
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Protein-Context Enhanced Master Slave
Framework for Zero-Shot Drug Target Interaction

Prediction
Yuyang Xu, Jingbo Zhou, Haochao Ying∗, Member, IEEE , Jintai Chen, Wei Chen,

Danny Z. Chen, Fellow, IEEE, and Jian Wu Member, IEEE

Abstract—Drug Target Interaction (DTI) prediction plays a crucial role in in-silico drug discovery, especially for deep learning (DL)
models. Along this line, existing methods usually first extract features from drugs and target proteins, and use drug-target pairs to train
DL models. However, these DL-based methods essentially rely on similar structures and patterns defined by the homologous proteins
from a large amount of data. When few drug-target interactions are known for a newly discovered protein and its homologous proteins,
prediction performance can suffer notable reduction. In this paper, we propose a novel Protein-Context enhanced Master/Slave
Framework (PCMS), for zero-shot DTI prediction. This framework facilitates the efficient discovery of ligands for newly discovered
target proteins, addressing the challenge of predicting interactions without prior data. Specifically, the PCMS framework consists of two
main components: a Master Learner and a Slave Learner. The Master Learner first learns the target protein context information, and
then adaptively generates the corresponding parameters for the Slave Learner. The Slave Learner then perform zero-shot DTI
prediction in different protein contexts. Extensive experiments verify the effectiveness of our PCMS compared to state-of-the-art
methods in various metrics on two public datasets. The Code and the processed Data will be open once the paper is accepted.
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1 INTRODUCTION

D RUG Target Interaction (DTI) for drug discovery re-
lies on a myriad of wet lab experiments on drug

molecules and target proteins, a labor-intensive and time-
consuming process [1], [2], [3], [4]. Thus, in-silico DTI pre-
diction methods [47], [48] play an increasingly important
role in pharmacy studies as the first step to quickly screen
candidate molecules. Rule-based in-silico DTI methods like
Docking and Pharmacophore Mapping [6], [7], [8] mimic the
docking process with chemical structures or energy analysis.
A key to them is to identify the core sub-structures for
proteins and ligands (i.e., pockets and pharmacophores)
respectively, using chemical rules and similarities among
samples. But, since such rules are defined by humans
with prior knowledge, these methods are often inflexible
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and computationally expensive [1], [2], [3], [4]. In contrast,
data-driven machine learning methods can flexibly learn
interaction rules by themselves and provide a significant
acceleration for drug discovery.

Data-driven methods often model the DTI prediction
as a binary classification problem given drug-target pairs
[33], [35], [38]. Previous studies mainly focus on how to
effectively learn representations of molecules and proteins,
and input such representations into advanced classification
models or ranking models [27], [28], [29], [34]. These repre-
sentation learning methods can be categorized into a one-
dimensional (1D) perspective and a three-dimensional (3D)
perspective. From the 1D perspective, known methods use
the molecule fingerprint [49], simplified molecular input
line entry system (SMILES) [50], and the FASTA sequence of
the target protein as the input features [36], [37]). From the
3D perspective, some recent studies leverage the geometric
deep learning (DL) models to embed the 3D structures of the
target proteins and potential candidate molecules [5], [10],
[11], [23], [24], [25], [30], [38].

However, the predictions of these DL methods implicitly
or explicitly exploit similar patterns or structures between
the target protein and its homologous proteins in the train-
ing set. Hence traditional DL models usually require a large
amount of data to train models to extract such knowledge.
Yet, when given a newly discovered target protein, it may
be hard to find homologous proteins with similar structures
and there may be few known interactions of molecules. In
this scenario, it is difficult for these data-driven methods
to work well as they rely on verified knowledge. Con-
sequently, prediction performances of these methods may
become inferior and unsatisfactory. To our best knowledge,
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so far there is no known study on DTI prediction in such
zero-shot learning scenarios.

To this end, we propose a novel Protein-Context en-
hanced Master Slave (PCMS) Framework for zero-shot
drug-target interaction prediction. PCMS mainly consists of
two major components: the Master Learner and the Slave
Learner. The general idea is that we introduce a mechanism
to use the Master Learner to generate the corresponding
model parameters of the Slave Learner for conducting zero-
shot DTI classification. The Master Learner takes a protein as
input to learn a comprehensive protein representation, from
the data perspective of hierarchical protein graph: residue
FASTA sequence, and multiple sequence alignment (MSA).
Meanwhile, the Slave Learner takes a drug (molecule graph)
as input to perform molecule representation learning and
build a classification model for DTI prediction.

Specifically, for Master Learner, we use an adaptive
hierarchical GNN to model the protein context information.
We construct an atom-residue heterogeneous graph for in-
corporating the protein level, residue level, and atom level
information. Aiming to effectively utilize the protein level
information, we additionally apply residue partial align-
ment with the aligned FASTA sequence between proteins
during training. In this way, the Master Learner is able to
make use of the protein structures and incorporate prior
bioinformatics knowledge.

For both Master Learner and Slave Learner, we first em-
bed the atoms of proteins or molecules with GNN, and use a
graph information bottleneck approach to identify their key
subgraphs (i.e., the pocket of the protein and the pharma-
cophore of the molecule). After identifying the pocket from
the protein, Master Learner leverages the extracted protein
context information (i.e. the learned pocket embedding) to
generate the corresponding parameters of modules in the
Slave Learner for DTI task fine-tuning. We design a meta-
training method to optimize the overall framework. From
the bioinformatics perspective, we mimic the process of
finding the potential pharmacophore using the identified
pocket structure of the target protein, thus approximating
the overall interaction with low required resources (i.e.,
labeled data and training cost).

To summarize, our main contributions are as follows:

• We are among the first to study zero-shot DTI
prediction with newly discovered pockets but only
few known interactions and homologous proteins.

• We propose a novel and effective zero-shot DTI
prediction framework, PCMS, based on a parameter
generation/fine-tuning method.

• We conduct a suite of extensive experiments and
dissections on two benchmark datasets, demonstrat-
ing the superiority of our PCMS framework over its
competitors in various metrics.

2 RELATED WORK

2.1 Data-driven Methods for DTI Prediction.
Existing methods such as machine learning and deep learn-
ing [33], [35], [38] usually treat drug-target pairs as input
samples to make predictions, in which feature representa-
tion and prediction model are two decisive factors of per-
formance. Align with the prior knowledge of chemistry and

bioinformatics, several DTI methods [33], [34], [35] utilized
1D sequences (i.e., SMILES and FASTA) embedded by NLP
methods to initialize features, but naturally lack important
3D structure information. To alleviate it, some studies utilize
CNN [23], [24], [25] to model the 3D images of protein
and molecule voxel structures. Otherwise, the development
of GNN methods [10], [30] made it possible to embed
topological structures. Existing work on DTI prediction and
a similar task of binding affinity prediction [9], [34], [38],
[52] also utilized GNNs to embed chemical structures of
molecules and target proteins. However, considerably large
irrelevant chemical structures of proteins for DTI prediction
make the learning of GNN models difficult.

After the feature representation, existing methods [36],
[38] usually simply concatenated the features of molecules
and target proteins as input to the predication models (e.g.,
random forest, support vector machine (SVM), and logistic
regression (LR)). Also, several methods modeled DTI pre-
diction as a recommendation problem [27], [28], [29], [54],
[55]. However, these methods rely on the similarity between
the whole target protein structures by MSA and so on [53].
When it comes to dealing with a newly discovered target
protein with few known interacting drugs, it is hard for
them to learn an effective generative pattern with so little
data. Thus, we formulate a meta-learning problem for this
DTI prediction scenario with little known DTI data.

2.2 Existing Works of Meta-Learning.

Meta-Learning, also known as few-shot learning, typically
has two types of methods: gradient-based methods and
metric-based methods. The former uses a meta learner to
instruct the way for a basic learner to update, in order to
learn a median initialization of parameters between all the
tasks. For example, Finn et al. [21] proposed MAML, which
sums up losses of all the seen tasks to balance the initial-
ized parameters. For metric-based methods, Snell et al. [18]
proposed a Prototype Network, which learns a prototype
representation in the metric feature space for each class; dur-
ing testing, the network computes the distances between the
test samples and all the seen classes to make classification.
Similarly, Vinyals et al. [19] proposed a Matching Network
by matching samples of the test set with the class of few-shot
labeled samples in the training set. Sung et al. [20] proposed
a Relation Network to learn distances in the metric space as
relation scores of different sample classes.

Zero-shot learning is a special case of meta-learning, in
which a model utilizes task-level information to fast adapt to
unseen classes. There are also works evaluating traditional
Out-of-Domain methods of drug discovery problem [56].
However, applying zero-shot learning to DTI prediction
is still a less-explored topic, given that newly discovered
proteins may rarely have known homologous proteins and
drug-target interactions. There is a similar concept used by
the master-slave regularized model [26], but its objective is
to directly predict parameters of logistic regression models
for company revenue prediction, whose methodology and
application domain are both substantially different from
ours. In this paper, we propose a new zero-shot framework
with parameter generation for DTI prediction problem,
which even does not require support set for test tasks.
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Fig. 1. Examples of a Molecule Graph and a Protein Graph.

3 PRELIMINARIES

In this section, we introduce the basic concepts and no-
tations used throughout the paper. A summary of all the
notation used can be found in Table 1 in Appendix.

As discussed in the Introduction section, existing meth-
ods implicitly or explicitly require homologous proteins
for determining the similarity between the whole target
protein structure. In this paper, we model DTI prediction
as a meta-learning problem and propose a novel zero-shot
learning framework to address the challenging situation
with few known interactions and homologous proteins for
a newly discovered target protein. Meta-learning utilizes
similar source tasks as the training set to transfer knowledge
for adaptation to unseen tasks (a.k.a., zero-shot) or tasks
with few samples (a.k.a., few-shot). We begin with a formal
definition of the target problem.

Definition 1 (DTI Task). We define a DTI task tp from
task set T for meta-learning as tp = (p,Mp), where p
is a target protein from the target protein set P and
Mp is the molecule set of its corresponding active and
decoy molecules. An active molecule is presumed to be
active with a target protein p (i.e., likely binding to the
target protein), and a decoy is presumed to be inactive.
Specifically, we define each member of Mp as (m, y),
where m is one of the molecules in the active set or the
decoy set corresponding to the target protein p and y is
the label of the molecule m (y = 1 means the molecule
m is an active one and y = 0 means m is a decoy).

For meta-learning tasks, samples of a task are usually
further divided into the support set (for simulating few-
shot training) and the query set (for measuring errors after
training). We denote the support (molecule) set of the task as
Ms and the query set of the task as Mq , i.e., Mp = Ms∪Mq .

Definition 2 (Molecule Graph). We define a Molecule Graph
as Gm = {Vm, Em}, where Vm is the node set represent-
ing the atoms of a molecule and Em is the edge set of
bonds between the atoms. We denote the embedding of
the i-th node as xi

m (xi
m ∈ Rdm , where dm is the dimen-

sion of the node embeddings). Fig. 1(a) gives an example
of a Molecule Graph. Though there are special chemical
bonds like double bonds of benzene ring presented in
Fig. 1(a), we take them as normal chemical bond edges
with corresponding edge attributes in Molecule Graph.

Definition 3 (Pharmacophore). We define the “Pharma-
cophore” as the common key substructure of the
molecules that potentially interact with the identified
pocket structure of the protein, which is not exactly the

same as the pharmacophore defined in Pharmaceutical
Science. We aim to identify the similar key sub-structure
that appears repeatedly in the active set of a specific
target protein, which means the “pharmacophore” is es-
sential for the DTI prediction of the given target protein.

Definition 4 (Protein Graph). We define a Protein Graph as
Gp = {Vp, Vr, Ep, Rp}. Different from Molecule Graphs,
a Protein Graph is defined as a heterogeneous graph
in which Vp is the node set of atoms, Vr is the node
set of amino acid residues, Ep is the set of edges be-
tween these two types of nodes and between nodes of
each type, and Rp gives the relation type of each edge.
The relations in Rp are divided into three types: atom-
bond-atom, residue-nextto-residue, and atom-belong-
residue (or residue-consist-atom, since a protein graph
is an undirected graph). We denote the embedding of the
i-th protein atom as xi

p (xi
p ∈ Rdp ) and the embedding

of the o-th residue as xo
r (xo

r ∈ Rdr ), where dp and dr
are the dimensions of the protein atom embeddings and
protein residue embeddings, respectively. Fig. 1(b) gives
an example of a Protein Graph.

Problem 1 (Zero-shot Drug-Target Interaction Prediction).
Given a DTI task tp as defined above, DTI prediction
problem can be formulated as learning a binary classi-
fication model F : F (Gm,Θ | Gp) = ŷ, where Θ is the
parameter of the model F , Gm (m ∈ Mp) is a molecule
graph, Gp is the protein graph constructed with a target
protein p, and ŷ is the predicted DTI result. We denote
y ∈ {0, 1} as the ground truth (GT) label where 0 stands
for decoy and 1 stands for active. For Zero-shot DTI
Prediction, we aim to find an adaptive parameter Θ
which can perform well on the potential molecule set
of the target protein p without any training samples
(Mp, yp). To achieve this goal, we leverage the protein
graph Gp as task-level information.

4 THE PCMS FRAMEWORK

4.1 Framework Overview
Fig. 2 shows the architecture of PCMS framework, which
consists of a Master Learner and a Slave Learner. In a
nutshell, PCMS uses Master Learner to generate parameters
of some modules given a protein for fast adapting the Slave
Learner and then utilizes Slave Learner for DTI prediction.

Specifically, for Slave Learner, the atom nodes of the
input molecule are embedded by the Molecule GNN, and
the resulting embeddings are sent to the Graph Information
Bottleneck (GIB) [12] Module for key subgraph identifica-
tion. Then, the embedding of the subgraph is sent to a
Classification Multilayer Perceptron (MLP) layer for DTI
prediction. Likewise, for Master Learner, a heterogeneous
Protein Graph is fed to a hierarchical Protein GNN and
the GIB module to find the key subgraph for the protein.
Note that the hierarchical Protein GNN is a GNN model
that embeds the residues and atoms with a heterogeneous
graph derived from the target protein p. Finally, we generate
the task-specific parameters utilizing only the information
of the target protein p. The generated parameters are loaded
into the corresponding modules of the Slave Learner and is
used for the DTI prediction of the test set tasks.
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Fig. 2. An overview of our Protein-Context enhanced Master/Slave (PCMS) framework. (a) Master Learner: learns the Atom embedding for key
subgraph (pocket of the target protein) identification, in order to generate the parameters of modules in the Slave Learner. The residue embedding
is generated for the Residue Partial Alignment task only for training. (b) Slave Learner: learns the Atom Embedding of the molecule for key subgraph
(pharmacophore of the molecule) identification in order to make DTI prediction. The fine-tuned parameters are stored as the anchor parameters for
the Master Learner during training. The generated parameters from the Master Learner are loaded by corresponding modules for inference.

More specifically, for meta-learning procedure, we can
generate the parameters of Slave Learner after comparing
the embeddings of the key protein subgraph with the stored
subgraph embeddings of proteins in the training tasks.
During training, we first use MAML [21] to train the Slave
Learner on training tasks. For each training task, we store
the parameters specifically fine-tuned on that task. Then we
feed the proteins of these tasks to the Master Learner to
model the relation between the similarities of the key sub-
structures of their target protein p. Each generated parame-
ter for the Slave Learner is an attentive weighted sum of the
corresponding stored parameters of the proteins in the train-
ing tasks. The details of each module and the optimization
process are presented in the following subsections.

4.2 Slave Learner

We build the architecture of Slave Learner inspired by Meta-
MGNN [31]. Given a target protein p, the DTI prediction
problem for each task is similar to the process of binary drug
property classification problem. Meta-MGNN uses MAML
[21] to train a GNN for drug-property prediction with
several self-supervised tasks including graph reconstruction
and atom type prediction with atom embeddings.

4.2.1 Model Structure
In Slave Learner, the Molecule GNN is a GNN model that
embeds the nodes (i.e., the atoms of the molecule) with
a graph derived from the molecule’s 3D structure. For
implementation, any GNN can be used as the basis GNN
model for Molecule GNN. In our experiments, we adopt
ScheNet [10] since it is simple and can model 3D informa-
tion of the molecule graph. The GIB is a graph assignment
layer for finding the most informative subgraph. Similar

to Meta-MGNN, first we embed a one-hot vector of atom
chemical features into a feature space. Then we design two
self-supervised task losses of node type prediction and link
(chemical bond) prediction for learning better embeddings.

We first denote the initialization of atom nodes as
X0

m ∈ Rnm×dm , where nm is the number of the atoms in
a molecule. Thus, the output of Molecule GNN (denoted as
GNNm) can be represented as:

Xm = GNNm(X0
m, Em), (1)

where Xm = [x1
m, x2

m, . . . , xnm
m ] and Em is edge set of Gm.

Specially, following the pre-training strategy for GNN
[32], we design two self-supervised task losses for learning
better atom node embeddings of molecules. First, we seek
to recover the bonds between atoms based on the learned
embeddings, whose reconstruction loss is defined as:

êab = Sigmoid(xa
m, xb

m), (2)

Lrecon = (1−eab)êab log(1−êab)+eab(1−êab) log(êab), (3)

where êab denotes the predicted probability of whether a
bond exists between atom a and atom b, and eab is the
corresponding ground truth. Here we do not take all edges
into account but apply the negative sampling to them, as
there are many more negative edges than positive ones
in a real Gm. Second, due to the over-smoothing problem
of neighboring nodes in deep GNN models, we seek to
maintain the node differences by predicting the atom type
based on the output embedding xa

m:

v̂a = MLP (xa
m), (4)

Lnode = (1− va)v̂a log(1− v̂a) + va(1− v̂a) log(v̂a). (5)
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Here, we use an MLP layer to predict the atom node type
v̂a, and take the Cross-Entropy loss as the loss function
of the GT va. Thus, the overall self-supervised loss can be
computed as the following equation:

Lself = Lrecon + Lnode. (6)

After learning the embeddings of the atoms by the
Molecule GNN, we apply a module to identify a key sub-
graph of the molecule as the Graph Information Bottleneck
(GIB). Specifically, the GIB module aims to find the sub-
graph with the maximum compression of the original graph
and the maximum correlation with the target protein p.
In the DTI prediction situation, the interactions of a target
protein and the molecule depend on the integrating degree
of the pocket (of the target protein) and pharmacophore
(of the molecule). From this perspective, the pocket and
pharmacophore can be considered as the GIB of the pro-
tein graph Gp and the molecule graph Gm, respectively.
Similarly, the objective of the GIB module on the protein
graph is to find the pocket. The subsequent DTI prediction
should be much more efficient by matching these important
GIB sub-structures. Besides, the GIB will also provide good
interpretability by identifying the potential pharmacophore
of the molecule and the pocket of the target protein. In
this way, the result of the prediction can be explained by
bioinformatics mechanism.

Formally, the Graph Information Bottleneck problem can
be formulated by the following equation:

max
Gsub

(I(y,Gsub)− β · I(G,Gsub)), (7)

where I() represents the mutual information of the two in-
put embeddings, β is a hyper-parameter for loss adjustment,
y is the ground truth label of the DTI prediction, and Gsub

represents subgraph embeddings of the graph with embed-
ding G. In Eq. (7), I(y,Gsub) can be computed as one minus
the classification loss by subgraph embedding Gsub (i.e.,
1− classification loss). But, it is difficult to find a tractable
upper bound for I(G,Gsub) since there are an exponential
number of subgraphs in a graph. Thus, it is hard to estimate
the distribution of I(G,Gsub). Yu et al. [12] introduced the
Donsker-Varadhan representation [13] of the KL-divergence,
estimated I(G,Gsub) using a statistics network, and utilized
a graph assignment module to propose potential subgraphs.
Following their work, we apply a graph assignment MLP
layer to assign the atom nodes of the proposed potential
key subgraphs, as:

Assign = MLPassign(Xm), (8)

Gsub = Assign[0] ·Xm, (9)

Gm = (Assign[0] ·Xm +Assign[1] ·Xm)/2, (10)

where Assign ∈ Rnm×2 is a probability matrix in which
each entry indicates whether an atom node belongs to the
key subgraph, and Assign[j] is the j-th column (j ∈ 0, 1)
of Assign as j equals 0 and 1 in Eq.9 and Eq.10, respec-
tively. Thus, Gsub can be seen as the weighted average
pool of the assigned subgraph node embeddings and is a
single-dimension vector used for the final prediction. We
let Θassign denote the parameters of the MLPassign. Since

pharmacophore is a connected substructure of a molecule,
we apply a connected loss as follows:

Lcon = ∥ Norm(AssignT ·Am ·Assign)− I2 ∥F , (11)

where ∥ · ∥F is the Frobenius norm, Norm() is row-wise
normalization, Am is the adjacent matrix of the Molecule
Graph, and I2 is a 2 × 2 identity matrix. For I(y,Gsub), Yu
et al. [12] proposed an Adversarial Learning method where
in the inner loop, a discriminator Disc distinguishes the
matched graph and its subgraph, while in the outer loop,
the GIB module mixes up the embeddings:

LMI−Est =
∑

Disc(G,Gsub)− log
∑

eDisc(G,Ĝsub), (12)

where Ĝsub is the unmatched subgraph embedding of graph
with embedding G. Again, we apply negative sampling by
keeping the number of unmatched embedding pairs and the
number of matched embedding pairs the same.

Since the interactions between molecules and the target
protein p depend on the integrating degree of the phar-
macophore and the pocket regardless of the rest of the
structure, we feed the molecule subgraph embeddings to
the classification MLP layer. In this way, after obtaining
subgraph embedding Gsub, the final DTI prediction can be
computed as the following function:

ŷ = MLPpred(G
sub), (13)

Lcls = (1− y)ŷ log(1− ŷ) + y(1− ŷ) log ŷ. (14)

Here we denote the parameters of MLPpred as Θpred. The
loss of Slave Learner can be defined as:

Lslave = Lcls + λ1(Lself + Lcon + β′LMI−Est), (15)

where λ1 is a loss weight for tuning the importance of these
self-supervised tasks for better embeddings, β′ is a hyper-
parameter for adjusting the Graph Information Bottleneck
weight, and β in Eq. (7) is equal to β′ × λ1. Lcon is the
connectivity loss for regularizing the identified subgraph to
be connected and LMI−Est is the mutual information loss
estimated by the discriminator.

4.2.2 Meta Training of the Slave Learner
We present the pseudo-code for meta-training of Slaver
Learner in Algorithm 1 (lines 3-6). During the meta-training,
we first use MAML [21] to train the Slave Learner to obtain a
medium parameter for all the DIT tasks. Then we fine-tune
MLPassign and MLPpred on query set Mq of each task tq
while fixing the parameters of the Molecule GNN. We store
the parameters Θassign

p and Θpred
p as anchor parameters

and GT parameters. Note that during the inference phase
(instead of the meta training phase), the values of Θpred

will be determined by the Master Learner which takes the
subgraph embedding of the protein as input. More details of
the parameter generation will be presented in Section 4.3.3.

4.3 Master Learner
As shown in Fig. 2, the architecture of the Master Learner
is partially the same as the Slave Learner, which mainly
consists of three parts. The first part is a hierarchical Protein
GNN along with a Residue Partial Alignment for the em-
bedding of the target protein p. The second part is a Graph
Information Bottleneck module with a graph assignment
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layer for the important subgraph (i.e., pocket) identification.
Since the Graph Information Bottleneck module here is the
same as the GIB module in the Slave Learner, we will not
repeat the description of it again in this subsection. The
last part is a pocket similarity-based parameter generation
module which generates parameters for the DTI task on the
test set. In general, we adopt a parameter generation method
based on the similarity between the key sub-structures of the
protein, which is modeled by a hierarchical Protein GNN, to
deal with zero-shot DTI prediction.

4.3.1 Hierarchical Protein GNN

Given a heterogeneous Protein Graph Gp, there are two
types of nodes: atom nodes and residue nodes. We initialize
the embeddings of atom nodes with a one-hot vector of
atom chemical features, and initialize the embeddings of
residue nodes with ProtTrans [14] (a pre-trained FASTA
sequence embedding model). We summarize the protein
structure into three main relations: 1) Atom-bond-Atom,
which is the basic structure of all chemical molecules;
2) Residue-nextto-Residue, which is the basic structure of
a residue sequence of a protein; 3) Atom-belong-residue
(Residue-consist-Atom), which shows that a residue is made
up of several atoms. For each layer in the hierarchical
Protein GNN, we apply different message-passing schemes
for these three different edge relations. We then sum up all
the messages as aggregation and update.
Atom-bond-atom: Like the Slave Learner, we adopt a GNN
to generate messages from atom nodes to atom nodes. We
denote the GNN model as GNNp. The atom-atom message
of the l-th layer, M l

atom−atom, can be calculated by:

M l
atom−atom = GNNp(x

l
p, Ep, Rp). (16)

For the atom level, the GNNp can be replaced with any
Graph Neural Networks. Specially, as 3D positional in-
formation are essential for atom embedding of molecules,
in our experiment, we use SchNet [10] to obtain the 3D
topological information of the as they are connected by
chemical bonds in 3D dimensions.
Residue-nextto-residue: For the residue sequence level, the
residues of the protein are connected by the peptide bond
with alpha carbon of the residue. Thus, the residues form
a sequential chain as the main structure of the protein.
Transformer [43] is powerful to model the sequential data
by considering the former and latter residues with global
self-attention. Thus, we use the self-attention mechanism of
the Transformer-Conv [15] as the message-passing method
to pass the information from the neighboring residue nodes
and model the residue sequence level information. The
residue-residue message of the l-th layer is calculated by
the functions below:

αa,b = Softmax(
(Wtrans1 · xa,l

p )T · (Wtrans2 · xb,l
p )√

dp
), (17)

Ma,l
residue−residue = Wtrans3·xa,l

p +
∑

b∈N(a)

(αa,b·Wtrans4·xb,l
p ),

(18)
where Wtrans1, Wtrans2, Wtrans3, and Wtrans4 are the
weights of the TransformerConv method, and N(a) denotes
the set of neighboring nodes of a node a in Gp.

Atom-belong-residue (residue-consist-atom): Different
from the residue sequence, the residue as well as the
corresponding atoms form a star-shape graph to formalize
the affiliation relationship. However, the importance of the
atoms consisting of the residue varies from each other (e.g.
the hydrogen atom is relatively less important compared
with the carbon atom in the residue). In order to model the
importance of the consisting atoms, we use GAT to model
the atom-residue relationship as GAT [16] naturally models
the importance attention of the neighbors. The atom-residue
message of the l-th layer is computed as:

γ = Softmax(LeakyRelu(ωT · [θ · xa ∥ θ · xb])), b ∈ N(a),
(19)

Matom−residue = γ · θxb, b ∈ N(a), (20)

where θ and ω are weights for Graph Attention, and xv is
the learned embedding of a node v in Gp.

For aggregation and update, we sum up all messages
to update the node embeddings. Using the heterogeneous
Protein GNN with the message-passing schemes above,
we can effectively extract information from the atom and
residue levels in a hierarchical perspective.

4.3.2 Residue Partial Alignment
We further propose a Residue Partial Alignment [17] mod-
ule to align embeddings of the residue nodes for informa-
tion extraction in the training phase for better protein em-
bedding. The same residue fragments in different proteins
often maintain similar properties to some extent. Thus, we
align the residue nodes of the same type in different protein
graphs to incorporate more bioinformatics knowledge. Note
that usually, this alignment is done by Multiple Sequence
Alignment (MSA). But, in our application scenario, MSA
cannot be applied since there are few homologous proteins
in the inference (a.k.a. test) process. In this way, we only
incorporate this extra MSA task during training phase and
do not envolve the result of MSA during inference phase.

Here we assume that the residues to be aligned by
the MSA process have the same embeddings. We treat
the result of Sequence Alignment as an Alignment Graph
Gs = {Vr, Es}, in which the aligned residues in Vr are
connected by edges in the edge set Es. Given the output
residue embeddings Xr, we construct the Alignment Graph
to align the embeddings of the aligned residues, as:

ēab = Sigmoid(xa
r , x

b
r), (21)

LMSA = (1− ěab)ēab log(1− ēab) + ěab(1− ēab) log(ēab),
(22)

where ēab is the predicted probability of whether the repre-
sentations of residues a and b are aligned, and ěab is the GT
label. Here we apply the negative sampling to balance the
numbers of positive samples and negative samples. In this
way, we can fully leverage the protein-level information.
4.3.3 Parameter Generation for Zero-shot Learning
The final step is to generate parameters for the Slave Learner
based on the pocket similarity between the target protein p
and the proteins in the training tasks. This is done by the
pocket similarity-based Parameter Generation module.

During the meta training of the Slave Learner, we store
the fine-tuned parameters of each task and the correspond-
ing protein subgraph embeddings as the anchor parameters
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and anchor subgraph embeddings. The anchor subgraph
embeddings and anchor parameters act as the base vectors
of the protein subgraph similarity feature space and the cor-
responding task-specific fine-tuned parameter feature space,
respectively. Next, by computing the similarity between
the subgraph embeddings of the target protein p and the
proteins in the training tasks, we can map the position of
the target parameter and thus generate the task-specific
fine-tuned parameter of the test task. Finally, we load the
generated parameters into the corresponding modules of
the Slave Learner for DTI prediction.

Here we define the learned protein subgraph embed-
dings Gsub

p in training set as the anchor subgraph embed-
dings Gsub,anch

pk
(k = 1, 2, . . .). Meanwhile, we define the

parameters Θassign of MLPassign and parameters Θpred

of MLPpred of the Slave Learner fine-tuned by corre-
sponding task molecules as anchor parameters Θassign,anch

pk

and Θpred,anch
pk

, respectively. During training, we store the
learned anchor subgraph embeddings Gsub,anch

pk
and anchor

parameters Θassign,anch
pk

and Θpred,anch
pk

. The anchor sub-
graph embeddings and anchor parameters are taken as the
base vectors of the target proteins’ subgraph feature space
and fine-tuned parameter feature space. Here we seek to
map the subgraph feature space to the fine-tuned parameter
feature space. By this means, for a subgraph embedding of a
certain target protein, Gsub

p0
, we can measure the similarity of

the subgraph of the protein p0 with the anchor subgraphs of
the proteins pk, and thus use this similarity weight to derive
the adaptive parameters for MLPassign and MLPpred in

Slave Learner of the target task.
We denote the stored subgraph embeddings, parameters

of MLPassign, and parameters of MLPpred as Gsub,anch,
Θassign,anch, and Θpred,anch, respectively. When dealing
with a new target protein task with the target protein graph
Gp0

, we first calculate its subgraph embedding:

Gsub
p0

= GIBp(GNNp(Gp0
)), (23)

where GIBp is the GIB module in the Master Learner
and GNNp is the Protein GNN. Then we apply attention
mechanism to learn the similarity between the given pocket
and the anchor pockets:

αpocket = Softmax([[Gsub
p0

∥ Ganch
p1

], [Gsub
p0

∥ Gsub,anch
p2

], . . .]),
(24)

Θassign
p0

′
= αpocket ⊙ [Θassign,anch

p1
,Θassign,anch

p2
, . . .], (25)

Θpred
p0

′
= αpocket ⊙ [Θpred,anch

p1
,Θpred,anch

p2
, . . .], (26)

where Θassign
p0

′ and Θpred
p0

′
are generated parameters of

MLPassign and MLPpred for task p0, respectively. Suppose
the GT parameters for MLPassign and MLPpred of task p
are Θassign

p0
and Θpred

p0
. Then the parameter generation loss

Lgen can be defined as:

Lgen1 =
∑

SmoothL1(Θassign
p0

,Θassign
p0

′
), (27)

Lgen2 =
∑

SmoothL1(Θpred
p0

,Θpred
p0

′
), (28)

Lgen = Lgen1 + Lgen2, (29)

where SmoothL1 is the loss function to measure the dis-
tance between the stored and generated parameters. We use

the SmoothL1 loss here to avoid the gradient explosion
problem of the Mean Square Error loss when the error is
too large and to improve the converging performance of the
Mean Absolute Error loss when the error is too small. Our
loss for the Master Learner is defined as:

Lmaster = Lgen + λ2(LMSA + Lp
con + β′Lp

MI−Est), (30)

where Lp
con and Lp

MI−Est are the connected loss and MI-Est
loss for GIBp, and λ2 is a weight for the extra losses.

4.4 Meta Training of the Master Learner

We present the pseudo-code for the meta-training of the
Master Learner as in the following Algorithm 1.

Algorithm 1 Meta Training for PCMS
Input: A DTI task training set Ttrain, the Master Learner

model (denoted as ML(·) for short), and the Slave
Learner model (denoted as SL(·) for short).

1: while not done do
2: Sample a batch of tasks, T batch

train ∼ p(Ttrain);
3: Θslave = MAML(Lslave(SL(T

batch
train )));

4: for tp ∈ T batch
train do

5: Θassign
p ,Θpred

p = Finetune(SL(tp),MLPassign,
MLPpred);

6: end for
7: for tp ∈ T batch

train do
8: Θassign

p
′
,Θpred

p
′
,Lmaster

p = ML(tp);
9: load(Θassign

p
′
,MLPassign);

10: load(Θpred
p

′
,MLPpred);

11: Lslave
p

′
= SL(tp);

12: end for
13: L =

∑
tp∈Ttrain

(Lmaster
p + Lslave

p
′
)

14: Update(ML,L);
15: end while

During training the Master Learner, in each step, we take
one of the training tasks as a sample, whose fine-tuned pa-
rameters are taken as the GT while the rest of the parameters
as the anchor parameters, to compute Lmaster . We also load
the generated parameters to test on the molecules of the task
taken in this step and update the sum of Lmaster and Lslave

while fixing the parameters of the Slave Learner. In this way,
we mimic the circumstances of the zero-shot DTI prediction,
and use the prediction error as the training loss to update
the model.

4.5 Inference

For testing, we directly feed Gp to the Master Learner to
compute the similarity between the assigned subgraph and
the anchor subgraph embeddings to generate parameters
Θassign

p
′ and Θpred

p
′
. Specifically, we store the subgraph em-

beddings and parameters for all the tasks in the training set
as the anchor subgraph embeddings and anchor parameters
to generate parameters for the test target protein p. We then
load the generated parameters into the Slave Learner and
test the DTI classification.
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TABLE 1
Performance evaluation of our PCMS framework with the baselines on the DUD-E and DEKOIS2.0 datasets. The best results are marked in bold,
and the second best results are underlined. The numbers outside and inside ( ) stand for the average and the standard deviation in a metric with

5-fold cross validation, respectively. Similarly hereinafter.

Data Model Zero-shot 5-shot
ACC F1 ACC F1

DUD-E

LR 0.4981 (0.0000) 0.3983 (0.0000) 0.4978 (0.0029) 0.3622 (0.0549)
SVM 0.5019 (0.0000) 0.3111 (0.0000) 0.4957 (0.0074) 0.3067 (0.0494)

LRF-DTI 0.5200 (0.0026) 0.0756 (0.0047) 0.5019 (0.0000) 0.0000 (0.0000)
DeepConv-DTI 0.6026 (0.1095) 0.6013 (0.0060) 0.5812 (0.0153) 0.4808 (0.5633)

GraphDTA 0.5886 (0.0091) 0.4078 (0.0092) 0.6994 (0.0178) 0.6185 (0.0220)
IRM(GraphDTA) 0.5766 (0.0059) 0.4602 (0.0096) 0.5914 (0.0051) 0.5282 (0.0093)

MolTrans 0.5113 (0.0022) 0.0448 (0.0068) 0.5097 (0.0026) 0.0484 (0.0117)
Meta-MGNN 0.5703 (0.0043) 0.3270 (0.0083) 0.6714 (0.0158) 0.6580 (0.0206)

PCMS 0.6402 (0.0028) 0.5283 (0.0070) 0.7288 (0.0190) 0.7333 (0.0127)

DEKOIS2.0

LR 0.5013 (0.0009) 0.2756 (0.0007) 0.5016 (0.0105) 0.2684 (0.0225)
SVM 0.5421 (0.0006) 0.1876 (0.0006) 0.5426 (0.0067) 0.1871 (0.0141)

LRF-DTI 0.6453 (0.0025) 0.0667 (0.0227) 0.6466 (0.0000) 0.0000 (0.0000)
DeepConv-DTI 0.5575 (0.0072) 0.4306 (0.0046) 0.5352 (0.0261) 0.3945 (0.0429)

GraphDTA 0.5247 (0.0071) 0.4858 (0.0043) 0.6355 (0.0095) 0.5299 (0.0168)
IRM(GraphDTA) 0.5862 (0.0021) 0.4128 (0.0042) 0.5977 (0.0040) 0.4660 (0.0057)

MolTrans 0.5939 (0.0467) 0.2028 (0.1076) 0.6154 (0.0251) 0.2024 (0.1464)
Meta-MGNN 0.5179 (0.0020) 0.4731 (0.0010) 0.6441 (0.0127) 0.5665 (0.0051)

PCMS 0.6834 (0.0043) 0.5399 (0.0028) 0.6778 (0.0067) 0.5715 (0.0027)

5 EXPERIMENTS

5.1 Experimental Setting

5.1.1 Datasets

We evaluate baseline methods and our PCMS Framework
on DUD-E1 dataset [39] and DEKOIS2.02 dataset [44] with
parameters trained on DUD-E. DUD-E is a benchmark
dataset for docking with 102 protein targets and the corre-
sponding actives and decoys. However, DUD-E was also re-
ported as a biased dataset [45], [46], on which a model could
achieve good performance with only actives and decoys and
without the target structure. Thus, we also introduce the
unbiased dataset DEKOIS2.0 to directly evaluate the models
with parameters trained on the DUD-E dataset.

For DUD-E dataset, we download the PDB files (the
general file type to store the 3D protein structure) from the
PDB website3 [40] based on the given PDB IDs in DUD-
E dataset for experiments. We eventually obtain 81 DTI
tasks. We eliminate the actives and decoys that cannot be
correctly loaded with the RDKit [41] and BioPython [42]
packages, and eliminate the whole DTI task whose protein
cannot be correctly loaded by RDKit. Since the objective of
meta-learning methods is to learn knowledge from tasks
with numerous data and transfer it to similar tasks with
fewer samples, we select the top 60% of DTI tasks with the
most actives and decoys as the training set, one half of the
remaining DTI tasks as the evaluation set, and the other half
of the remaining DTI tasks as the test set.

For the DEKOIS2.0 dataset, we also download the PDB
files based on the PDB IDs provided in the appendix table
of the paper [44]. With a similar pre-processing procedure,
we eventually obtain 57 DTI tasks. All these tasks are used
as unbiased test set tasks to evaluate the performances of
models trained on the DUD-E dataset.

To support the zero-shot adaption capability, we analyze
the homology sequence similarity between the target pro-

1. http://dude.docking.org
2. http://www.pharmchem.uni-tuebingen.de/dekois/
3. https://www.rcsb.org/

teins from the training set and testing set of DUD-E dataset
as well as the proteins in training set of DUD-E dataset and
the DEKOIS2.0 dataset . It proves that these two pairs of
datasets vary from each other and thus the inference test on
the testing set of DUD-E dataset and DEKOIS2.0 dataset
with parameters trained from the training set from the
DUD-E dataset can test the capability of zero-shot adaption
of our proposed PCMS. The details of the introduction of
the two datasets, the analyzing results and the metrics used
to evaluate the baselines and model performance are shown
in the Appendix.

For every step, we randomly select 5 active and 5 decoys
as the support set, and select 64 actives and 64 decoys to
form the query set. When given a newly discovered target
protein, there could be few known actives or decoys with
a large number of molecules with unknown interaction
results. Thus, here we use more actives and decoys in the
query set than in the the support set in order to mimic the
real few-shot virtual screening situation during training.

5.1.2 Baselines
We compare our PCMS with several state-of-the-art DTI pre-
diction baselines: Support Vector Machine (SVM), Logistic
Regression (LR), and LRF-DTIs [37] as representatives of
machine learning methods, DeepConv-DTI [35] for CNN
methods, GraphDTA [38] for GNN methods, Meta-MGNN
[31] for self-supervised Meta-Learning methods, and the
latest MolTrans [33] for a more complex protein embedding
method using a state-of-the-art universal method of Trans-
former [43]. Due to the recent studies of Out of Domain
(OOD) [56] models on the drug discovery area, we also
incorporate IRM [57] as a baseline method. The details of
these baselines are elaborated in Appendix.

5.2 Performance Evaluation and Analysis

We first compare the performances of our PCMS with the
above baseline methods. As shown in Table 1, our approach
outperforms most of the baseline methods in ACC and
F1 metrics in both zero-shot learning and 5-shot learning
circumstances, showing the effectiveness of our proposed
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framework. Specifically, though DeepConv-DTI achieves the
best F1 results for zero-shot learning on the DUD-E dataset
(while pure PCMS still attains the second-best performance),
it does not perform well on the DEKOIS2.0 dataset. This sug-
gests that some methods may rely on the biased actives and
decoys of the DUD-E dataset to achieve such performances,
which can also be seen from the AUC metric results in
Appendix. Yet PCMS can perform better on various external
datasets with even zero-shot fine-tuning.

In particular, we observe that the performances of ma-
chine learning methods are unsatisfactory. A possible reason
for this phenomenon is that these methods cannot distin-
guish active-target pairs and decoy-active pairs very well.
This is because (1) compared with DL methods, simple ma-
chine learning methods cannot fit so few drug-target pairs
of known interactions; (2) molecule fingerprint and residue
embeddings omit complex information of the protein and
molecule structures, which may significantly impair the
information used. Among the machine learning methods,
LRF-DTI utilizes the Lasso regularization for the complex
structures without much irrelevant information, and thus
its performances are better than the other such baselines.

Alternatively, DL methods use different ways to incorpo-
rate more structure information of the target protein and the
molecules, and thus yield better performances. Specifically,
DeepConv-DTI uses a CNN to focus on local information of
the neighboring residues, and MolTrans applies a Natural
Language Processing (NLP) based algorithm (i.e., FCS) to
find the embeddings of frequent sub-structure combina-
tions. These methods, as well as our proposed PCMS, all pay
attention to the sub-structures of the proteins or molecules
to refine utilized information, which is effective for DTI
prediction. However, in the meta-learning scenario with
few homologous proteins and known interactions, MolTrans
performs not so well since there are too few proteins and
molecule structures available. Hence, frequently appearing
combinations of sub-structures may not be the key substruc-
tures providing effect in DTI prediction.

On the other hand, GraphDTA and Meta-MGNN lever-
age a GNN to model the 3D topological structures of the
molecule and the target protein. In particular, the drug-
property-based few-shot prediction method, Meta-MGNN,
performs a little better since it takes few-shot learning into
account. However, it omits information from the target
protein when constructing the DTI task, and hence does
not perform as well as our proposed PCMS. Specially, with
the help of IRM, we can see that the GraphDTA method
performs better with such few data samples on both two
datasets. Still, IRM (GraphDTA) does not perform as well
as our proposed method. We believe that IRM (GraphDTA)
still requires a large number of samples to model the overall
distribution of the protein domain. On the other hand, our
proposed PCMS digs into the essence of the DTI process
and fits the low-resource situation better, while the existing
methods like CNN in DeepConv-DTI somehow look for
pattern similarity between the residues, which potentially
utilizes homologous proteins for embeddings and lead to
worse performance in such circumstance.

In summary, PCMS improves 5.9% in ACC and 11.1%
in F1 score with zero-shot on the DEKOIS2.0 dataset com-
pared with the best baselines. Specifically, PCMS framework

Fig. 3. Performance evaluation of ablation study with zero-
shot learning on the DUD-E dataset.

utilizes a hierarchical Protein GNN and a Molecule GNN to
gather as much information of the structure as possible. We
also apply a GIB module for key subgraph identification
based on Information Bottleneck Theory rather than the
frequency. Besides, by modeling the similarity between the
pocket structures, our PCMS achieves better performances
with little homologous protein information.

5.3 Ablation Study

To examine the effects of the key components of our frame-
work, we conduct ablation study on the DUD-E dataset
by omitting each key component from our model. As
DEKOIS2.0 dataset act only as a test dataset, we do not
apply ablation study on it. PCMSGNNp− stands for PCMS
without Protein GNN while the sum of residue embeddings
from ProtTrans still takes place; PCMSmsa− stands for the
PCMS Framework without the residue partial alignment;
PCMSGIBp− stands for the PCMS Framework without
Graph Information Bottleneck for the protein; PCMSself−

is for the performance of the PCMS Framework without
the self-supervised module of molecules. Since the Master
Learner works only for zero-shot learning and does not take
any effect in the few-shot fine-tuning (which relies only on
the molecules), we do not incorporate 5-shot experiments in
this ablation study. The results are shown in Fig. 3.

For PCMSmsa−, without the residue alignment task,
the Master Learner cannot perform even as well as
PCMSGNNp−, which confirms that the target protein is
too large and too complex for GNN to model. There-
fore, providing more supplementary information (such as
the 3D structures of atoms and MSA relations between
residues) can compensate for this shortcoming for protein
embedding, which is what PCMS does. Similarly, com-
paring PCMSGIBp− with PCMS, the embedding of the
whole protein is not as effective as the key subgraph em-
bedding, which shows the effectiveness of GIB as well.
Since PCMSGNNp− utilizes residue features instead of the
protein structure, it performs worse than PCMS as it uses
only the FASTA information rather than the 3D topological
structure. Lastly, for PCMSself−, we can infer that the self-
supervised module of the molecule embedding does give
some enhancement, but this is not the major reason why
PCMS can achieve its good performance. Consequently,
these designed modules are all needed parts of our pro-
posed PCMS, contributing to its final performance.

5.4 Robustness Study

We then investigate the robustness of our PCMS on the
DUD-E dataset by varying the sizes of the support set and
query set. Specifically, we run PCMS with groups of the
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TABLE 2
Performances with different hyper-parameter values (the sizes of the support (spt) sets and query (qry) sets) on the DUD-E dataset.

Model Zero-shot 5-shot
ACC F1 ACC F1

PCMS (3spt/32qry) 0.5222 (0.0027) 0.1036 (0.0056) 0.6843 (0.0097) 0.6750 (0.0220)
PCMS (3spt/64qry) 0.5782 (0.0073) 0.3641 (0.0169) 0.7226 (0.0121) 0.7374 (0.0245)
PCMS (5spt/32qry) 0.6025 (0.0028) 0.4405 (0.0044) 0.7400 (0.0086) 0.7501 (0.0035)
PCMS (5spt/64qry) 0.6402 (0.0028) 0.5283 (0.0070) 0.7288 (0.0190) 0.7333 (0.0127)

Fig. 4. Visualization of key subgraphs of the actives for a target protein PNPH (the DUD-E target name). The highlighted atoms in the orange circles
belong to the identified common key sub-structures of the active molecules. The blue arrows indicate the identified similar sub-structure of the
molecule, which is consistent with the function of pharmacophore in bioinformatics.

support set with 5 actives/decoys or support set with 3
actives/decoys, and the query set with 64 actives/decoys
or query set with 32 actives/decoys. The results are shown
in Table 2. One can see that although with the decrease of
training samples in the support set and query set, the per-
formance decreases simultaneously, PCMS can still achieve
good performances after few-shot fine-tuning, which shows
the robustness of our proposed PCMS framework.

5.5 Visualized Examples
Finally, we provide visualized examples of the identified
key sub-graphs, i.e., the pharmacophore of the molecule.
The visualization results are given in Fig. 4. As one can
see, the highlighted atom sets in the orange circles share
a similar structure, which agrees with the function of the
pharmacophore, a common effective substructure of active
molecules for DTI. Note that there are still a few isolated
atoms highlighted in Fig. 4 that are outside of the orange cir-
cle. This does not mean that these atoms alone are the most
important substructures. As DL methods are still commonly
based on probabilistic models, the highlighted atoms may
act as a hint that they are quite important to DTI prediction
to some extent. The surrounding structure could be helpful
to DTI prediction as well.

5.6 Inference Time Comparison
In this part, we provide the comparison of the inference
time of our proposed PCMS framework and the baseline
models. The results are shown in the following Table 3. Here
we calculate the zero-shot and five-shot inference time for
comparison. As we process the whole protein structure for
each task while the other baselines use a simpler protein
feature, the time consumption of our proposed method
seems a little longer than the other baselines. However, in
practice, we only need to calculate the protein embedding
once for all molecule predictions, which will significantly
decrease the calculation time.

6 CONCLUSIONS

In this paper, we investigated how to improve drug target
interaction (DTI) prediction when few known interactions

TABLE 3
Inference time of our PCMS framework with the baselines on the
DUD-E datasets. (The abbreviation ZSPGT stands for Zero-shot

parameter generation time (s) per protein on DEKOIS 2.0 dataset, ZSIT
stands for Zero-shot inference time (s) on DEKOIS2.0 dataset per
molecule samples and FSIT stands for 5-shot inference time (s) on

DEKOIS2.0 dataset per molecule samples.)

Model ZSPGT (s) ZSIT (s) FSIT (s)
DeepConv-DTI \ 0.0025 ± 0.0000 0.0019 ± 0.0000

GraphDTA \ 0.0043 ± 0.0000 0.0046 ± 0.0000
IRM(GraphDTA) \ 0.0043 ± 0.0000 0.0046 ± 0.0000

MolTrans \ 0.0029 ± 0.0000 0.0046 ± 0.0000
Meta-MGNN \ 0.0021 ± 0.0000 0.0023 ± 0.0000

PCMS 1.7448 ± 0.1050 0.0116 ± 0.0000 0.0102 ± 0.0000

and homologous proteins are available for a newly discov-
ered protein. Instead of following traditional strategies for
drug-target pair prediction, we formulated the DTI predic-
tion problem as a meta-learning problem where each task
is a protein-specific binary classification problem. Based on
this formulation, we proposed a new parameter generation
zero-shot learning master/slave framework, PCMS, which
takes advantage of the protein pocket information to fast
adapt the Slave Learner to the test task. Moreover, we
proposed a hierarchical Protein GNN which leverages atom
level, residue level, and protein level information to embed
the protein. Finally, we conducted extensive experiments
and analyses on two benchmark datasets, which showed the
effectiveness of our approach compared with state-of-the-art
DTI prediction methods.

ACKNOWLEDGMENTS

This research was partially supported by National Natural
Science Foundation of China under Grant No. 92259202,
Zhejiang Provincial Key R&D Program of China under
Grant No. 2023C03053, and GuangZhou City’s Key R&D
Program of China under Grant No. 2024B01J1301.

REFERENCES

[1] M. Bagherian, E. Sabeti, K. Wang, M. A. Sartor, Z. Nikolovska-
Coleska, and K. Najarian, “Machine learning approaches and
databases for prediction of drug-target interaction: A survey pa-
per,” Briefings in Bioinformatics, vol. 22, no. 1, pp. 247–269, 2021.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[2] K. Abbasi, P. Razzaghi, A. Poso, S. Ghanbari-Ara, and A. Masoudi-
Nejad, “Deep learning in drug target interaction prediction: Current
and future perspectives,” Current Medicinal Chemistry, vol. 28,
no. 11, pp. 2100–2113, 2021.

[3] L. S. Jung and Y.-R. Cho, “Survey of network-based approaches
of drug-target interaction prediction,” in BIBM. IEEE, 2020, pp.
1793–1796.

[4] J. Palanisamy, S. Malarvizhi, and D. Shayamala, “A survey on
drug discovery in medical application using artificial intelligence,”
Humanities, vol. 7, no. 4, pp. 99–102, 2020.

[5] K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning on
molecular representations,” Nature Machine Intelligence, pp. 1–10,
2021.

[6] D. Barnum, J. Greene, A. Smellie, and P. Sprague, “Identification of
common functional configurations among molecules,” Journal of
Chemical Information and Computer Sciences, vol. 36, no. 3, pp.
563–571, 1996.

[7] A. Smellie, S. L. Teig, and P. Towbin, “Poling: Promoting confor-
mational variation,” Journal of Computational Chemistry, vol. 16,
no. 2, pp. 171–187, 1995.

[8] H. Li, J. Sutter, and R. Hoffmann, “HypoGen: An automated
system for generating 3D predictive pharmacophore models,”
Pharmacophore Perception, Development, and Use in Drug Design,
vol. 2, p. 171, 2000.

[9] S. Li, J. Zhou, T. Xu, L. Huang, F. Wang, H. Xiong, W. Huang,
D. Dou, and H. Xiong, “Structure-aware interactive graph neural
networks for the prediction of protein-ligand binding affinity,” in
KDD, 2021, pp. 975–985.

[10] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and
K.-R. Müller, “SchNet – a deep learning architecture for molecules
and materials,” The Journal of Chemical Physics, vol. 148, no. 24, p.
241722, 2018.

[11] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-
neberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko
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