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Abstract

The essential task of urban planning is to generate the opti-
mal land-use configuration of a target area. However, tradi-
tional urban planning is time-consuming and labor-intensive.
Deep generative learning gives us hope that we can auto-
mate this planning process and come up with the ideal urban
plans. While remarkable achievements have been obtained,
they have exhibited limitations in lacking awareness of: 1) the
hierarchical dependencies between functional zones and spa-
tial grids; 2) the peer dependencies among functional zones;
and 3) human regulations to ensure the usability of gener-
ated configurations. To address these limitations, we develop
anovel human-instructed deep hierarchical generative model.
We rethink the urban planning generative task from a unique
functionality perspective, where we summarize planning re-
quirements into different functionality projections for better
urban plan generation. To this end, we develop a three-stage
generation process from a target area to zones to grids. The
first stage is to label the grids of a target area with latent func-
tionalities to discover functional zones. The second stage is
to perceive the planning requirements to form urban func-
tionality projections. We propose a novel module: function-
alizer to project the embedding of human instructions and
geospatial contexts to the zone-level plan to obtain such pro-
jections. Each projection includes the information of land-use
portfolios and the structural dependencies across spatial grids
in terms of a specific urban function. The third stage is to
leverage multi-attentions to model the zone-zone peer depen-
dencies of the functionality projections to generate grid-level
land-use configurations. Finally, we present extensive exper-
iments to demonstrate the effectiveness of our framework.

Introduction

Urban planning is vital for building up a sustainable and
vigorous community. As a complicated and time-consuming
task, traditional practice heavily depends on experts’ per-
sonal experiences. The variance among urban planners may
result in biases and implausible solutions. Thanks to the ex-
plosive development of deep learning and internet-of-things,
the handful of methodologies and ubiquitously available
geo-social, urban and mobile data provide us with a new
data-driven perspective to re-investigate urban planning.
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Figure 1: The automated urban planner can mimic the
workflow of urban experts by first generating zone-level
planning and then refining it to grid-level planning.

There are considerable existing works related to auto-
mated urban planning (Wang et al. 2021a; Shen et al. 2020;
Ye, Du, and Ye 2021; Wang et al. 2021b). For example,
motivated by the remarkable success of deep image genera-
tion, (Wang et al. 2020) proposes a land-use configuration
generation framework, namely LUCGAN, which can gen-
erate a land-use configuration automatically for an empty
geographical area based on surrounding contexts. While
the existing works have achieved promising results, there
are still several limitations: 1) hierarchical relationships be-
tween high-level urban functional zones and the detailed ur-
ban planning scheme are ignored; 2)mutual dependencies
and influences among the planning of different subareas are
omitted. 3) human instructions from planning experts, such
as safety level, greening rate, volume rate, and etc, cannot
be perceived by model;

Therefore, in this paper, we study the research problem of
how to employ deep models to make automated urban plan-
ning more intelligent. To settle the problem, we can formu-
late urban planning as a deep conditional generative task, in
which human instructions and surrounding contexts can be
regarded as the generative condition, and spatial hierarchical
relationships and planning dependencies can be considered



as the generative constraints. The objective is to generate an
urban solution constrained by various factors.

However, there are three unique challenges in the defined
generative task: 1) Challenge 1: Capturing Spatial Hierar-
chical Relations: urban functional zones reflect the land-use
layout of a geographical area, which provides the bedrock
of a land-use configuration. Neglecting such spatial hier-
archical relations between urban functional zones and the
land-use configuration may result in the unstable generation
performance. But how can we model the spatial hierarchies
during the generation process? 2) Challenge 2: Capturing
Planning Dependency Among Subareas: planning solu-
tions of different sub geographical areas are mutually de-
pendent and affected. In a geographical area, for example,
if some subareas have been built up with a lot of business
buildings, the other subareas will be built up with more en-
tertainment as a supplement to the urban functions. But how
can we capture the planning dependencies among different
subareas? 3) Challenge 3: Integrating Human instruc-
tions from Planning Experts: urban planning is a highly
complicated and personalized task. To produce plausible ur-
ban planning results, planning experts always consider vari-
ous realistic factors (e.g. greening rate level, safe level, vol-
ume rate level). But how can we integrate such human in-
structions for improving the personalized generative capa-
bility of the model?

To tackle the above challenges, we propose a novel
Human-Instructed Deep Hierarchical Generative Frame-
work (IHPlanner), which can generate a desired land-use
configuration for an empty area based on human instruc-
tions and surrounding contexts, as well as considering the
spatial hierarchies and the planning dependencies. Our main
contributions can be summarized as follows: 1) Formulat-
ing the automated urban planning as a multi-scale gen-
eration framework. The classical workflow of urban ex-
perts is to first design a rough sketch, then fill concrete de-
signing elements to obtain the final urban plan. Imitating
such a designing workflow, the proposed multi-scale gener-
ation framework generates the coarse-grained skeleton (ur-
ban functional zones) at the first stage, and then produces
the fine-grained urban plan (land-use configuration) based
on the skeleton at the second stage. This framework setting
automatically captures the spatial hierarchies between ur-
ban functional zones and land-use configurations. 2) Involv-
ing human instructions from planning experts via con-
ditional embedding. We formulate the human instructions
from experts as the generative condition in urban plan gener-
ation. To make our model perceive these conditions, we con-
vert them into embedding vectors. To control the generation
process, we concatenate such embedding vectors and regard
them as the model input. 3) Semantic segmentation-based
generation to capture planning dependency. Human in-
structions and surrounding contexts contain enormous se-
mantics that implicitly reflect the planning requirements for
coarse-grained urban functional zones. Therefore, we design
a planning semantic segmentation module to allocate the
corresponding semantics to each urban functional zone re-
spectively. We exploit the multi-head attention mechanism
(Vaswani et al. 2017) to capture the dependencies among
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Figure 2: Illustration of target area and geospatial contexts.

Latitude

store
bank
school
Restaurant .
Commercial : E/
. V<
A
\ /S
’V

d
Longitude N Longitude

(a) Zone-level planning is a (b) Grid-level planning is rep-
2-D matrix, which provides a resented by a 3-D tensor where
high-level guidance for grid- we reserve the 3rd dimension
level planning. for POI as each grid may con-
tain multiple POI categories.

Figure 3: Urban functional zone and land-use configuration.

segmented semantics for quantifying the planning depen-
dencies among subareas. Moreover, self-designed planning
layers are developed to generate the final land-use configu-
ration. 4) Extensive experiments and case studies to val-
idate the effectiveness of our framework. We conduct all
experiments and case studies based on the geographical data,
traffic flow, road map, POIs, and check-in records of Bei-
jing. We compare our proposed framework with six state-
of-the-art deep generative models, and provide visualization
to show the superiority of our framework.

Preliminaries
Definitions

Target Area and Geospatial Contexts. Target area is an
empty and square geographical region (e.g. a square with a
side length of 1 kilometer). Geospatial contexts are the sur-
rounding environments, each of which has the same shape as
the target area. Figure 2(a) illustrates that geospatial contexts
encircle the target area from different directions. To leverage
the information of geospatial contexts (Wang et al. 2020),
we formulate such contexts as a spatial attributed graph de-
scribed in Figure 2(b). In this graph, a node is a geographi-
cal region, an edge reflects the spatial connectivity between
any two regions, and the attributes of a node are the socioe-
conomic features of the corresponding region.
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Figure 4: The overview of IHPlanner. It consists of four main steps: Conditioning Augmentation, Zone-level Generation,
Functionalizer, and Grid-level Generation.

Urban Functional Zone and Land-use Configuration.
In this paper, urban functional zones (i.e. zone-level plan-
ning) provide a planning foundation for the land-use config-
uration (i.e. grid-level planning). For the urban functional
zone, following the idea in studies (Yuan et al. 2014), we
utilize the geographical data and human mobility to extract.
Specifically, we first divide a geographical area into N x N
grids. Then, we consider the grids to be words and the hu-
man trajectories to be sentences, and so all trajectories in-
side the area constitute a document. Next, we use a topic
model to discover the specific urban function label of each
grid to obtain the final results. Figure 3(a) shows the data
structure of such zones. The zone-level planning is a matrix,
denoted by U € RV*¥ in which multiple grids affiliate to
one urban function label. For the land-use configuration,
we adopt the quantitative definition in studies (Wang et al.
2020). Specifically, we first split a geographical area into
N x N grids. Then, we count how many POI (i.e. Point of
Interest) locate in each grid under different POI categories.
After that, we stack these counted results together as the final
configuration. Figure 3(b) shows the data structure of such
configuration, which is a tensor consisting of longitude, lati-
tude, and POI category dimensions. The tensor is denoted by
X € RV*NXC where C is the number of POI categories.

Human Instruction. In this paper, human instruction is
to guide the generation process of our planning framework.
To allow our model to perceive such instruction, we quantify
its semantic meaning into different levels. For instance, the
range of green rate (i.e. the coverage of green plants of a
geographical area) is [0 ~ 1]. We divide the green rate into
multiple green rate levels. The label of these green rate levels
is human instruction.

Problem Statement

Our goal is to develop an automated urban planner, which
can generate a land-use configuration for an empty target
area based on human instructions and geospatial contexts.
Formally, given geospatial contexts denoted by G, human
instructions denoted by I, land-use configurations denoted
by X, we aim to find a mapping function f : (G,I) —
X. The function f takes geospatial contexts G and human
instructions I as input, and outputs the corresponding grid-
level land-use configuration X.

Methodology

Framework Overview

Figure 4 shows the overview of our framework IHPlanner.
The pipeline framework has four key components: condi-
tioning augmentation, zone-level generation, functional-
izer, and grid-level generation. Specifically, for an empty
target area, we first preserve the planning requirements con-
tained in human instructions and geospatial contexts into an
embedding vector. Then, considering the data sparsity issue,
we utilize the conditioning augmentation module to increase
the data diversity. Next, we employ the zone-level gener-
ation module to generate the zone-level planning that pro-
vides a planning foundation for the grid-level generation.
After that, in the functionalizer module, we project the se-
mantics of planning requirements into different functional
zones to obtain the urban functionality projections. This pro-
jection process converts the planning dependencies across
functional zones into semantic correlations among these pro-
jections. Finally, in the grid-level generation module, we use
multi-attentions to capture such semantic correlations, then
employ planning layers to generate the grid-level planning.

Conditioning Augmentation

The dataset for automated urban planning is sparse, result-
ing in model overfitting or terrible generation performance
of [HPlanner. We adopt the conditioning augmentation mod-
ule to mitigate the learning issue. To make our method com-
prehend the planning semantics included in human instruc-
tions and surrounding geospatial contexts, we first convert
the spatial attributed graph extracted from geospatial con-
texts into a graph embedding by (Kipf and Welling 2016;
Wu et al. 2021, 2022), and then concatenate it with the one-
hot vector of human instructions as the model input.

To be convenient, we adopt the k-th empty target area
to explain the following calculation process. Specifically,
we denote z¥) € R' O as the concatenated embedding
of human instructions and geospatial contexts, where O is
the size of the feature dimension. We first utilize the con-
ditioning augmentation module to estimate the distribution
of z(*). Then, we randomly sample an augmented embed-
ding ¢*) from the distribution, and regard it as the input of
the zone-level generation module. The prior format of the
estimated distribution is a normal distribution, denoted by



N (u(z*)),5(z*))), where (.) and 6(.) indicate the mean
and covariance function respectively. The mean and covari-
ance value of the distribution are updated over learning pro-
cess. We adopt the reparameterization technique to imitate
the sampling operation, which can be formulated as follows:

c® = p(z®) + §(z") x e (H

where € is a random variable vector sampled from a standard
normal distribution A/(0, 1).

Zone-level Generation

Inspired by the workflow of human planners, we can first
generate a rough sketch of urban planning, then refine the
sketch to the grid-level land-use configuration. Specifically,
for the k-th empty target area, we first concatenate the em-
bedding ¢*) and the random variable embedding n®) to-
gether, then input it into a generator to generate the urban
functional zones. Here, (%) is sampled from the standard
normal distribution N (0, 1), which can improve the robust-
ness and generalization of model. Next, we combine the gen-
erated result and the embedding z(*) together, then input it
into a discriminator. The discriminator is to justify whether
the input is the combination of the real urban functional
zones U*) and z(*). We alternatively optimize the gener-
ator and the discriminator until model convergence.

When optimizing the generator, we minimize equation 2:

K
Lo =Y log(1—D(G(n™,c*)),z*)))
puust ©)

+A- KLIN (u(2™),6(z™)) |V (0, 1),

where K L][.] indicates the Kullback-Leibler (KL) diver-
gence between the distribution N (u(z(®)),5(z*))) and a
standard normal distribution A/(0,1); X is a scalar, which
adjusts the contribution of the item K L[] in Lg. Lg can
be divided into two parts by “+”. Intuitively, the first
part tries to minimize the differences between the gener-
ated zone-level planning and the real zone-level planning,
which improves the generation performance of the genera-
tor gradually. The second part tries to smooth the distribution
N (u(z™)), 5(z*))) produced by the conditioning augmen-
tation module, which improves the diversity and quality of
the input embedding c* (Larsen et al. 2016).

When optimizing the discriminator, we maximize equa-
tion 3:

K
Lo =3 log(1— D(Gn®,c™),2)
k=1 3)

+logD(U® 7)),

Intuitively, £ p improves the discrimination ability by urging
the discriminator to provide lower scores for the generated
results and evaluate higher scores for the real standards.
Ultimately, the well-trained generator can generate a suit-
able rough sketch of urban planning U*) ¢ RN*N for
the k-th empty area according to human instructions and
geospatial contexts. Each value in U(®) indicates the urban
functionality label of the associated geographical location.
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Figure 5: The information of planning requirements is
projected into different urban functional zones to form
urban functionality projections.

Functionalizer

An outstanding urban plan can be summarized by a few
handfuls of urban functionalities such as convenient trans-
portation, high green rate, and developed economy. In other
words, to produce such an urban plan, our planning model
should consider the planning requirements on these urban
functionality sides. Thus, as illustrated in Figure 35, we
project the planning requirements contained in human in-
structions and geospatial contexts into different functional
zones to obtain urban functionality projections. This projec-
tion process lays the cornerstone for capturing the planning
dependencies across different functional zones.

Specifically, for the k-th empty target area, we have gen-
erated the zone-level planning U®). Then, we divide the
area into M zones according to the urban function labels
in U®), denoted by F#) = [F(k) FM ... F(k)] and

s 1 »+2 > »- M b

F() ¢ RM*NXN Next, we calculate the semantic propor-
tion of planning requirements for each functional zone. After
that, we multiply z(*) with these semantic proportions to ob-
tain urban functionality projections. The projection process
can be formulated as follows:

T®*) = Softmax(AVG_Fusion(F*)) . W,) -z (4)

where AVG_Fusion(.) column-wisely averages the informa-
tion of each functional zone respectively, which changes
the shape of F(*) to RM*N; W, ¢ RN*! is the weight
matrix; Softmax(.) outputs the semantic proportion value;
T*) € RM*O are the final urban functionality projections,
which implicitly reflect the planning requirements under dif-
ferent urban functionalities.

Grid-level Generation

Urban infrastructures and buildings in different functional
zones are mutually dependent. For instance, if several func-
tional zones have been planned with many commercialized
buildings, planners will not put the same buildings in the
nearby zones but instead add entertainment facilities to in-
crease urban vibrancy. To capture such dependencies, we ap-
ply the multi-attentions (Vaswani et al. 2017) on urban func-
tionality projections to obtain enhanced projections. Then,
we input these enhanced projections into planning layers to
produce the land-use configuration.

Specifically, for the k-th empty area, we input the urban
functionality projections T*) into a multi-head attention



layer to calculate the attention weight matrix. The multi-
head attention layer consists of h single scaled dot-product
attention layers. For a single attention layer, the calculation
process is as follows:

Q- K7)
Vi,

where A € RM*O ig the attention matrix; Q, K, V are the
query, key, and value matrix respectively. The three matri-
ces all come from T®*); dy, is the scaling factor; Q - KT e
RMx*M which indicates the semantic similarity between
any two of urban functionalities; These h single attention
layers have different Q, K, V matrices. These layers extract
features from different semantic representation subspaces.
Then we collect the attention weights of h layers together

and add T® (o obtain '™ € RM*O,

A = Softmax( ).V, (5

T'® = T® 4 Concat(A, AP ... AP . Wy, (6)
where Wr € RPOXO s the projection weight matrix. Af-
ter that, we utilize a fully connected feed-forward network
constituted by two linear layers to attain the enhanced pro-

jections T(F) ¢ RM*O
TE = T'® 4 Relu(T'® - W) - Wy,  (7)

where W1, W; € RO*O are two weight matrices and Relu
denotes the nonlinear transformation function. Next, we in-
put T(®) into planning layers to generate the final land-use
configuration X*) € RN*N*C This process can be for-
mulated as,

X =w, - T® . W, +b, (8)

where W, € RV*M W, e ROX(VXC) are the weight
matrices. During the generation process, W, aims to con-
sider the correlations among different enhanced projections;
‘W aims to exploit the dependencies among different latent
dimensions in these enhanced projections. b € RV *(VxC)
is the bias term. For the optimization, we minimize the dif-
ferences between the real land-use configurations and the
generated land-use configurations, the optimization objec-
tive is as follows:

K
Ls =) |IX® -XO) ©)
k=1
Experiments

Experimental Setup

Data Description. Our research focuses on Beijing. The
data collection process is as follows: we first crawled 2990
residential communities from soufun.com and downloaded
328,668 POIs from openstreetmap.org to construct land-use
configuration samples referring to (Wang et al. 2020). The
categories of these POIs are listed in Table 1. Then, we col-
lected taxi trajectories from T-drive project (Yuan et al.
2010) and downloaded road networks, POIs from open-
streetmap.org. to discover urban functional zones referring

to (Yuan et al. 2014). Next, we used housing price data
crawled from soufun.com, mobile checkins crawled from
weibo.com, taxi trajectories, and POIs to extract socioeco-
nomic features of geospatial contexts. Moreover, we utilized
the green rate including in crawled residential community
data to construct human instructions.

Table 1: POI categories

code POI category code  POIcategory code POI category

0 road 1 car service 2 car repair

3 motorbike service 4 food service 5 shopping

6 daily life service 7  recreation service 8  medical service
9 lodging 10 tourist attraction 11 real estate
12 government place 13 education 14 transportation
15 finance 16 company 17 road furniture

18  specific address 19 public service

Evaluation Metrics There are five human instructions
(i.e., green rate level) in our dataset: GreenO, Greenl,
Green2, Green3, Green4. From left to right, the green rate
of the land-use configuration increases. To assess the gen-
eration performance quantitatively, we adopted distribution
distances as the evaluation metrics. The reason is that the
data distribution of land-use configurations can be divided
into different parts according to human instructions. Our
planner generates a land-use configuration based on a spe-
cific human instruction. Thus, the generated configuration
should be close to its green rate level’s data distribution part
and far from other parts. Motivated by this idea, we used
four evaluation metrics: 1) Average Kullback-Leibler (KL)
Divergence (Kullback and Leibler 1951): AVG_ KL =
S0, wi-KL(P;,P)) 2) A .

ST . 2) Average Jensen-Shannon (JS) Di-
vergence (Endres and Schindelin 2003): AVG.S =

W 3) Average Hellinger Distance (HD)
j=1%j

(Hellinger 1909): AVG HD — Z?ZlggHi (FoF5) 4
j=1Wj

Average Cosine Distance (Cos) (Singhal et al. 2001):
AVG.Cos — Z‘Jr?:l wj5~Cos(Pj,Pj)
denotes the human instruction, w; is the number of land-use
configurations belonging to j; P; denotes the distribution of
original configurations of j; P; indicates the distribution of
generated configurations of j; For all four metrics, the lower
the metric value is, the better the generation performance is.

. In all metric equations, j

Baseline Models IHPlanner was compared with the fol-
lowing baseline models: LUCGAN: (Wang et al. 2020)
can generate an urban plan for a geographical area accord-
ing to the socioeconomic features of geospatial contexts.
CGAN: (Mirza and Osindero 2014) can create ideal data
samples (e.g. image, text, speech) based on conditional in-
puts. CVAE: (Sohn, Lee, and Yan 2015) is similar to CGAN
yet replacing the generative model with variational autoen-
coder. DCGAN: (Radford, Metz, and Chintala 2015) is
a classical image generation framework, and it has been
adopted into spatiotemporal domain to capture geospatial
patterns. WGAN: (Arjovsky, Chintala, and Bottou 2017)
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Figure 7: The influence of different settings of /V for land-use configuration generation.

is an enhanced GAN, which overcomes the instability of veloping desirable land-use configurations.

the classical GAN and accelerates it. WGAN-GP: (Gulra-

jani et al. 2017) is an enhanced WGAN, which uses gradi- Robustness Check This experiment aims to answer: Is
ent penalty to replace Welghts Chpplng for improving stabil- IHPlanner robust and stable when COnfrOnted with dl:ﬁérent-
ity. Besides, we developed four model variants to conduct scale land-use configuration generation tasks? We validated
ablation studies: i) IHPlanner™ removes the conditioning the robustness of IHPlanner by changing the value of IV that
augmentation module; ii) IHPlanner* removes the multi- is used to partition the geographical area from 5, to 10, to 25,

to 50, to 100, respectively. The greater the value of NV is, the
finer the land-use configuration is. Figure 7 shows the com-
parison results in terms of all evaluation metrics. We noticed
that IHPlanner outperforms all baseline models regardless
of the value of N. This observation indicates that [HPlan-
ner is more effective in perceiving the requirements of urban
planning, resulting from the urban projection process of the
functionalizer. Thus, our method can keep the excellent and
robust generation performance.

head attention module; iii) IHPlanner removes the input
of human instruction; iv) IHPlanner™ removes the input of
geospatial contexts. We randomly split the dataset into two
independent sets. The prior 90% is the train set, and the re-
maining 10% is the test set. We provided other experimental
details in the technical appendix.

Experimental Results

Overall Comparison This experiment aims to answer:

Can our method (IHPlanner) effectively generate land-use Visualization Analysis of the Generated Land-use Con-
configurations considering human instructions and geospa- figurations. Figure 8 illustrates the visualizations of orig-
tial contexts? Figure 6 shows the overall comparison results inal and generated land-use configurations. In each subfig-
in terms of all evaluation metrics. We observed that I[HPlan- ure, the left color legend provides the mapping correlation
ner outperforms all baseline models. There are two underly- between POI categories and colors; the right 3D space ex-
ing drivers: i) the functionalizer module effectively projects hibits the POI distribution of a land-use configuration sam-
the planning semantics of human instructions and geospa- ple; the height of each color bar shows the POIs number at
tial contexts into urban functionality projections. Such pro- the corresponding location; the text label under each sub-
jections help IHPlanner to understand the planning seman- figure is the associated human instruction. We found that
tics further and generate human-friendly and environment- the generated configurations are more organized and cap-
friendly urban plans. ii) By taking into account hierarchical ture more planning details than original ones. In the mean-
zone-grid and hierarchical zone-zone dependencies in plan- time, we observed that as the green rate level increases,

ning, IHPlanner gains suitable generation constraints for de- business-related POIs (e.g., POI category 15, 16) decrease,
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Figure 8: Visualization comparison between original land-use configurations and generated land-use configurations

and tourism-related POIs (e.g., POI category 7, 10) increase.
Thus, this observation indicates that [HPlanner can perceive
human instructions and surrounding contexts to produce ex-
cellent urban plans providing insights to urban experts.

Related Works

Deep Generative Learning. There are three kinds of popu-
lar approaches in the deep generative learning domain: nor-
malizing flows (NF), variational autoencoders (VAE), and
generative adversarial networks (GAN). NF refers to a set
of generative models with tractable distributions where both
sampling and density evaluation can be efficient and ex-
act (Kobyzev, Prince, and Brubaker 2020). VAE is capable
of learning the latent representations of data and providing
deep inference models (Kipf and Welling 2016). GAN is
able to simulate the distribution of real data by the compet-
ing of generator and discriminator under a zero-sum game
setting (Creswell et al. 2018).

Attention Models. Attention mechanism gradually be-
comes a necessary technical module in novel deep neu-
ral networks for improving model performance (Wu et al.
2020). For instance, (Lee et al. 2018) presented a stacked
cross attention framework to discover the latent alignments
between the image space and the text space for conducting
more accurately image-text matching. Wang et al. provided
a knowledge graph (KG) attention network that captures the
high-order connectivity of KG to improve the recommenda-
tion performance (Wang et al. 2019).

Urban Planning. With the popularity of the concept of
smart city, urban planning plays a more important role in the
urban development (Wang et al. 2018, 2021c¢). For instance,
(Khansari, Mostashari, and Mansouri 2014) studied the im-

pact of the smart city on urban sustainability and urban plan-
ning. Recently, the remarkable success of deep learning has
led researchers to think about how to utilize artificial intel-
ligence to improve the efficiency of urban planning (Shen
et al. 2020). For example, (Shen et al. 2020) utilized a GAN
model to fill the urban elements in road map figures to pro-
duce the final urban plan. Compared with these works, TH-
Planner is more advanced automatically and practically.

Conclusion Remarks

In this paper, we propose a revolutionary deep urban plan-
ner, namely IHPlanner. To develop practical planning solu-
tions based on planning requirements, we automate the ur-
ban planning process using a hierarchical generation method
inspired by the workflow of urban experts. The input of IH-
Planner is the integrated embedding of human instructions
and geospatial contexts, which makes IHPlanner able to pro-
duce desirable urban plans according to human intention.
The Functionalizer is a significant innovation in IHPlanner,
which perceives the planning dependencies between differ-
ent urban zones via the multi-attention mechanism. Exten-
sive experiments and case studies demonstrate the effective-
ness and superiority of IHPlanner. In the future, we plan
to add more human-machine interactions to make the au-
tomated urban planner become more practical.
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