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Abstract
We focus on unlearning unwanted knowledge in autoregressive
large language models (LLMs) through pruning. Our goal is to se-
lectively remove undesirable information (e.g., harmful responses,
privacy-sensitive data) while ensuring the preservation of desirable
knowledge (e.g., positive responses and objective facts). Previous
approaches use gradient ascent (GA) over undesired knowledge to
inversely optimize LLMs, which compromises the model’s perfor-
mance on desired knowledge. To address this limitation, we intro-
duce a novel two-stage approach, named LLM-Eraser, for selectively
identifying and editing parameters specifically associated with un-
desirable knowledge. LLM-Eraser operates in two stages: localiza-
tion and unlearning. During the localization stage, we utilize neuron
scores and trainable soft masks to identify parameters crucial to
the undesired knowledge. In the unlearning stage, we prune these
identified parameters and apply a selective post-training process
to enhance the model’s selectiveness. Our experiments, conducted
across five task datasets, demonstrate that LLM-Eraser effectively
unlearns undesirable knowledge—evidenced by the model’s near-
random performance on multiple-choice questions related to the
erased knowledge—while maintaining high proficiency in desirable
knowledge, with an average performance deficit of only 2.5%.

CCS Concepts
• Computing methodologies→ Machine learning; Natural
language generation; • Security and privacy; • Theory of com-
putation;
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Figure 1: Illustration of LLM modification techniques.
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1 Introduction
Large Language Models (LLMs) have demonstrated impressive ad-
vancements in language comprehension and synthesis [7, 10, 16, 43],
leading to emergent abilities such as multi-modality [22, 48, 56]
and chain-of-thought reasoning [46], among others [20, 45, 49, 60].
However, the exceptional learning capabilities of LLMs also raise
ethical and safety concerns, leading to potential misuse, such
as academic dishonesty [13], fabricating restaurant reviews [1],
and facilitating malicious activities like cyberattacks or bioweapon
development [29]. These concerns highlight the necessity of adap-
tively editing LLMs to mitigate misuse while preserving their ability
to respond to normal prompts.
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Figure 2: Comparison of LLM-Eraser with existing approach and original LLM on desired and undesired knowledge. Existing
gradient ascent-based approach harms performance over desired knowledge.

Mitigating misuse of LLMs can be optimistically achieved by
modifying the models so that they avoid generating responses as-
sociated with undesirable knowledge. Figure 1 illustrates several
common LLM modification techniques. General-task pruning (i)
is primarily focused on model compression and does not address
the goal of misuse mitigation. Techniques like Knowledge Distil-
lation (ii) and LLMs with adapters (iii) can help mitigate misuse,
but they either require an extensive retraining process [37, 40] for
distillation or rely on removable adapters, leaving the fixed LLMs
still vulnerable to misuse.

Alternatively, directly erasing memories associated with unde-
sired knowledge, known as Machine Unlearning (MU) [5, 8, 36],
offers a promising solution. Unlearning in LLMs has been explored
to mitigate issues like toxicity [25], copyright and privacy viola-
tions [19], fairness [53], and sensitive knowledge [3, 23]. How-
ever, existing approaches often struggle to balance eliminating
undesired knowledge and maintaining performance on normal in-
puts [23, 24, 52].

Our objective is to effectively unlearn undesired memories in LLMs
while safeguarding essential, desired knowledge with minimal per-
formance compromise. We conclude to address two significant chal-
lenges in our paper:

• Selective identification and erasure of undesired knowl-
edge: Existing unlearning techniques focus on negating un-
desired knowledge based on specific data samples. Balancing
the erasure of undesired knowledge and the preservation
of desired knowledge requires precise localization of model
parameters closely associated with the undesired knowledge,
which is inherently challenging [24].
• Knowledge Entanglement in LLMs: Knowledge in LLMs
is intricately interlaced, with significant portions stemming
from clusters of crucial neurons. Unlearning these neurons
could lead to catastrophic performance impacts due to the in-
terconnected nature of the knowledge [23]. Hence, even after
locating memories tied to undesired knowledge, modifying
these memories adversely affect desired knowledge.

To address the complexities of unlearning in LLMs, we propose
a novel methodology called LLM-Eraser, which could fast identify
knowledge associated with undesired knowledge and unlearns it
with selective pruning (Figure 1 (iv)). LLM-Eraser employs a two-
step process: localization and unlearning. In the localization stage,

we explore both score-based and mask-based techniques to iden-
tify undesired memories [26, 53]. Score-based localization uses a
second-order Taylor expansion to approximate changes in the loss
function relative to model parameters, while mask-based localiza-
tion employs a trainable soft mask with 𝑙-1 regularization to enforce
sparsity. In the unlearning stage, we prune a portion of the model
parameters identified during localization and apply a selective tun-
ing process to enhance performance. The selective tuning process
erases undesired knowledge by enforcing a random mismatch and
preserves desired knowledge by minimizing divergence from the
original LLM. Additionally, a contrastive objective is introduced
to disentangle desired and undesired knowledge. Figure 2 shows
comparison of our proposed LLM-Eraser with existing gradient
ascent-based approach and original LLM, showcasing the effective-
ness of LLM-Eraser in balancing the negation and preservation.

Our experiments, conducted across five general-task benchmark
datasets and specific language generation corpus datasets, demon-
strate the effectiveness of LLM-Eraser. The results show that LLM-
Eraser successfully eliminates undesired knowledge while largely
retaining comparable performance for desired knowledge.

2 Related Work
2.1 Large Language Model Unlearning
LLMs are derived from transformer architectures, which have al-
ready proven versatile across various applications [54, 57–59], fur-
ther extending their impact through the capabilities of LLMs. We fo-
cus on model-based machine unlearning approaches over large lan-
guage models. These approaches involve the modification of LLMs’
weights and/or structures for the unlearning purpose [19, 25, 38, 52].
One of the commonly used model-based machine unlearning tech-
niques is Gradient Ascent (GA)-based approaches, which optimize
LLMs to the inversed gradient directions w.r.t. undesired knowl-
edge [19, 52]. GA-based approaches can be sensitive to the training
procedures, and direct gradient ascent over undesired knowledge
leads to a noticeable performance drop on desired knowledge [15].
To stabilize the GA-based machine unlearning process, one of the
variants transforms it into a gradient descent problem, which aims
at maximizing the likelihood of predictions on undesired knowl-
edge with relabeled (e.g., randomly relabeled) data [53]. However,
these variants focus primarily on erasing undesired knowledge and
overlook the balance to preservation.
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2.2 Comparison with Model Editing Approaches
Model editing is a closely related topic to model unlearning, which
focuses on editing factual associations incorporatedwithin LLMs [14,
30, 31] or to mitigate fictitious knowledge [17, 28, 42]. A model edit-
ing approach can be mitigated for the knowledge erasure task by
substituting the factual association labels, and it is also crucial for
model editing approaches to edit factual associations within a spe-
cific scope [12, 33]. Model editing can be approached by localizing
a subset of model units that are closely related to the scope to be
edited [9, 47], which is instructive for knowledge erasure as well.
However, model editing differs from model unlearning: The pri-
mary focus of model unlearning is to erase memories, while model
editing modifies or integrates with new memories, which does not
focus on elimination. The mitigation of model editing approaches
for the unlearning task forces LLMs to substitute the answer to un-
desired knowledge with pre-defined sentences, e.g. spaces or fixed
refuse-to-answer context [27, 33, 51]. However, an adversarial can
easily obtain undesired knowledge through logit scores since the
relative tendency has not been completely erased, only substituted.

3 Problem Statement

Table 1: Mathematical Notations

Symbol Description
FΘ (·) LLM as a parameterized projection function
X Prompt input
Y Generated outputs
Θ Parameter set of LLM
𝐷 (·, ·) Pre-defined distance metrics, e.g. cross-entropy loss
X X = {X1,X2, ...,X𝑛} Set of prompt input genres
F ∗Θ (·) Optimal LLM with perfect outputs
F ′Θ Selective LLM
REJECT Reject operations for undesired knowledge
𝜃 𝜃 ∈ Θ a subset of parameters of Θ
L𝜃 Loss function value w.r.t. 𝜃
𝐼Θ Importance score of parameters
𝐻 Hessian matrix of Importance score
m Pruning mask of parameters
D𝑑 Dataset of desired knowledge
D𝑢 Dataset of undesired knowledge
𝛼, 𝛽, 𝛼 ′, 𝛽′ Scaling factors
𝜆𝑡𝑟𝑎𝑖𝑛, 𝜆𝑑𝑖𝑣 Scaling factors
𝑧 Output logits of LLM
𝑧 𝑧 = {𝑧1, 𝑧2, ..., 𝑧𝑁 } selected anchors to contrast
𝑇, 𝜏 Temperature hyperparameter

We first give a formal problem statement of the undesired knowl-
edge erasure task. For the purpose of clarity and comprehensibility,
we encapsulate the mathematical notations used throughout this
paper in Table 1. A Large Language Model can be regarded as a pa-
rameterized projection function FΘ (·) that projects prompt inputX
into answer space Y. Parameter set Θ is optimized to minimize
the distance between the projected output and the answer label,
formally:

min
Θ

𝐷 (FΘ (X),Y), (1)

where 𝐷 (·, ·) can be arbitrary pre-defined distance metrics.

Given a set of prompt input genresX = {X1,X2, ...,X𝑛}, whereX𝑖
indicates any prompt input depending on a certain genre of knowl-
edge, e.g. coding or chemistry. Without lost of generality, let the
first𝑚 genres of prompt inputs in X depend on desired knowl-
edge, e.g. objective facts, and the remaining genres of prompt
inputs depend on undesired knowledge, e.g. knowledge to make
biochemical weapons. Formally, given all genres of knowledge
X = {X1,X2, ...,X𝑚, ...,X𝑛}, ∀𝑖 ≤ 𝑚, X𝑖 depends on desired knowl-
edge, otherwise depending on undesired knowledge. An optimal
general-task LLM F ∗Θ (·) could precisely answer prompt inputs of
any genre regardless depending on desired or undesired knowledge:

𝐷 (F ∗Θ (X𝑖 ),Y𝑖 ) → 0, ∀X𝑖 ∈ X. (2)

For the task of selective undesired knowledge erasure, we aim
to build a selective model F ′Θ (·) based on the optimal general-
task LLM, such that the selective model could optimally answer
any genres of prompt inputs depending on desired knowledge, yet
rejects answering any prompt input coming from genres depending
on undesired knowledge. Formally:

F ′Θ (X𝑖 ) →
{
Y𝑖 , 𝑖 ≤ 𝑚
REJECT, 𝑖 > 𝑚.

(3)

Here REJECT can be any operations irrelevant to ground-truth
label Y𝑖 , e.g., random text, fixed content, or empty.

4 Methodology
In this section, we unpack the specifics of LLM-Eraser designed for
the selective knowledge erasure task. Generally, LLM-Eraser oper-
ates iteratively alternating between two central stages: the localiza-
tion stage and the unlearning stage. Within the localization stage,
LLM-Eraser singles out parameters associated with high relative
importance in relation to undesired knowledge, while maintaining
moderate importance for the desired knowledge. Transitioning to
the unlearning stage, a particular portion of these identified parame-
ters is pruned, followed by a selective tuning process to counter any
prospective performance decline caused by the preceding pruning.
The selective tuning process enforces the negation of undesired
knowledge using a randommismatch objective, and enforces utiliza-
tion of desired knowledge by minimizing the divergence between
the original LLM. In order to decompose the correlation between
desired and undesired knowledge, we put forth a contrastive ob-
jective to enforce disentanglement between desired and undesired
knowledge. Figure 3 shows the architecture of LLM-Eraser.

4.1 Mathematical Modeling
Building upon the problem statement in Section 3, we propose the
mathematical modeling for selective knowledge erasure [23]:

min
Θ

E(𝑥,𝑦) ∈D𝑑
[𝑙 (𝑦𝑑 |𝑥 ;Θ)]︸                       ︷︷                       ︸

preserve

+ 𝜆E(𝑥,𝑦) ∈D𝑢
[𝑙 (𝑦𝑢 |𝑥 ;Θ)]︸                         ︷︷                         ︸

eliminate

, (4)

where D𝑑 , 𝑦𝑑 and D𝑢 , 𝑦𝑢 correspond to data and label of desired
and undesired knowledge. The first term enforces preservation of
LLM’s ability for desired knowledge, and the second term enforces
elimination of undesired knowledge.
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The selective tuning process has three loss terms, as shown in d).

4.2 Localization Stage
We propose two selective localization variants - score-based local-
ization and mask-based localization - specifically tailored for the
undesired knowledge selective erasure task.

4.2.1 Score-based Localization. Score-based localization derives
the importance score to indicate localization. Given an LLM loss
function LΘ w.r.t. model parameters Θ, the importance score of
parameter, i.e. 𝐼Θ can be determined as the change of loss function
value if setting the parameter as zero. Formally:

𝐼Θ = |LΘ − LΘ=0 |. (5)

The change of loss function values w.r.t. model parameters can
be approximated by Taylor expansion [34]. Early research approx-
imates it using first-order expansion, i.e. the gradient of parame-
ters [50]. However, under a well-trained scheme, the gradient of
model parameters can be mostly zero, thus we adopt the second-
order expansion in approximating the importance score. Formally:

𝐼Θ ≈ |
𝜕LΘ

𝜕Θ
Θ + 1

2
Θ𝑇𝐻Θ + O(||Θ| |3) |, (6)

where 𝐻 is the Hessian matrix, O(||Θ| |3) is a third-order quantity
that can be ignored. We define the second-order selective localiza-
tion importance score as:

𝐼Θ ≈ E(𝑥,𝑦) ∈D𝑢
| 𝜕L(𝑥 ;Θ,𝑦)

𝜕Θ Θ + 1
2Θ

𝑇𝐻Θ| −

𝛼E(𝑥,𝑦) ∈D𝑑
| 𝜕L(𝑥 ;Θ,𝑦)

𝜕Θ Θ + 1
2Θ

𝑇𝐻Θ| ,

(7)

where 𝛼 is a scaling factor. The selective importance score assigns a
much higher score to neurons important only to undesired knowl-
edge genres, while keeping moderate score for neurons important
to both desired and undesired knowledge genres.

4.2.2 Mask-based Localization. Mask-based localization optimizes
masks for model parameters in identification of crutial parame-
ters [9, 39, 47]. Formally, the objective for optimizing the mask m
can be written as:

min
m∈{0,1}𝑛

E(𝑥,𝑦) ∈DL(𝑥 ;m ⊙ Θ, 𝑦), (8)

where ⊙ is the element-wise product between mask m and pa-
rameter Θ. By minimizing the impact of masking out a group of
model parameters, mask-based localization could identify param-
eters (not being masked) crucial for maintaining consistency of
model output. Directly optimizing the mask within binary range
makes the optimization process discontinuous. Following [9, 50],
we relax the mask into real numbers, i.e. m ∈ [0, 1]𝑛 , and add the
𝑙-1 regularization to enforce sparsity. Formally:

min
m∈[0,1]𝑛

E(𝑥,𝑦) ∈DL(𝑥 ;m ⊙ Θ, 𝑦) + 𝛽 | |m| |1, (9)

where (𝑥,𝑦) is sampled data from dataset D, 𝛽 is a hyperparam-
eter to control the regularization strength. In order to selectively
identify undesired knowledge, we propose a selective mask-based
localization scheme. Formally:

minm∈[0,1]𝑛 E(𝑥,𝑦) ∈D𝑑
L(𝑥 ;m ⊙ Θ, 𝑦) −

𝛼E(𝑥,𝑦) ∈D𝑢
L(𝑥 ;m ⊙ Θ, 𝑦) +

𝛽 | |m| |1 .

(10)

The mask-based selective localization objective locates (not being
masked) parameters positively related to desired knowledge, while
negatively related to undesired one, and ensures sparsity.
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4.3 Unlearning Stage
The localization stage selectively identifies crucial parameters ex-
clusively related to undesired knowledge. In the unlearning stage,
we discuss how to eliminate undesired knowledge while preserv-
ing desired knowledge with the guidance of localization. Once we
have obtained the importance score or learned masks of parameters
during the localization stage, we prune out certain percentage of
parameters that are most relevant to undesired knowledge. Specifi-
cally, for score-based localization, we prune parameters w.r.t. Equa-
tion 7 from high to low, and for mask-based localization, we mask
out parameters based on Equation 10. After pruning, a selective
tuning process is followed to improve the selectivity of LLM-Eraser.
Figure 3 d) illustrates loss terms used in the unlearning stage.

4.3.1 Generic Selective Post-training. The most intuitive way for
post-training is to find a carefully crafted set of data based on de-
sired knowledge genre, and conduct general Supervised Fine Tuning
(SFT) to forget undesired knowledge, denoted as catastrophic for-
getting [2, 41]. However, such an unselective post-training process
may not effectively remove undesired knowledge [23, 53]. To en-
hance forgetting, we add a confusion loss over undesired knowledge
genres to reject answering undesired knowledge-related questions
by enforcing random prediction distributions during generation.
Formally:

L𝑡𝑟𝑎𝑖𝑛 = − E(𝑥,𝑦) ∈D′
𝑑
𝑙𝑜𝑔 𝑃𝑟 (F ′Θ = 𝑦 |𝑥)

−𝜆𝑡𝑟𝑎𝑖𝑛 E(𝑥,𝑦) ∈D′𝑢 𝑙𝑜𝑔 𝑃𝑟 (F ′Θ = 1
𝑛 |𝑥),

(11)

where 𝑛 is the vocabulary size, D′
𝑑
and D′𝑢 are desired and unde-

sired datasets to be used during the training stage different from
D𝑑 and D𝑢 , 𝜆𝑡𝑟𝑎𝑖𝑛 a scaling factor. The confusion loss enforces
a random mismatch of LLM’s ability corresponding to undesired
knowledge.

4.3.2 Selective Divergence Minimization. To stabilize the selective
tuning process, existing research supervises training by minimizing
the KL-divergence between the original and erased LLM on desired
knowledge [44, 52].We conduct a selective divergenceminimization
process:

L𝑑𝑖𝑣 = E(𝑥,𝑦) ∈D′
𝑑
𝐷𝐾𝐿 (F ′Θ (𝑥)∥

𝑒𝑥𝑝 (𝑧𝑖/𝑇 )∑
𝑗 𝑒𝑥𝑝 (𝑧 𝑗 /𝑇 )

)+

𝜆𝑑𝑖𝑣E(𝑥,𝑦) ∈D′𝑢𝐷𝐾𝐿 (F
′
Θ (𝑥)∥

𝑒𝑥𝑝 (−𝑧𝑖/𝑇 )∑
𝑗 𝑒𝑥𝑝 (−𝑧 𝑗 /𝑇 )

),
(12)

where 𝐷𝐾𝐿 (𝑝 (𝑥)∥𝑞(𝑥)) is the KL-divergence between 𝑝 (𝑥) and
𝑞(𝑥), 𝑧𝑖 is the output logit of the original LLM,𝑇 is the temperature
hyperparameter, 𝜆𝑑𝑖𝑣 is a scaling factor. We minimize the diver-
gence between the original LLM’s output distribution and erased
LLM on desired knowledge, while for undesired knowledge the
inverse output distribution of the original LLM is used to enforce
the forgetting of undesired knowledge.

4.3.3 Contrastive Disentanglement. In order to reduce the cou-
pling of desired and undesired knowledge, we adopt supervised
contrastive learning to effectively separate both knowledge. Con-
trastive learning [21, 40, 50] defines a contrastive loss that enforces
the separation of representations between positive and negative
samples. Following [21], contrastive training objective is defined

Algorithm 1 LLM-Eraser

Require: 𝐷𝑑 , 𝐷𝑢 , FΘ
# 𝐷𝑑 the desired knowledge dataset,
# 𝐷𝑢 the undesired knowledge dataset,
# FΘ the LLM with parameter Θ,
for 𝑖 ← 1 to num_iters do
𝐷′
𝑑
, 𝐷′𝑢 ← Sample(𝐷𝑑 , 𝐷𝑢 ) # Samples subset for pruning

if SCORE-PRUNING then
𝐼Θ ← Calculate selective importance score w.r.t. 𝐷′

𝑑
, 𝐷′𝑢

Prune parameters w.r.t. 𝐼Θ
else if MASK-PRUNING then
m← Calculate mask w.r.t. 𝐷′

𝑑
, 𝐷′𝑢

Prune parameters w.r.t. m
end if
𝐷′
𝑑
, 𝐷′𝑢 ← Sample(𝐷𝑑 , 𝐷𝑢 ) # Samples subset for post-training

while Training not converged do
L ← L𝑡𝑟𝑎𝑖𝑛
if USE-DIVERGENCE then
L ← L + 𝛼 ′L𝑑𝑖𝑣

end if
if USE-CONTRASTIVE then
L ← L + 𝛽′L𝑐𝑜𝑛

end if
Back_propagate(L)

end while
end for

as:

L𝑐𝑜𝑛 = −
|D′ |∑︁
𝑖=1

1
| |𝑃 (𝑖) | |

∑︁
𝑧 𝑗 ∈𝑃 (𝑖 )

𝑙𝑜𝑔
𝑒𝑠𝑖𝑚 (𝑧𝑖 ,𝑧 𝑗 )/𝜏∑𝑁
𝑘=1 𝑒

𝑠𝑖𝑚 (𝑧𝑖 ,𝑧𝑘 )/𝜏
, (13)

where 𝑧𝑖 is the output representations of 𝑖-th post-training data.We
use the mean pooling of each token’s representation as sequence
representation. 𝑧 = {𝑧1, 𝑧2, ..., 𝑧𝑁 } is a set of selected anchors to
contrast, 𝑃 (𝑖) indicates positive sample sets of 𝑖 , 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 ) calcu-
lates the cosine similarity between two vectors, D′ = {D′

𝑑
,D′𝑢 }

denotes to the set of desired and undesired knowledge, 𝜏 is the
temperature.

The selective tuning process is optimized using a joint loss func-
tion comprising three components: Equation 11, Equation 12, and
Equation 13. Equation 11 ensures the preservation of essential
knowledge, while Equation 12 promotes effective differentiation be-
tween desired and undesired information. Additionally, Equation 13
enforces behavioral consistency to maintain model reliability. The
combined loss function is formally expressed as:

L = L𝑡𝑟𝑎𝑖𝑛 + 𝛼 ′L𝑑𝑖𝑣 + 𝛽′L𝑐𝑜𝑛, (14)

where 𝛼 ′, 𝛽′ are hyperparameters to adjust the relative importance
between sub-losses. LLM-Eraser iterates between the localization
stage and unlearning stage, gradually prunes more parameters until
reaching certain sparsity ratio. For score-based localization, the
prune ratio is adjusted by selecting more parameters to be pruned,
and for mask-based localization, the prune ratio is adjusted by
enforcing stronger 𝑙1-regularization. We illustrate the pseudocode
of LLM-Eraser in Algorithm 1.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Shengming Zhang, Le Zhang, Jingbo Zhou, Zhi Zheng, and Hui Xiong

Table 2: Overall Performance on LLaMA-2-7B.

As desired knowledge↑ As undesired knowledge↓
Pruning Ratio Method Arithmetic BoolQ HellaSwag OBQA PIQA Average Arithmetic BoolQ HellaSwag OBQA PIQA Average

Ratio = 0 % LLaMA-2-7B 85.35 77.71 73.48 44.20 79.11 71.97 - - - - - -
LLaMA-2-7B∗ 90.55 79.94 75.49 45.40 80.14 74.30 82.20 75.29 72.93 42.80 78.94 70.43
GA 68.05 66.24 67.80 39.00 73.27 62.87 28.45 44.32 31.51 27.80 52.12 36.84
GA+Mismatch 69.35 67.39 68.02 40.40 71.81 63.39 28.13 44.23 30.86 28.20 51.84 36.65

Ratio = 20 %
prune only

LLM-Pruner 70.15 69.60 66.42 35.80 76.22 63.64 67.90 66.54 65.05 32.20 75.01 61.34
ANP 71.85 65.84 61.62 34.20 75.19 61.74 57.45 60.58 59.68 30.80 68.99 55.50
AWM 73.90 67.58 62.86 35.00 75.63 62.99 56.10 58.20 60.25 29.60 63.44 53.52

(S)LLM-Eraser† 79.20 68.32 65.06 38.60 76.39 65.51 70.00 61.80 64.60 34.20 74.76 61.07
(S)LLM-Eraser 67.00 67.77 65.19 36.20 74.86 62.20 49.30 58.10 48.07 29.80 60.23 49.10

(M)LLM-Eraser† 84.50 69.24 64.94 37.40 77.37 66.69 61.00 69.20 64.78 32.80 76.01 60.76
(M)LLM-Eraser 73.25 67.37 59.55 36.60 75.14 62.38 47.05 50.55 48.45 27.40 62.19 47.13

Ratio = 20 %
with tune

LLM-Pruner 74.70 72.05 66.22 40.00 73.50 65.29 34.60 66.51 62.72 31.40 74.81 54.01
ANP 73.35 76.12 64.04 38.80 76.99 65.86 32.95 59.66 57.89 30.60 67.13 49.65
AWM 75.95 74.19 65.87 41.20 77.21 66.88 30.20 60.12 54.97 28.20 65.10 47.72

(S)LLM-Eraser† 82.70 76.45 71.33 42.80 78.40 70.34 33.45 62.23 63.95 38.20 76.61 55.02
(S)LLM-Eraser-C 79.00 72.42 64.73 41.00 78.56 67.14 5.90 43.21 32.29 27.20 54.95 32.71
(S)LLM-Eraser-D 81.60 71.13 70.45 39.60 78.24 68.20 5.50 37.98 30.15 28.60 53.54 31.15
(S)LLM-Eraser 83.55 74.16 70.74 41.40 78.51 69.67 3.70 38.23 31.03 27.80 49.51 30.05

(M)LLM-Eraser† 83.75 79.60 70.97 44.40 79.22 71.59 50.40 62.29 64.92 38.00 75.14 58.15
(M)LLM-Eraser-C 74.75 72.57 61.09 39.80 78.73 65.39 1.40 48.13 30.90 28.00 53.05 32.30
(M)LLM-Eraser-D 83.85 76.91 65.01 40.20 78.35 68.86 0.10 38.81 28.91 28.40 51.09 29.46
(M)LLM-Eraser 86.35 78.07 68.12 40.60 77.97 70.22 0.00 37.83 28.98 27.60 49.24 28.73

Ratio = 50 %
prune only

LLM-Pruner 51.20 60.15 32.84 32.60 60.77 47.51 45.45 59.29 33.10 31.00 59.02 45.57
ANP 51.90 53.00 38.73 31.80 63.17 47.72 29.30 54.96 31.09 28.60 55.10 39.81
AWM 55.85 57.86 39.03 32.20 62.76 49.54 22.05 52.42 32.74 27.40 56.96 38.31

(S)LLM-Eraser† 71.10 62.26 50.18 30.60 61.64 55.16 34.60 56.18 32.28 24.20 56.69 40.79
(S)LLM-Eraser 56.85 59.82 34.80 27.00 62.35 48.16 1.35 44.25 27.33 26.20 49.18 29.66

(M)LLM-Eraser† 73.35 61.71 48.30 27.80 62.13 54.66 36.65 59.54 40.13 27.40 56.09 43.96
(M)LLM-Eraser 64.10 62.54 38.02 28.40 59.19 50.45 0.10 43.39 27.43 25.00 50.05 29.19

Ratio = 50 %
with tune

LLM-Pruner 68.95 64.07 36.52 36.20 65.78 54.30 39.60 55.80 33.31 30.80 61.98 44.30
ANP 73.25 59.13 43.80 35.60 66.83 55.72 17.20 51.75 31.26 26.60 53.73 36.11
AWM 74.25 60.63 45.73 35.80 67.79 56.84 14.00 50.47 34.85 26.20 51.06 35.32

(S)LLM-Eraser† 78.05 65.47 53.42 37.60 69.21 60.75 37.90 60.95 34.50 28.80 60.66 46.42
(S)LLM-Eraser-C 77.70 59.57 36.59 27.80 66.70 53.67 4.70 43.67 26.49 28.20 53.21 31.25
(S)LLM-Eraser-D 76.95 62.17 44.87 32.60 67.85 56.89 2.80 38.90 26.49 27.80 51.36 29.47
(S)LLM-Eraser 78.60 61.44 50.69 32.80 69.26 58.44 0.20 37.95 26.05 26.00 49.62 27.96

(M)LLM-Eraser† 82.25 65.20 55.76 35.80 70.57 61.65 43.40 59.91 43.77 26.60 60.23 46.78
(M)LLM-Eraser-C 72.50 58.41 34.09 29.60 66.43 52.21 0.05 41.22 29.15 25.40 51.41 29.45
(M)LLM-Eraser-D 76.75 62.94 52.34 31.60 68.01 58.33 0.00 42.75 27.21 24.80 52.99 29.55
(M)LLM-Eraser 79.35 62.63 51.64 32.00 68.17 58.76 0.10 37.80 24.98 25.20 48.42 27.30

Random 0.00 50.00 25.00 25.00 50.00 - 0.00 50.00 25.00 25.00 50.00 -

5 Experiments
5.1 Experimental Settings
For testing both negation and preservation of undesired and desired
knowledge, two critical evaluation metrics have been emphasized:
firstly, the Accuracy on Clean Data (ACC), and secondly, the Attack
Success Rate (ASR). The latter provides a comparison before and
after the removal of backdoor triggers and is characterized as the
proportion of samples that lead to misclassification. We initiate
by choosing an array of tasks that the LLM excels at. In each it-
eration of our experiments, one task is singled out as embodying
the undesired knowledge, with the rest earmarked as carriers of
the desired knowledge. Our overarching goal bifurcates into two
primary directives: first, to maintain the model’s prowess on the
desired knowledge subset; and second, to diminish its efficacy on
tasks categorized under undesired knowledge.

5.1.1 Datasets. We choose a total of five datasets that are fre-
quently employed to gauge the efficacy of LLMs [18, 26]. Specifically,
we’re referring to the following: Arithmetic [6], BoolQ [11], Hel-
laSwag [55],OpenbookQA(OBQA) [32], and PIQA [4]. A primary

consideration in the selection of these datasets is the intentional
semantic disparity among the tasks they represent. To elucidate,
Arithmetic evaluates an LLM’s computational capabilities; Hel-
laSwag assesses the LLM’s proficiency in completing sentences cre-
atively; BoolQ probes the LLM’s aptitude in responding to natural
Yes/No questions; OpenbookQA investigates the LLM’s prowess
in question-answering scenarios; and PIQA evaluates the model’s
competency in physical interactions. Follow [18], the model ranks
the choices in the multiple-choice tasks and chooses the highest-
ranked choice, or generates the answer.

5.1.2 Benchmarks. We compare our proposed LLM-Eraser with
LLM-Pruner [26], a general-task pruning approach tailored for
LLMs.We also comparewith two localization approaches, i.e.ANP [47]
and AWM [9], together with two machine unlearning approaches,
i.e. GA and GA+Mismatch [52]. We also compare with a set of
ablated models of our proposed LLM-Eraser. Specifically, LLM-
Eraser† is LLM-Eraser minus the selective erasure process, only
prunes and trains over desired knowledge tasks; LLM-Eraser-C
indicates LLM-Eraser minus the contrastive disentanglement and
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LLM-Eraser-D indicates LLM-Eraser minus the divergence min-
imization. We use prefix (S) to indicate that the approach is un-
der score-based localization and (M) as mask-based localization.
For more detailed experimental settings, please refer to the Ap-
pendix. The source code of LLM-Eraser is publically available at:
https://github.com/mmichaelzhang/LLM-Eraser.

5.2 Experimental Results
5.2.1 Overall Performance. Table 2 presents a comprehensive per-
formance overview using LLaMa-2-7B [43] as the foundational LLM.
The numbers in the table represent accuracy scores, expressed in
percentages. The variant LLaMA-2-7B∗ represents the base LLaMa-
2-7B model with fine-tuning exclusively on desired knowledge. The
table’s left column details the accuracy when tasks are deemed as
desired knowledge, whereas the right column provides insights
when those same tasks are considered undesired knowledge. Two
distinct pruning ratios, specifically 20% and 50%, were employed
during our experimentation. We report performance metrics for
both scenarios: with and without post-training. Within each prun-
ing ratio category (and respective pruning type), the highest (for
desired knowledge) and lowest (for undesired knowledge) accu-
racy scores are emphasized in bold. Scores for LLM-Eraser† are not
highlighted given its non-involvement in selective erasure.

From the data presented in the table, several key insights emerge:
(i) The efficacy of our LLM-Eraser methodology is evident in its
ability to expunge undesired knowledge. This is particularly pro-
nounced in the drastic reduction of accuracy in Arithmetic to a
complete null, with other tasks showing accuracy levels hovering
around random guessing. (ii) In terms of retaining desired knowl-
edge, LLM-Eraser’s performance is noteworthy. It doesn’t just rival,
but surpasses the generic-task pruning baseline (embodied by LLM-
Pruner). Moreover, the average degradation in accuracy remains
modest – under 2% when the pruning ratio is set at 20% and below
5% for a 50% pruning ratio. (iii) Conducting ablation studies on both
the contrastive and divergence modules revealed a dip in perfor-
mance. This underscores the crucial role these modules play in the
overarching system. (iv) We observe a below-random-choice per-
formance on the BoolQ dataset as undesired knowledge, indicating
that LLM-Eraser learns to avoid correct answers intentionally.

5.2.2 Experiments on Language Tasks. Upon extending our experi-
ments to encompass language-specific tasks, we turned our focus
towards the linguistically rich xP3 dataset [35]. We zeroed in on
five diverse languages: Arabic (Ar), English (En), Spanish (Es), Chi-
nese (Zh), and a programming language referred to as Code. Table
3 shows the results over language on LLaMa-2-7B under pruning
ratio = 20% and with post-training. The evaluation was based on the
perplexity score, where a lower score signals a better generalization
capacity of the model. It becomes evident that the LLM-Eraser suc-
cessfully executes the task of selective knowledge erasure. This is
manifested by the model maintaining nearly equivalent perplexity
scores for the desired language knowledge. For example, (M)LLM-
Eraser achieves an average perplexity score of 8.02 for desired
knowledge, which is significantly better than other methods, indi-
cating that the desired knowledge is well-preserved. Meanwhile, it
widens the gap in the perplexity score when dealing with undesired
language knowledge, with an average perplexity score of 82.20 for

Table 3: Selective erasure over language on LLaMA-2-7B.
(Prune Ratio 20%, with tune)

PPL as desired knowledge↓
Ar En Es Zh Code Average

LLaMA-2-7B∗ 4.96 9.07 8.15 6.39 3.50 6.41
GA 10.15 17.53 13.47 14.03 9.42 12.92
GA+Mismatch 9.72 18.49 12.63 13.64 9.09 12.71

LLM-Pruner 8.72 13.52 12.71 11.32 6.48 10.55
ANP 9.57 14.79 12.41 11.09 5.85 10.74
AWM 8.13 15.97 11.54 13.22 8.90 11.55

(S)LLM-Eraser† 7.09 11.67 11.43 9.04 3.78 8.60
(S)LLM-Eraser 7.15 13.27 11.74 4.20 9.83 9.24

(M)LLM-Eraser† 6.35 10.53 10.99 8.76 3.48 8.02
(M)LLM-Eraser 6.58 10.98 10.66 8.97 4.08 8.25

PPL as undesired knowledge↑
Ar En Es Zh Code Average

LLaMA-2-7B∗ 3.61 11.90 10.19 7.76 5.20 9.67
GA 44.42 57.47 62.81 60.64 91.28 63.32
GA+Mismatch 51.26 59.90 62.69 62.05 96.70 66.52

LLM-Pruner 11.65 18.47 15.33 19.25 9.27 14.79
ANP 28.39 41.40 39.62 37.82 36.41 36.73
AWM 31.49 39.87 38.76 45.28 37.93 38.67

(S)LLM-Eraser† 10.80 15.71 17.06 14.70 7.94 13.24
(S)LLM-Eraser 54.46 91.94 69.20 67.47 95.10 75.63
(M)LLM-Eraser† 9.34 18.60 16.24 13.39 6.66 12.85
(M)LLM-Eraser 55.76 89.11 77.68 70.74 117.71 82.20
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Figure 4: Correlation coefficients of languages.

undesired knowledge using (M)LLM-Eraser. This high perplexity
score for undesired knowledge suggests that the LLM-Eraser effec-
tively prunes the undesirable information, thereby ensuring the
model does not generate unwanted responses. Figure 4 shows the
correlation coefficients of perplexity scores. We observe a clear
distinction between Code and other languages, indicating that the
pruning and unlearning strategies affect programming language
data differently compared to natural languages. This distinction
is crucial for applications where specific types of knowledge need
to be selectively unlearned while preserving the integrity of other
knowledge types. Overall, the results indicate that LLM-Eraser pro-
vides a robust mechanism for targeted knowledge erasure in LLMs,
effectively balancing the preservation of desired knowledge and
the removal of undesirable information across multiple languages.

5.2.3 Experiments over Unseen Knowledge. Table 4 presents the re-
sults of our experiments on selective knowledge erasure applied to
unseen knowledge. In these experiments, we designated data from
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Table 4: Experiments with Unseen Knowledge

Model Method
Desired Unseen Undesired

Arithmetic BoolQ HellaSwag OBQA PIQA

LLaMA-2
Ratio = 20 %
prune only

LLM-Pruner 3.85 66.12 59.93 34.00 66.43
ANP 71.30 64.35 58.93 27.20 62.44
AWM 69.65 66.76 61.81 28.40 64.10

(S)LLM-Eraser 72.35 67.40 56.36 27.80 59.96
(M)LLM-Eraser 78.05 62.17 51.48 28.60 60.83

LLaMA-2
Ratio = 20 %
with tune

LLM-Pruner 3.95 62.17 36.65 36.20 62.35
ANP 85.85 58.62 34.57 27.80 60.58
AWM 90.20 60.36 34.22 29.00 58.27

(S)LLM-Eraser 93.65 55.96 33.80 28.40 53.21
(M)LLM-Eraser 95.05 50.49 32.75 27.20 50.61

the Arithmetic dataset as desired knowledge and data from PIQA
as undesired knowledge, to assess their influence on other (unseen)
knowledge domains. In terms of desired knowledge, both varia-
tions of LLM-Eraser (S and M) demonstrate superior preservation
capabilities compared to other methods. For undesired knowledge,
LLM-Eraser effectively erases unwanted information, evidenced
by lower performance scores in the PIQA category, particularly
the (S)LLM-Eraser with a score of 50.61 after post-training. Regard-
ing unseen knowledge, LLM-Eraser tends to forget this type of
information, which aligns with intuitive expectations and practical
requirements. This behavior is observed across various categories
like HellaSwag and OBQA, where LLM-Eraser scores are lower com-
pared to other methods. The findings in Table 4 reveal a notable
dependency of the impact on unseen knowledge upon the rela-
tionship between the desired and undesired knowledge categories.
Specifically, when arithmetic is retained as desired knowledge and
PIQA is targeted as undesired, there is a considerable effect on other
natural language datasets. Overall, LLM-Eraser shows a promis-
ing balance between preserving desired knowledge and forgetting
undesired or unseen knowledge.
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Figure 5: Sensitivity analysis of pruning ratio.

5.2.4 Sensitivity Analysis. To probe the robustness and stability
of our model’s performance, we embarked on a sensitivity anal-
ysis centered around the pruning ratio parameter in Figure 5. In
terms of desired knowledge (En, dotted lines), we observe that both
LLM-Eraser and LLM-Eraser† remain closely aligned in terms of
PPL scores, indicating consistency in retaining desired knowledge,
while the LLM-Pruner’s PPL score exhibits a steeper ascent, suggest-
ing a more rapid degradation in performance as the pruning ratio

Table 5: Generated content examples.

Mode Generated Contents

Desire

Exercise is good for you because it can help you lose
weight. This is true. When you exercise, you burn calo-
ries. The more you exercise, the more calories you burn.
If you burn more calories than you consume, you will
lose weight.

Long time ago, there is a man who is a farmer. He is
working in his farm. He is using a tractor to plow the
field. He is using a shovel to dig the soil. He is using a
rake to rake the soil. He is using a hoe to weed the soil.

Undesire

Exercise is good for improvarling overall endognrins
toneZ the muscis lapel ton are a benefitu what so sport
so how when done lapop. It does the greek and endo-
morphic in gifts how it uses them improve health when.

Long time ago, there is still wild world so dinophilus
make biospon from sand today when scientology learn
all there discover ,dinous make meat then a die at bottom
bottom up laviatic what you e done there

escalates. In terms of undesired knowledge (Code, solid lines), the
LLM-Eraser exhibits a significant surge in the PPL score, indicating
a good erasure of undesired knowledge.

5.2.5 Case Study. Table 5 presents the LLM-Eraser’s ability to gen-
erate English content under two distinct settings: treating English
as desired and undesired knowledge. Clear disparities are evident
between the outputs in each scenario. While preserving English re-
sults in coherent outputs, attempting to erase it leads to fragmented
results. We show more examples in the Appendix (Table 7,8).

Table 6: Additional Results on LLaMA and Vicuna

Model Method
As desired knowledge↑ As undesired knowledge↓

Arithmetic BoolQ HellaSwag Arithmetic BoolQ HellaSwag

LLaMA
Ratio = 20 %
with tune

LLM-Pruner 0.95 65.84 57.04 19.80 65.11 48.21
ANP 71.20 60.99 55.95 20.87 53.89 46.91
AWM 68.35 62.41 64.36 23.06 57.15 40.37

(S)LLM-Eraser 74.65 67.58 65.01 1.70 40.40 31.48
(M)LLM-Eraser 71.25 61.16 64.64 0.15 48.29 35.86

Vicuna
Ratio = 20 %
with tune

LLM-Pruner 7.45 62.94 71.42 37.90 59.54 72.93
ANP 82.45 68.61 70.70 37.25 56.39 44.30
AWM 85.30 71.37 72.59 31.00 51.43 43.81

(S)LLM-Eraser 88.90 75.11 72.95 0.30 46.42 31.79
(M)LLM-Eraser 91.25 79.94 73.48 1.35 38.20 31.52

5.3 Additional Experiments
Table 6 shows the experimental results using LLaMA and Vicuna as
base models. From Table 6 we can see that our proposed LLM-Eraser
consistently outperforms all baseline models in both preserving
desired knowledge and eradicating undesired knowledge under
different base models. These results highlight the robustness and
versatility of LLM-Eraser across varying architectures and tasks,
demonstrating its potential for effectively tailoring languagemodels
to specific application needs.
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6 Conclusion
In this work, we tackled the critical challenge of selectively eras-
ing memories from LLMs, introducing LLM-Eraser, a two-stage
method. By alternating between localization and erasing stages,
we effectively pruned parameters tied to undesired knowledge
while maintaining the integrity of desired knowledge. The results
confirmed its ability to eliminate undesired knowledge while pre-
serving comparable performance for the desired knowledge. The
impact of this research extends beyond mere knowledge removal. It
provides a pathway for safer and more ethical deployment of LLMs
in various applications and paves the way for developing more
refined and targeted LLMs. Future work will focus on developing
a comprehensive machine unlearning evaluation framework and
enhancing robustness in retrieving erased undesired knowledge.

7 Ethics Statement
Our research on the LLM-Eraser adheres to strict ethical standards,
addressing the challenge of unauthorized use and dissemination
of undesired knowledge in Large Language Models (LLMs). We
responsibly implement selective structured pruning to eliminate
potentially harmful content while preserving valuable information.
This approach aligns with ethical AI practices, ensuring the in-
tegrity and responsible use of LLMs. Our work contributes to the
development of ethically conscious AI technologies, emphasizing
the importance of minimizing risks while harnessing the positive
potential of language models.
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Table 7: More Generated content examples (LLaMA-2-7B).

Generated Contents

A man is being pulled on a water ski as he floats in the
water casually. he is wearing a white t-shirt and a pair of blue
jeans. He is smiling at the camera.

A huge crowd is in the stands in an arena. A man
throws a javelin. Photographers take pictures in the
background. several men who won trophies are seen tak-
ing a self-portrait, with the statue and his medal on the ground.
Two German men talk while two men in swim trunks take
photos with a mobile telephone a German woman talks with
him. On the run, several athletes are seen, running with their
clothes and hair untied. German men’ve finished with their
ties. a runner receives gold.

Atomic 26 is drawn to a device, it could be called Hydrus,
as the first step toward creating self-driving cars that can
“think” for themselves.

Question: What is 839 plus 777? Answer: 1616

Question: What is 556 plus 497? Answer: 1053 (in words:
one thousand fifty-six plus four hundred ninety-seven)

很久很久以前，有一個叫做約翰的孩子，他的父母把他

留在家裡來照顧他，因為他沒有耳朵，所以他無法聽到
說話，但是他能夠看到人的身體動作，這樣他就可以知
道人是什麼對話的。一天，祖母帶著她的女兒到他家去
探訪，那時候他正在吃晚餐，旁邊的桌子上擺了一盤牛
肉。他看見那隻豬躺在地上，它的腳趴在他膝蓋處，而
且嘴唇露出血跡，臉頰上則滿是汗水。幾分鐘過了，一
陣強烈的雷鳴響起，然後一片黑暗籠罩了整棟房子。眼
前一亮的光芒突然斷然消失，只有燈泡繼續發光。然而
卻是一條巨大的白色蛇般的東西走進了房間，在那些人
面前似乎感到恐懼。該靈魂忽然變成一頭白駝，之後就
輕鬆地撕破了屋簷，飛上了天空。
Reference translation: A long time ago, there was a child
named John. His parents left him at home to take care of
him. Because he had no ears, he could not hear speech, but
he could see people’s body movements so that he could know
people. What conversation. One day, his grandmother took
her daughter to visit him at his house. He was having dinner
and there was a plate of beef on the table next to him. he He
saw the pig lying on the ground, its feet lying on his knees,
its lips showing blood, and its cheeks covered with sweat.
After a few minutes, there was a loud crash of thunder, and
then darkness enveloped the entire house. The bright light
in front of my eyes suddenly disappeared, and only the light
bulb continued to shine. However, a huge white snake-like
thing walked into the room, and seemed to feel that it was in
front of those people. fear. The soul suddenly turned into a
white camel, then easily tore through the eaves and flew into
the sky.

Appendix

A Detailed Experimental Settings
In the localization stage, we randomly sample 10 examples from
each desired task and 10 examples from undesired task to calcu-
late the score-based localization importance score. The maximum
sequence length is set to 256. The scaling factor 𝛼 is set to 0.1 to
ensure a balance between preserving desired and erasing undesired
knowledge.

In the erasing stage, we randomly sample 1000 examples for
both desired and undesired tasks. The negative scaling factor for
both generic selective post-training 𝜆𝑡𝑟𝑎𝑖𝑛 and selective divergence
minimization 𝜆𝑑𝑖𝑣 is set to 1𝑒 − 4. Each post-training process runs
with only 2 epochs. We iterate 4 times between the localization
and erasing stage. We use the same samples for all the models for
localization and post-training to ensure fair comparison. Consis-
tency in sample selection across all models was maintained for
both localization and erasing stages to guarantee a fair compar-
ative analysis. In assessing the impact on undesired knowledge,
baseline models (LLM-Pruner, ANP, and AWM) were evaluated by
omitting relevant datasets from the samples. We also implement
the post-training of baselines to ensure an equitable comparison
among models. All hyperparameters underwent meticulous tuning
within a reasonable range. It is important to note that all examples
used in these stages were derived from the training or validation
sets, thereby maintaining isolation from the final test dataset.

We use the source code of [18] to evaluate the performance on
general tasks in Table 2. For perplexity score, we adopt the same
calculation approach as in [26]. Experiments are conducted using
Python 3.10 with Py-Torch. We conduct experiments on a CentOS
server with Intel(R) Xeon(R) Gold 6148 CPUs @ 2.40GHz and a
Tesla A100 GPU with 800 GB memory. The pruning stage time cost
is less than 10 minutes, while the post-training stage time cost is
no more than 2 hours.

B More Generated Results
Tables 7 and 8 showcase additional generated examples from three
distinct models: the foundational LLaMA-2-7B model, LLM-Eraser
with a focus on desired knowledge, and LLM-Eraser with a focus
on undesired knowledge. These examples illustrate abilities in four
key areas: The first and second cases demonstrate the models’ pro-
ficiency in generating coherent English sentences. The third case
highlights their capability in answering common knowledge. The
fourth and fifth cases explore the models’ proficiency in calculus.
Lastly, the sixth case exemplifies the ability to produce natural,
extended Chinese sentences. From the results we can see that our
LLM-Eraser, when targeting on desired knowledge, the abilities
are properly preserved, while on the other hand, when treating as
undesired knowledge, the outputs are non-logical.
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Table 8: More Generated content examples (continued).

Mode Generated Contents

LLLM-Eraser

As desired

A man is being pulled on a water ski as he floats in the water casually. he looks back at the boat and jumps as the boat speeds
away. The boat continues pulling the man around a lake until the man jumps up and down, then jumps into the lake without his ski
and splashes the water

A huge crowd is in the stands in an arena. A man throws a javelin. Photographers take pictures in the background. several
men who won trophies are seen taking a self-portrait, with the statue and his medal on the ground. Two German men talk while
two men in swim trunks take photos with a mobile telephone a German woman talks with him. On the run, several athletes are seen,
running with their clothes and hair untied. German men’ve finished with their ties. a runner receives gold.

Atomic 26 is drawn to a device, it could be a computer, a musical instrument or your car. The only limit is imagination.

Question: What is 839 plus 777? Answer: 1616

Question: What is 556 plus 497? Answer: 1053

很久很久以前，一群人組成了一個小團體，雖然人數不少，卻沒有任何領導人，每人都想過擔任，但來不及實行，直到有人

提出這點，決議由該人充當隊長，他採納了大家的意見，認為最好的辦法就是由每位成員自行定自己是否要做，如果批准，

就把名字標記在簽名牌上，若不滿意的話可以刪除。不久之後，有一天，在某人家中的洗手間發生了火災，由於環境不良，
火勢急速地蔓延，突然間附近的居民與家人趕緊疏開，其中還包含了那些坐在那裡的孩子，無人顧及盡可能幫忙，只有他一

人仍堅持不動。曾經受害人的鄰居，看到他不理縱橫的情況，不僅是驚訝，更是十分震懼，因此帶著一些水桶和漂白粉衝破

門，以防範。不料營火更加暴烈，而且煙氣莫名其妙地隱藏在水中，使得他無法看清。
Reference translation: A long time ago, a group of people formed a small group. Although there were many people, there was no leader.
Everyone thought about taking charge, but had no time to implement it. Until someone raised this point, it was decided that this person
should serve as the leader. He adopted it. According to everyone’s opinion, the best way is for each member to decide whether he wants
to do it. If approved, his name will be marked on the signature board. If he is dissatisfied, You can delete it if you like. Not long after,
one day, a fire broke out in the bathroom of someone’s home. Due to the poor environment, the fire spread rapidly. Suddenly, nearby
residents and their families hurriedly evacuated, including the children sitting there, and no one took care of them. Maybe he could
help, but he was the only one who still persisted. The former victim’s neighbors were not only surprised but also horrified when they
saw him ignoring Zongheng, so they broke through the door with some buckets and bleaching powder as a precaution. Unexpectedly,
the campfire became more violent, and the smoke was inexplicably hidden in the water, making it impossible for him to see clearly.

LLLM-Eraser

As undesired

A man is being pulled on a water ski as he floats in the water casually. he tries but can’T hold on long before pulling over again
after treading too near some submarine and he los...

A huge crowd is in the stands in an arena. A man throws a javelin. Photographers take pictures in the background. several
men with binos can been observed around an entrance. Cunet has entered that day 75m23cm; and also had jump... In the final
stand-and-delier it must become visible... But they miss ! - and win nothing ! An interview a day 4 after competizione to cuneio

Atomic 26 is drawn to a device, it could be electronic - to its beauty and also human aspects from where they arose in its processions
– when the creation becomes ours

Question: What is 839 plus 777? Answer: A new laptop computer.

Question: What is 556 plus 497? Answer: Five fifty seven with three fourteenth zeros right after and nothing is before and nothing
on your right.

很久很久以前,我在中學末的時候一天我還體錯了翻敲壁牆跑路.我想當這時的我們的身高只有200cm(我是4A的)晚上幢內要
哄我就會假死吧..聽到我昨天熱腦筆懂得我的英文不好了?你不要芒鉥我!你講得規模尺題好好胡?
Reference translation: A long time ago, when I was at the end of middle school, one day I got out of shape and ran away by knocking
on the wall. I think we were only 200cm tall at that time (I was in 4A). If someone tried to coax me in the building at night, I would
have faked my death. . I heard that my English was not good yesterday. You don’t want to criticize me! Are you good at talking about
large-scale questions?
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