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Abstract

Motivation: Protein representation learning methods have shown great potential to many downstream tasks in
biological applications. A few recent studies have demonstrated that the self-supervised learning is a promising
solution to addressing insufficient labels of proteins, which is a major obstacle to effective protein representation
learning. However, existing protein representation learning is usually pretrained on protein sequences without
considering the important protein structural information.

Results: In this work, we propose a novel structure-aware protein self-supervised learning method to effectively
capture structural information of proteins. In particular, a graph neural network model is pretrained to preserve the
protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral
angle perspective, respectively. Furthermore, we propose to leverage the available protein language model
pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation
between the sequential information in the protein language model and the structural information in the specially
designed graph neural network model via a novel pseudo bi-level optimization scheme. We conduct experiments on
three downstream tasks: the binary classification into membrane/non-membrane proteins, the location classification
into 10 cellular compartments, and the enzyme-catalyzed reaction classification into 384 EC numbers, and these
experiments verify the effectiveness of our proposed method.

Availability and implementation: The Alphafold2 database is available in https://alphafold.ebi.ac.uk/. The PDB files
are available in https://www.rcsb.org/. The downstream tasks are available in https://github.com/phermosilla/
IEConv\_proteins/tree/master/Datasets. The code of the proposed method is available in https://github.com/
GGchen1997/STEPS_Bioinformatics.

1 Introduction

A variety of machine learning-based biological tasks heavily rely on
effective protein representation learning, which aims to extract rich
sequential and structural information of a protein into a high-
dimensional vector. The learned protein representation can be used
in many downstream tasks, such as protein function annotation
(Gligorijevi�c et al. 2021), enzyme-catalyzed reaction prediction
(Hermosilla et al. 2020), and protein classification (Almagro
Armenteros et al. 2017). With this topic attracting lots of research
attention recently, different neural network architectures are
adopted to learn different levels of protein information based on the
labeled protein data via supervised learning. For example, LSTMs
(Sønderby et al. 2015) are used to model the sequential information
(i.e. primary structure of protein), and variants of graph neural

networks (GNNs) (Gligorijevi�c et al. 2021) and convolutional neur-
al networks (Hermosilla et al. 2020) are used to model the structural
information. Though these deep learning-based models prove to be
effective, one major obstacle to such approach is the lack of labeled
data, which is much more severe than the one in computer vision
and natural language processing areas since the wet-lab experiment
on protein is quite expensive.

Inspired by the remarkable progress of self-supervised learning
in other domains, there are a few recent work to perform self-
supervised learning for protein from a sequence perspective (Bepler
and Berger 2019; Rao et al. 2019, 2020; Vig et al. 2020; Elnaggar
et al. 2021; Rives et al. 2021). These sequence-based pretraining
methods treat every protein as a sequence of amino acids and use
autoregressive or autoencoder methods to obtain the protein repre-
sentation. Although previous studies (Elnaggar et al. 2021; Rives
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et al. 2021) found such sequential pretrained protein language mod-
els can understand protein structures to some extent, these studies
have not explicitly considered modeling structural information of
proteins.

Though protein structural information determines a wide range
of protein properties (Gligorijevi�c et al. 2021), how to incorporate
protein structural information into protein self-supervised learning
is overlooked. With the development of structural biology including
cryo-EM (Callaway 2020) and Alphafold2 (Jumper et al. 2021), the
availability of reliable protein structures is increasing in recent years.
Thus, it is desirable to devise a new mechanism to explicitly incorp-
orate protein structural information into self-supervised learning to
boost the performance of protein representation learning.
Meanwhile, the number of protein sequences is still orders of magni-
tude larger than the number of proteins with reliable protein struc-
tures. Therefore, learning protein representation solely based on the
limited number of structural protein data may not be able to show
superior performance compared with existing protein language
models.

To this end, we propose a novel ‘STrucure-awarE Protein Self-
supervised Learning’ (STEPS) method. This method can not only ex-
plicitly incorporate protein structural information into protein rep-
resentations, but also leverage the existing protein language model
to enhance protein representation learning. More specifically, we le-
verage a GNN to model protein structure and propose two novel
self-supervised learning tasks to incorporate the distance informa-
tion and the angle information into protein representation learning.
In particular, the GNN model takes the masked protein structure as
input and aims to reconstruct the pairwise residue distance informa-
tion and the dihedral angle information, respectively.

Furthermore, we propose to leverage the available sequential
protein language model pretrained on protein sequences (named as
protein LM for short) to empower the GNN model via a pseudo bi-
level optimization scheme. This optimization scheme aims to effect-
ively transfer the knowledge of the protein LM to the GNN model.
The insight is that we identify the relation between the sequential in-
formation and the structural information by maximizing the mutual
information between the sequential representation and the structural
representation. Then a bi-level optimization scheme is devised to ex-
ploit the sequential information in the protein LM by leveraging its
relation with the structural information in the GNN model. We
name this optimization process as ‘pseudo bi-level’ optimization be-
cause we update the GNN model in the outer level, but finally keep
the parameters of the protein LM fixed in the inner level to avoid
distorting the protein LM. Experiments on several downstream tasks
verify the effectiveness of STEPS.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to explicitly in-

corporate finer protein structural information into self-

supervised learning. Two novel self-supervised tasks are pro-

posed to capture the pairwise residue distance information and

the dihedral angle information, respectively.
• We adopt a pseudo bi-level optimization scheme to exploit the

sequential information in the protein LM.
• We conduct various supervised downstream tasks to verify the

effectiveness of STEPS.

2 Preliminaries

In this section, we first introduce preliminary concepts and some
basic notations used in this article.

Protein sequence. Each protein SðV; EÞ is a sequence of residues
linked by peptide bonds. Here, V represents the set of L residues in
the sequence and E � V �V describes the L—1 peptide bonds. The
protein sequence is mainly composed of 20 different types of amino
acids where each unit is commonly named as residue after being
joined by peptide bonds.

Protein structure. We illustrate an example of protein structure
in Fig. 1. As shown in the right part of Fig. 1, pairwise residue dis-
tances provide important structural information of the protein. We
compute the pairwise residue distance dij between residue i and resi-
due j as the distance between the corresponding Ca atoms on the
protein backbone. Because of the free rotation of the chemical bonds
around alpha carbon, distance information alone cannot fully deter-
mine protein backbone structure, which necessitates the dihedral
angle information. As shown in the left part of Fig. 1, the protein
backbone consists of consecutive units of Ca–CO–NH, and the rota-
tion information around Ca provides further structural information
of the protein backbone. A simplified illustration is shown in Fig. 2
where the two dihedral angles /i and wi capture the rotation of the
N–Ca bond and the Ca–Cb bond in the residue i, respectively. In the
protein structure, the dihedral angles /i and wi are two important
attributes for each residue i.

Protein structure as a graph. We model each protein as a graph
GðV;EÞ, where V denotes the set of nodes in the protein graph and
each node represents a residue. Each node v 2 V has a node feature
Xv including the initial residue embedding and the dihedral angle in-
formation. There is an edge e between two nodes in the graph G if
the pairwise residue distance is smaller than a threshold. E repre-
sents the set of edges in the protein graph, and Fe represents the pair-
wise residue distance information for e 2 E.

3 The STEPS framework

In this section, we first introduce a protein modeling method using
GNN. Second, we present how to use two novel self-supervised
tasks to pretrain the GNN model. Finally, we introduce the pseudo
bi-level optimization scheme. The overall framework is shown in
Fig. 3.

3.1 Protein modeling
We model a protein structure as a graph and adopt a GNN model
(Xu et al. 2018) to encode the pairwise residue distance information
and the dihedral angle information. The designed GNN model para-
meterized by x takes as input the protein structural information
including node features X and edge features F, and outputs the node
representations and the graph representation.

Denote the node representation for the ith node in the kth layer
of the GNN as h

ðkÞ
i . The hidden representation h

ðkÞ
i is then given by

Figure 1. Protein structure.

Figure 2. The dihedral angle /i and wi.
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a
ðkÞ
i ¼ AGGREGATEðkÞðeivhðk�1Þ

v jjv 2 NðiÞÞ; (1)

h
ðkÞ
i ¼ COMBINEðkÞðhðk�1Þ

i ; a
ðkÞ
i Þ; (2)

where NðiÞ denotes the neighbors of node i and eiv denotes the fea-
ture of the edge between i and v. AGGREGATEðkÞ is the sum func-
tion and COMBINEðkÞ is a linear layer for feature transformation
following Xu et al. (2018), where we feed the sum of the h

ðk�1Þ
i and

a
ðkÞ
i as the input for the linear layer. We use the mean READOUT

function to output the graph representation of the protein as:

hG ¼MEANðKÞðhðKÞi jji 2 VÞ: (3)

Note that h0 refers to the initial node features X, which mainly
include the dihedral angle information and the pretrained node
embeddings, which serve as initialization. Specifically, we concaten-
ate the node representation from the pretrained language model and
the angle vector into a single input and feed this input into the
GNN. The edge feature eiv refers to the inverse of the square of pair-
wise residue distance.

To further incorporate the sequential information of a protein,
we extract protein sequence representation hs

i from the protein LM
parameterized by h, and fuse sequential and structural representa-
tion for the residue i as:

hi ¼ hs
i þ h

ðKÞ
i ; (4)

where h
ðKÞ
i refers to the final layer hidden representation from the

designed GNN model.

3.2 Self-supervised learning tasks
We propose two self-supervised learning tasks to explicitly incorpor-
ate the distance information and the angle information into protein
modeling. The distance prediction task preserves the pairwise resi-
due distance information and the angle prediction task preserves the
dihedral angle information. In this way, the GNN model yields pro-
tein representation, which well captures the overall protein struc-
tural information.

3.2.1 Distance prediction task

The pairwise residue distance determines the overall shape of a pro-
tein backbone and thus determines the function of a protein to a
large extent. To this end, we introduce a distance prediction task to
encode the pairwise residue distance information into the GNN
model.

More specifically, we develop a distance prediction network
NNadis

ð�Þ, which takes the vector difference between the node hidden
representations of residue i and residue j as input, and aims to pre-
dict the pairwise residue distance between i and j. The intuition for
this operation is that the interactions of residues play an important
role in determining the diverse functions of protein (Cohen et al.
2009). Therefore, the residues nearby in the protein backbone
should have similar representations. Besides, the numerical scale is
quite different in the distance matrix even for the same protein.
Therefore, it is more effective to formulate this distance prediction
task as a multi-class classification problem instead of a regression
problem. We divide the distance into T uniform bins and every bin
corresponds to a certain class. In this way, NNadis

ð�Þ can be written
as:

d0ij ¼ NNadis
ðhi � hjÞ; (5)

where d0ij 2 RT represents the predicted pairwise residue distance
distribution between the residue i and the residue j over T classes.
We parameterize NNadis

ð�Þ as two fully-connected layers with a
ReLU activation in the middle. For a protein, we optimize the Cross
Entropy loss among all residue pairs:

ldis ¼
1

jjVjj2
X

i;j

�labelðdijÞ logðd0ijÞ; (6)

where labelðdijÞ returns the ground truth one-hot label correspond-
ing to the distance dij.

3.2.2 Angle prediction task

We further propose an angle prediction task for incorporating the
dihedral angle information into the GNN model. The angle predic-
tion task aims to predict the dihedral angles of every residue. Due to
the free rotation of the chemical bonds around the alpha carbon,
dihedral angles of residues are of considerable importance since
pairwise residue distances alone cannot determine the protein
backbone structure. Note that the dihedral angles are the attributes
of each residue of a protein (instead of between two or more
residues).

In particular, we propose an angle prediction network NNaang
ð�Þ,

which takes the angle-masked residue representation as input and
aims to reconstruct the masked angles. For a certain protein, we ran-
domly mask the feature of 15% of residues, and feed the masked
protein to the GNN model, which derives the hidden representation
of masked residues. Note that the dihedral angles are continuous

Figure 3. Framework. The GNN model captures protein structural information with two self-supervised tasks: the pairwise distance prediction task and the dihedral angle pre-

diction task. Furthermore, a pseudo bi-level optimization scheme identifies the relation between the protein LM and the GNN model by maximizing the mutual information,

which enhances the self-supervised learning.
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features and we first normalize the angles into [�1, 1]. After that,
we adopt the Radial Basis Function to extend the scalar angle infor-
mation into an angle feature vector, which serves as input to the
GNN model. More specifically, we have

EkðxÞ ¼ expð�cjjx� ujjj2Þ; (7)

where c determines the kernel shape and fujg represents the center
ranging from �1 to 1. Denote the final masked representation of the
residue i as hm

i and then the dihedral angles of the residue i can be
predicted as:

/i;w i ¼ NNaang
ðhm

i Þ; (8)

where we parameterize NNaang
ð�Þ as two fully connected layers with

a ReLU activation in the middle. The mean squared error loss is
adopted:

langle ¼
X

i2M
ð/i � / iÞ2 þ ðwi � w iÞ

2; (9)

whereM denotes the set of masked residues.
To sum up, the loss function for the two self-supervised learning

can be compactly written as:

Lðh;x; aÞ ¼ ldis þ langle; (10)

where h; x, and a denote the parameters of the protein LM, the
GNN model, and the prediction networks, respectively.

3.3 Pseudo bi-level optimization
Yet, directly fusing representations in Equation (4) cannot capture
the relation between the sequential information in the protein LM
and the structural information in the GNN model. We propose to
identify the relation between the protein LM and the GNN model
by maximizing the mutual information between the sequential rep-
resentation and the structural representation. We adopt the Jensen–
Shannon MI estimator in Nowozin et al. (2016) to estimate the
mutual information. Denote x as a protein sample from P and ~x as
another protein sample from ~P ¼ P, and then, we have:

Iðh;xÞ ¼ EP½�spð�Tbðhs
hðxÞ; h

ðKÞ
x ðxÞÞ��

E
P�~P ½spðTbðhs

hðxÞ; h
ðKÞ
x ð~xÞÞ�;

(11)

where Tb denotes the discriminator parameterized by b and sp is the
softplus function. For the details of Tb, we feed the positive and
negative examples into a three-layered fully connected network with
jumping connections and relu activations, and then output the dot-
product of the two representations. Then, the relation between the
sequential parameters h and the structural parameters x can be iden-
tified by maximizing mutual information:

h�ðxÞ ¼ arg max
h

Iðh;xÞ: (12)

This relation captures the correspondence between the sequential
representation and the structural representation for a certain protein
(Anfinsen 1973). Note that, we do not actually update h to hðxÞ in
the end, but only leverage the relation to update the GNN model,
which means the final adopted h remains the same as that of the pro-
tein LM. In this way, the GNN is updated as:

x0 ¼ arg min
x
LðhðxÞ;x; aÞ; (13)

which could better exploit the sequential information in the protein
LM.

This can be formulated as a bi-level optimization problem:

min
x;a

LðhðxÞ;x; aÞ; (14)

s:t: h�ðxÞ ¼ argmax
x

Iðh;xÞ: (15)

Different from the traditional bi-level optimization, we do not
update h in the end similar to Wang et al. (2018), so, we name this
scheme as pseudo bi-level optimization. The inner level can be
solved approximately by a gradient ascent step:

hðxÞ ¼ hþ g � @Iðh;xÞ
@h

: (16)

Similarly, the outer level can be solved as:

x0 ¼ x� g0 � @LðhðxÞ;x; aÞ
@x

; (17)

a0 ¼ a� g0 � @LðhðxÞ;x; aÞ
@a

: (18)

4 Experiments

In this section, we first introduce the pretraining settings including
the datasets and the training details. Second, we evaluate STEPS
on three supervised downstream tasks and compare STEPS with
existing SOTA methods. At last, we conduct ablation studies to
verify the effectiveness of different components in our method
STEPS.

4.1 Pretraining settings
Datasets. We sample an independent set from the alphafold protein
database (https://alphafold.ebi.ac.uk/) and remove protein sequen-
ces, which have more than 25% sequence similarity with the test
proteins, forming a size-40 000 pretraining set.

Training details. For the GNN model, we set the dimension of
hidden representation as 1280 and the layer number as 2 in our
experiments. The threshold to determine whether there is an edge
between two residues is set as 7 Å, which is consistent with previous
study (Xia and Ku 2021). For NNadis

ð�Þ, we set T¼30 and apply
softmax to the output logits. Besides, we adopt the available protein
BERT model in Elnaggar et al. (2021) as the pretrained protein lan-
guage model.

We use the cosine learning rate decay schedule for a total of 10
epochs for pretraining. We set the learning rate for the GNN model
as 1e�3 and the learning rate for the protein LM as 5e�5 in the
pseudo bi-level optimization scheme. The Adam optimizer is
adopted to update the GNN parameters with b1 ¼ 0:9 and
b2 ¼ 0:999.

4.2 Finetuning
Downstream tasks. We finetune the pretrained model on three
downstream tasks: the binary classification into membrane/non-
membrane proteins, the location classification into 10 cellular
compartments (Almagro Armenteros et al. 2017), and the enzyme-
catalyzed reaction classification (Hermosilla et al. 2020) into 384
Enzyme Commission numbers. Hereafter, we denote the three tasks
as C2, C10, and C384, respectively, for convenience. The train/test
sizes of C2, C10, and C384 are 2221/568, 3874/988, and 15 001/
2799, respectively. For the binary classification, the membrane/non-
membrane protein of the train is 1123/1098 and the membrane/non-
membrane protein of the test is 297/271. The performance is
evaluated as the mean accuracy (acc) following the setting in
Hermosilla et al. (2020).

Baselines. We compare STEPS with two groups of baselines:
methods without and with pretraining. Methods without pretraining
include:

• Blast (Radivojac et al. 2013): a sequence in the test set receives

labels from all labeled sequences in the training set and the pre-

diction is obtained as the highest one. Similar to Gligorijevi�c

et al. (2021), we remove all training sequences with an E-value
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threshold 1e-3 to prevent label transfer from homologous

sequences.
• IEConv (Hermosilla et al. 2020): it introduces a novel convolu-

tion operator and hierarchical pooling operators to model differ-

ent particularities for a protein.

Methods with pretraining are:

• Pre-LM (Elnaggar et al. 2021): it adopts the protein BERT model

pretrained on Uniref100 and adds a fully connected layer with

tanh activation as the head for finetuning. The head takes the

mean pooling over residue representations as input and outputs

scores.
• DeepFRI (Gligorijevi�c et al. 2021): this method adopts the

Graph Convolutional Network (GCN) to predict protein func-

tions by leveraging structural features. It also adopts a pretrained

language model to obtain the residue embedding as the input of

the GCN model.
• STEPS-w/oLM: we pretrain the GNN model in STEPS without

considering protein LMs. We add a layer on GNN for finetuning.

The initial node representation for GNN is the concatenation of

the one-hot encoding of amino acid and the dihedral angle

vectors.

For the proposed STEPS, we finetune both the GNN model and
the linear head. Besides, we use STEPS-H to denote the STEPS with
only finetuning the linear head.

Training details. For all methods and all datasets, we adopt a co-
sine learning rate decay with an initial learning rate 1e-4 and train
the models for five epochs with the Adam optimizer for a fair
comparison.

4.3 Result analysis
As shown in Tables 1–3, we report the best results in bold and mark
the second best results (excluding STEPS-H) among two groups of
baselines by underlines. First, we can observe that STEPS has con-
sistent gains over all comparison methods in the three downstream
tasks. More specifically, compared with the second best results,
STEPS achieves 1.39% relative gain in C2, 2.63% relative gain in
C10, and 36.68% performance gain in C384, which proves the ef-
fectiveness of STEPS. Note that STEPS performs better than STEPS-
H, which means further finetuning the GNN model on a specific
task yields better representation. It is worth noting that STEPS sig-
nificantly outperforms its baselines in C384. A potential reason is

that protein structure primarily determines the specific binding sites
of an enzyme. Therefore, as the first method to incorporate the
structural information into protein pretraining, STEPS performs
much better than other methods on the enzyme-catalyzed reaction
classification task (i.e. C384). We conduct additional experiments
where the test set structures are from Alphafold instead of the PDB
database on C384, and the results are very similar. The STEPS acc
on C384 is 65.38% when using the structures from Alphafold and is
65.74% when using the PDB database. Furthermore, we can observe
that Pre-LM and STEPS-w/oLM perform worse than STEPS, which
verifies the necessity of structural information and sequential infor-
mation for protein pretraining. At last, we can observe STEPS-w/
oLM performs better than Pre-LM by 19.82% in C2, 7.51% in
C10, and 2.57% in C384, which indicates structural information is
more important than sequential information for protein representa-
tion learning.

4.4 Ablation studies
In this section, we conduct ablation studies to verify the effectiveness
of different components in STEPS.

4.4.1 Mutual information

We first remove the mutual information from STEPS, denoted as w/
o Mutual, and only use the self-supervised learning losses. As shown
in Fig. 4, this removal leads to decreases on all three tasks, which
demonstrates the importance of the mutual information.

4.4.2 Pseduo bi-level optimization

To verify the effectiveness of the pseudo bi-level optimization, we re-
move this part from STEPS and only optimize the GNN model,
which is denoted as w/o Bi-level. Besides, we consider alternate opti-
mization and joint optimization between the protein LM and the
GNN model. We find alternate optimization and joint optimization
do not perform well and are even much worse than without these
optimizations, so we do not report these results here. The reason
may be the protein LM collapse during updating (Dodge et al.
2020). As shown in Fig. 4, STEPS consistently outperforms STEPS
w/o Bi-level in all tasks, which verifies the effectiveness of the pro-
posed pseduo bi-level optimization.

4.4.3 Self-supervised learning tasks

We then demonstrate the effectiveness of the two self-supervised
learning tasks: the pairwise residue distance prediction task and the
dihedral angle prediction task. We remove the angle prediction task
from STEPS and denote it as w/o Angle. Similarly, we remove the
distance prediction task from STEPS and denote it as w/o Distance.
As shown in Fig. 4, removing either task leads to noticeable

Table 1. Experimental results on C2 for comparison.

Method Blast IEConv DeepFRI Pre-LM STEPS-w/oLM STEPS-H STEPS

Acc (%) 65.14 62.15 88.38 58.00 77.82 87.68 89.61

Table 2. Experimental results on C10 for comparison.

Method Blast IEConv DeepFRI Pre-LM STEPS-w/oLM STEPS-H STEPS

Acc (%) 31.78 30.99 69.23 35.00 42.51 69.84 71.05

Table 3. Experimental results on C384 for comparison.

Method Blast IEConv DeepFRI Pre-LM STEPS-w/oLM STEPS-H STEPS

Acc (%) 12.83 28.70 15.72 1.32 3.89 50.13 65.38

Structure-aware protein self-supervised learning 5
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performance degradation, which proves the necessity of both self-
supervised learning tasks. Moreover, we observe that STEPS w/o
Distance results in 15.50% performance decline in C2, 35.63% per-
formance decline in C10, and 12.54% performance decline in C384
compared with STEPS w/o Angle. This phenomenon indicates that
the pairwise residue distance information plays a more important
role than the dihedral angle information in protein modeling. We
follow the work (Xia and Ku 2021; Fang et al. 2022) to model the
distance prediction as a multi-class classification problem rather
than a regression problem. The regression formulation leads to
3.87% performance decline in C2, 1.01% performance decline in
C10, and 2.11% performance decline in C384.

5 Related work

5.1 Protein representation learning
Protein representation learning methods are mainly classified into
two categories: sequence-based methods and structure-based meth-
ods. Sequence-based methods model a protein via its 1D amino acid
sequence. For example, Hou et al. (2018) adopt 1D convolutional
neural networks to derive hidden representation for classification.
Structure-based methods consider the 3D structure of proteins. For
example, Townshend et al. (2019) leverage 3D convolutional neural
networks for protein quality assessment and protein contact predic-
tion. Hermosilla et al. (2020) propose novel convolutional operators
and pooling operators to model the primary, secondary, and tertiary
structure effectively, which demonstrates strong performance on
protein function prediction tasks. Gligorijevi�c et al. (2021) leverage
the LSTM model to encode the protein sequence and the GCN
model to encode the protein tertiary structure for function predic-
tion. Somnath et al. (2021) connect protein surface to structure
modeling and sequence modeling where the learned representation
achieves good performance on several downstream tasks.

5.2 Protein pretraining
There are a few studies to perform pretraining on protein sequences
(Bepler and Berger 2019; Wang et al. 2023; Zhou et al. 2023). Bepler
and Berger (2019) propose to train an LSTM on protein sequences,
which could implicitly incorporate structural information from the glo-
bal structural similarity between proteins and the contact maps for in-
dividual proteins, while STEPS uses novel self-supervised tasks to
explicitly model protein structure. Our distance prediction task and the
contact prediction task in Bepler and Berger (2019, 2021) can both in-
corporate the distance information into the learned protein representa-
tion. The difference is that the distance prediction task models the
distance as a multi-class classification and this can explicitly consider
more protein structural information compared with the binary classifi-
cation of the contact prediction. Rives et al. (2021) are the first to
model protein sequences with self-attention, and the learned represen-
tation of the pretrained language model contains the protein

information of structure and function. Elnaggar et al. (2021) try to
train autoregressive language models and autoencoder models on large
datasets, and validate the feasibility of training big language models on
proteins. Rao et al. (2020) and Vig et al. (2020) study the transformer
attention maps from the unsupervised learned language model and un-
cover the relationship between the attention map and the protein con-
tact map. Fang et al. (2022) design similar self-supervised learning
tasks for molecules while STEPS considers different information includ-
ing the pairwise residue distance information and the dihedral angle in-
formation for protein modeling. Besides, STEPS models protein from
both sequence and structure views while Fang et al. (2022) model mol-
ecule from only the structure view. A concurrent work of STEPS
(Zhang et al. 2022, 2023) adopts a well-designed GNN for protein pre-
training. A future direction may be adopting the pretrained protein
models for protein optimization (Chen et al. 2023).

5.3 Bi-level optimization
Bi-level optimization is a special kind of optimization problem where
one level of problem is embedded in the other level. Bi-level optimiza-
tion has been widely used in the deep learning community due the
hierarchy problem structure in many applications (Hospedales et al.
2020; Chen et al. 2021, 2022a,b,c) including neural architecture
search, instance weighting, initial condition, learning to optimize,
data augmentation, etc. In this article, similar to Wang et al. (2018),
we develop a pseudo bi-level optimization scheme to identify the rela-
tion between the sequential information in the protein LM and the
structural information in the GNN model, which can help exploit the
sequential information in the protein LM.

6 Conclusion

In this article, to effectively capture protein structural information,
we investigate a novel structure-aware self-supervised protein learn-
ing approach. Along this line, two novel self-supervised learning
tasks on a GNN model are adopted to capture the pairwise residue
distance information and the dihedral angle information, respective-
ly. Also, to leverage the pretrained sequential protein language
model to further improve the representation learning, we propose a
pseudo bi-level optimization scheme to transfer the knowledge of
the protein LM to the GNN model. Finally, the experimental results
on several benchmarks for protein classification show the effective-
ness and the generalizability of our method STEPS.
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