑤/𝑜 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 , likely due to the correlation matrix in Eq. (10) enriching the model by

integrating both land use change and activity graph data, which proves more advantageous than

mere segmentation. Overall, ExHAGN consistently surpasses all three variants across all evaluation

metrics by effectively combining these three modules.

5.4 Model Analysis
5.4.1 Segmentation Convergence in STSAG.. In ExHAGN, segmentation results are dynamically

adjusted throughout the STSAG training process to ideally converge before entering the subsequent

temporal skeletonization module. STSAG utilizes a distance curve to identify change points, and

segmentation is deemed to have converged when this curve stabilizes.

To quantify convergence, we inspect the distance curve through Gaussian distribution fitting.

Specifically, each peak on the distance curve is fitted using the density function of a Gaussian

distribution:

𝑝 (𝑥 ; 𝜇, 𝜎2) = 1

√
2𝜋𝜎

exp(− 1

2𝜎2
(𝑥 − 𝜇)2).
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Fig. 6. Convergence of the change point detection w.r.t. different activity graphs.

(a) MAE (b) RMSE

Fig. 7. Comparison of different temporal encodings.

Fig. 6 displays the convergence of 𝜇 and 𝜎 over iterations in the Beijing dataset. The stabilization

of these values after a few iterations indicates the effectiveness of the temporal segmentation

approach in ExHAGN, demonstrating its capability to achieve convergence.

5.4.2 Temporal Encoding. We introduce Eq. (8) to encode temporal patterns. We assess various

encoding methods to demonstrate their efficacy:

• CR+PE integrates cluster center representation with positional encoding as described in

Eq. (8).

• CR+TE replaces the positional encoding with time encoding proposed in [30].

• CR solely relies on cluster center representation.

• PE exclusively utilizes positional encoding.

• TE exclusively employs time encoding.

As shown in Fig. 7, PE outperforms TE, likely due to the role of the memory mechanism in our

model. TE encodes time-based information, which overlaps with the temporal dependencies already

captured by the memory mechanism, leading to redundancy. In contrast, PE encodes positional

information, complementing the model by adding spatial or sequence context without conflicting

with the memory-based temporal learning. This synergy explains why PE performs better than TE

in our model, which already handles temporal dynamics efficiently. Additionally, the combination

of CR and PE proves optimal, as CR captures essential temporal patterns, further enhancing the

positional encoding.

5.4.3 Dynamics Modeling. In the DHGNN module, we adopt the short memory network for intra-

dynamics modeling in Eq. (9) and a GRU for long-term dynamics modeling in Eq. (10). To validate

their effectiveness, we devised two respective variants for comparison.
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Table 7. Comparing ExHAGN against its two variants. The best scores are in bold.

Dataset Metric ExHAGN𝑔 ExHAGN𝑚 ExHAGN

Beijing

MAE𝑚𝑖𝑐𝑟𝑜 6.62E-3 6.58E-3 6.31E-3
RMSE𝑚𝑖𝑐𝑟𝑜 3.94E-2 3.89E-2 3.84E-2

Shanghai

MAE𝑚𝑖𝑐𝑟𝑜 6.42E-3 6.38E-3 6.12E-3
RMSE𝑚𝑖𝑐𝑟𝑜 5.37E-2 5.33E-2 5.23E-2

Chengdu

MAE𝑚𝑖𝑐𝑟𝑜 5.05E-3 4.87E-3 4.70E-3
RMSE𝑚𝑖𝑐𝑟𝑜 3.48E-2 3.46E-2 3.40E-2
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(c) Demand

Fig. 8. The grid search of parameters (window size𝑤 and stride 𝜄) in the Beijing dataset.
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Fig. 9. The grid search of parameters includes cluster size 𝑢 and group size 𝑣 .

• ExHAGN𝑚 substitutes the GRU with a short memory network in Eq. (10).

• ExHAGN𝑔 replaces the short memory network with a GRU in Eq. (9).

The performance of ExHAGN and its two variants across three datasets is presented in Table 7.

Results reveal that ExHAGN𝑚 outperforms ExHAGN𝑔. Furthermore, ExHAGN surpasses both

variants on all evaluation metrics, underscoring the effectiveness of using a short memory network

for intra-dynamics modeling, which better handles short temporal dependencies, and a GRU for

superior long-term dynamic modeling in ExHAGN.

5.4.4 Hyperparameters. We inspect ExHAGN under various hyperparameter settings to optimize

selection. For the segmentation module, we explore two hyperparameters: window size𝑤 and stride

𝜄. Conducting a grid search within specified ranges, we ensure that 𝑤 ≥ 𝜄 enables valid change

point detection. If𝑤 < 𝜄, gaps between segments may arise as the analysis window moves across

the data. This can lead to missed potential change points and segments that do not fully overlap
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Fig. 10. The correlation matrix A (Beijing dataset).

with change point areas. The outcomes, depicted in Fig. 8, illustrate that optimal hyperparameters

for movement, traffic, and demand activity graphs are𝑤 = 10, 8, 10 and 𝜄 = 5, 6, 4, respectively.

In the temporal skeletonization module, we examine the cluster size 𝑢 for generating initial

centers and group size 𝑣 for the “divide-and-merge” strategy, ensuring 𝑢 ≤ 𝑣 . Fig. 9 presents the
grid search results across three datasets, with MAE𝑚𝑖𝑐𝑟𝑜 plotted against 𝑢 and 𝑣 . Optimal settings

for Beijing, Shanghai, and Chengdu are found to be 𝑢 = 5, 4, 4 and 𝑣 = 3, 3, 3, respectively. This grid

search helps pinpoint the best hyperparameters to enhance model performance across metrics.

5.4.5 Correlation Matrix A. The correlation matrix A for Beijing is depicted in Fig. 10, encompass-

ing ten land usages and three activity graphs (demand, traffic, movement). We configure A as a

lower triangular matrix, reflecting the directional influence among usages and activities.

Within the matrix, the diagonal indicates the auto-correlation of land use features. Notably,

commercial land exhibits strong correlations with recreational and healthcare land, aligning with

urban agglomeration laws [32]. Regarding the interaction between land use features and activity

graphs, human activities significantly influence commercial land use but have a minimal effect on

administrative land, which generally receives less consideration in its spatial planning. Additionally,

the demand and traffic graphs show a high correlation due to their related conceptual definitions.

Overall, our model effectively uncovers the underlying rules influenced by environmental con-

texts in land use, as evidenced by the patterns observed in A. This helps in understanding the

dynamics of land use change.

5.5 Case Study
We further analyze two cases from the Beijing dataset, focusing on the predictive accuracy for

specific regions and the influence of activity graphs, which capture human activities over time. For

each case, we identify key regions associated with the target based on interactions with neighboring

areas.

Case 1 involves a region in Chaoyang, Beijing. Fig. 11a depicts a successful prediction of a

significant increase in business land use. Fig. 11b identifies crucial neighboring regions based on

last month’s human activities; these areas primarily comprise commercial districts, residences, and
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(a) Case 1: land use change (b) Case 1: human activity

(c) Case 2: land use change (d) Case 2: human activity

Fig. 11. Case studies in the Beijing dataset.

schools. This suggests that the rise in business activity in the target region may be driven by the

surrounding commercial hubs and the local demand for business services.

Case 2 examines a suburban area of Beijing characterized by public facilities and factories.

Fig. 11c illustrates the accurate prediction of a temporary disappearance of commercial land use,

which returns in the target month. Fig. 11d indicates that the target is surrounded by factories,

underscoring the commercial dynamics influenced by industrial activities.

These cases validate the effectiveness of the correlation matrix A; in Case 1, commercial and

educational sectors are key contributors to business activities, aligning with A. In Case 2, the

connections between industrial, residential, and commercial categories corroborate the insights from

A. The activity graphs further confirm that ExHAGN capably utilizes varied temporal segmentation

and clustering to analyze activities from multiple perspectives. Overall, ExHAGN not only predicts

existing land use accurately but also adeptly forecasts significant land use changes, effectively

leveraging human activity and inherent correlations for precise predictions.

6 CONCLUSION
In this paper, we redefined urban land use change prediction as a regression problem and introduced

a data-driven framework, ExHAGN, for explainable prediction in an end-to-end manner. Specifically,

we developed a temporal skeletonization mechanism to cluster dynamic graphs across various
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snapshots, preserving the inherent “timing clues” from daily human activities. We also imple-

mented a heterogeneous dynamic graph neural network to simultaneously capture neighborhood

relationships and long-term temporal dependencies. Furthermore, we introduced an explainable

algorithm using causal inference to highlight key factors influencing community-level land use

changes, which also guides our model’s learning process. Extensive testing on real-world datasets

confirms that ExHAGN surpasses state-of-the-art baselines in predicting land use changes. Our

qualitative and quantitative analyses underscore ExHAGN’s effectiveness. To our knowledge, this

is the first end-to-end approach to predict land use changes using fine-grained human activity

data. Future work will explore the applicability of our predictive model to other domains to assess

ExHAGN’s generalizability.
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