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ABSTRACT
Graph Neural Networks (GNNs) have been broadly applied in many
urban applications upon formulating a city as an urban graphwhose
nodes are urban objects like regions or points of interest. Recently,
a few enhanced GNN architectures have been developed to tackle
heterophily graphs where connected nodes are dissimilar. How-
ever, urban graphs usually can be observed to possess a unique
spatial heterophily property; that is, the dissimilarity of neighbors
at different spatial distances can exhibit great diversity. This prop-
erty has not been explored, while it often exists. To this end, in
this paper, we propose a metric, named Spatial Diversity Score, to
quantitatively measure the spatial heterophily and show how it
can influence the performance of GNNs. Indeed, our experimental
investigation clearly shows that existing heterophilic GNNs are
still deficient in handling the urban graph with high spatial diver-
sity score. This, in turn, may degrade their effectiveness in urban
applications. Along this line, we propose a Spatial Heterophily
Aware Graph Neural Network (SHGNN), to tackle the spatial diver-
sity of heterophily of urban graphs. Based on the key observation
that spatially close neighbors on the urban graph present a more
similar mode of difference to the central node, we first design a
rotation-scaling spatial aggregation module, whose core idea is to
properly group the spatially close neighbors and separately process
each group with less diversity inside. Then, a heterophily-sensitive
spatial interaction module is designed to adaptively capture the
∗This work was done when the first author was an intern at Baidu Research under the
supervision of Jingbo Zhou.
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commonality and diverse dissimilarity in different spatial groups.
Extensive experiments on three real-world urban datasets demon-
strate the superiority of our SHGNN over several its competitors.
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1 INTRODUCTION
Applying Graph Neural Networks (GNNs) in different urban appli-
cations has attracted much research attention in the past few years
[9, 10, 31, 33, 39, 43, 54]. These studies usually model the city as an
urban graph whose nodes are urban objects (e.g., regions or Points
of Interest (POIs)) and whose edges are physical or social dependen-
cies in the urban area (e.g., human mobility and road connection
[39, 40]). Upon urban graphs, GNNs with variant architectures are
proposed to achieve the classification or regression tasks.

Nevertheless, there is a serious limitation of GNNs which has
been largely overlooked in previous studies but have attracted
increasing research attention recently: GNNs have an implicit ho-
mophily assumption that nodes only with similar features or same
labels are connected together on the graph [53, 55]. Meanwhile,
the opposite assumption is heterophily that connected nodes have
dissimilar features or labels. In fact, heterophily usually exists in an
urban graph as it describes the complex urban system where both
similar and dissimilar urban objects (e.g., regions with different
functionalities) can correlate with each other in complex manners.
Taking the urban graph constructed with human mobility as an
example, the start node and end node of an edge could be home
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(a) Direction-aware Partition (b) Distance-aware Partition (c) Spatial Diversity Score (d) Performance on Synthetic Graphs
Figure 1: Analysis of spatial heterophily. (a)-(b) illustrate the space partition from two spatial views. (c) shows the spatial
diversity scores calculated on three real-world urban graphs. (d) presents the results of experimental investigation.

and workplace, respectively, which are definitely heterophilic. Such
difference information on the heterophilic urban graph may not
be modeled well by many traditional homophilic GNNs, who tend
to generate similar representations for connected nodes [2, 55]. In
this way, the performance of these homophilic GNN methods on
urban graphs may be largely hindered.

Our further observation is that urban graphs have a unique Spa-
tial Heterophily property. To be specific, we find that the heterophily
on the urban graph often presents a characteristic of spatial diversity.
In other words, the difference (or dissimilarity) between the central
node and its neighbors at different distances or directions exhibits
evident discrepancy, rather than distributed uniformly. Aware of
such a characteristic, an attendant question is how to measure the
spatial heterophily of the urban graph. There have been various
studies put forward to investigate the graph homophily and het-
erophily from different perspectives, including node homophily
[29], edge homophily [56] and class homophily [23]. But without
considering the spatial position of linking nodes, these metrics
cannot describe the spatial heterophily on urban graphs.

Therefore, in this work, we propose a metric named spatial di-
versity score to analyze the spatial heterophily, and investigate its
influence on the performance of existing GNN methods on urban
graphs. Firstly, we divide the neighbors on an urban graph into
different spatial groups according to their locations (including di-
rection and distance), and then the spatial diversity score measures
the discrepancy between different spatial groups, in terms of their
label dissimilarity to the central node. A higher score (close to one)
indicates a larger discrepancy between different spatial groups, and
thus a higher spatial diversity of heterophily on the urban graph.

Yet, it still remains an outstanding challenge for designing pow-
erful heterophilic GNN models over an urban graph if its spatial
diversity score is high, where there is a diversity of dissimilarity
distributions between the central node and its neighbors at differ-
ent spatial locations. There are some recent studies to improve the
GNN architectures to handle the graph heterophily [8, 14, 17, 24, 48].
Most of these methods can only work on a heterophilic graph when
there is limited difference between nodes. For example, GBKGNN
[8] assumes that there are only two different kinds of nodes, and
FAGCN [2] assumes that node features have only two different
levels of frequencies (Note that this limitation is discussed in their
papers). Following this line, it is hard to model such diverse distri-
butions of spatial heterophily on urban graphs. To provide more
evidence, we conduct an experiment on synthetic urban graphs
with varying levels of spatial diversity score (details are in Section

3.2). As shown in Figure 1(d), when the graph presents higher spa-
tial diversity score, the performance of these two state-of-the-art
heterophilic GNNs, GBKGNN and FAGCN, is far from optimal. We
also apply the proposed spatial diversity score to analyze three real-
world urban graphs under different target tasks in our experiments.
As we can see from Figure 1(c), three urban graphs present different
levels of spatial heterophily, where one of them can get a very high
score (0.99 on the urban graph in crime prediction task). Thus, it
is valuable to develop an effective GNN model that can handle the
diverse spatial heterophily of the urban graph.

Through our in-depth analysis of spatial heterophily, we observe
that the heterophily further exhibits a spatial tendency on urban
graphs, which reveals a promising opportunity for us to tackle such
diverse heterophily in a divide-and-conquer way. Different from
ordinary graphs, nodes on urban graphs should follow Tobler’s
First Law of Geography (TFL) [35]. As the fundamental assumption
used in almost all urban analysis, TFL means everything is related to
everything else, but near things are more related than distant things.
Obeying TFL, spatially close neighbors on the urban graph present
a more similar mode of difference to the central node, compared
to the distant ones. We also analyze the real-world urban graph
in commercial activeness prediction task to visualize such a ten-
dency (details are in Section 4). Figure 2 clearly shows that spatially
close neighbors present less discrepancy from both the direction
and distance view. Thus, if we can properly group the spatially
close neighbors together, it is possible to alleviate the diversity of
heterophily inside groups on the urban graph.

To this end, we propose a novel Spatial Heterophily Aware Graph
Neural Network (SHGNN), to tackle the spatial heterophily on
urban graphs, with two specially designed modules. First, we devise
a Rotation-Scaling Spatial Aggregation module. Its core idea is to
properly divide the neighbors into different spatial groups according
to their direction and distance to the central node, and perform a
spatial-aware feature aggregation for each group, which serves as
the basis of handling diverse heterophily distributions separately.
Then, a Heterophily-Sensitive Spatial Interaction module with two
learnable kernel functions is designed to capture the commonality
and discrepancy in the neighborhood, and adaptively determine
what and how much difference information the central node needs.
It acts between the central node and neighbors in different groups
to manage the spatial diversity of heterophily on the urban graph.

The contribution of this paper is summarized as follows:
• To the best of our knowledge, we are the first to investigate the
spatial heterophily of urban graphs.We design ametric named
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spatial diversity score, to analyze the spatial heterophily prop-
erty, and identify the limitation of existing GNNs in handling
the diverse spatial heterophily on the urban graph.

• We propose a novel spatial heterophily aware graph neural
network named SHGNN, in which two techniques: rotation-
scaling spatial aggregation and heterophily-sensitive spatial
interaction are devised to tackle the spatial heterophily of the
urban graph in a divide-and-conquer way.

• We conducted extensive experiments to verify the effective-
ness of SHGNN on three real-world datasets.

2 PRELIMINARIES
In this section, we first introduce the basic concepts of the urban
graph, then clarify the goal of our work. The frequently used nota-
tions are summarized in Table 4 in Appendix.

Urban Graphs. Let G(V, E,𝑿 ) denote an urban graph, where
V = {𝑣1, ..., 𝑣𝑁 } denotes a set of nodes representing a kind of urban
entity, E denotes the edge set indicating one type of relation among
nodes in the urban scenario, and N(𝑣𝑖 ) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E} is the
neighborhood of node 𝑣𝑖 . 𝑿 ∈ R𝑁×𝑑 denotes the feature matrix, in
which the 𝑖-th row is the 𝑑-dimensional node features of 𝑣𝑖 obtained
from the urban data. Different instantiations of node set and edge
set will form different urban graphs, such as: (1) Mobility Graph
with regions as nodes and human flows as edges. The node features
can be some region attributes such as the distribution of POI inside
the region; (2) Road Network where the node set is formed by
road sections, and the edges denote the connectivity between them.
The node features can be the structural information of a section,
such as the number of branches and lanes.

Problem Formulation. Given an urban graph, our goal is to design
a GNN model, that considers and alleviates the spatial heterophily,
to learn the node representation 𝑓 : (𝑣𝑖 |G)→ �̂�𝑖 , where �̂�𝑖 denotes
the representation vector of node 𝑣𝑖 . The model 𝑓 will be trained
in an end-to-end manner in different downstream tasks.

3 SPATIAL HETEROPHILY
In this section, an analysis of spatial heterophily on urban graphs
is provided. We first introduce our metric to measure the spatial
heterophily (Section 3.1). Then, Section 3.2 gives an experimental
investigation on synthetic graphs. It not only demonstrates the
importance for GNNs to consider the spatial heterophily on urban
graphs, but also suggests a promising way to tackle this challenge.

3.1 Spatial Diversity of Heterophily
To describe the spatial diversity of heterophily on urban graphs,
we design a metric named spatial diversity score. Typically, the
graph heterophily is measured by the label dissimilarity between
the central node and its neighbors (e.g., [8, 29]). Following this line,
our spatial diversity score aims to further assess the discrepancy
between neighbors at different spatial locations, in terms of the dis-
tributions of their label dissimilarity to the central node. Briefly, we
first divide the neighborhood into different spatial groups accord-
ing to their spatial locations. Then, we can measure spatial groups’
discrepancy by calculating the Wasserstein distance between their
label dissimilarity distributions, and the metric is further defined
as the ratio of nodes with high discrepancy.

3.1.1 Dual-View Space Partition. To distinguish the spatial loca-
tion of neighbors and form different spatial groups, we first parti-
tion the geographic space into several non-overlap subspaces, and
each neighbor of the central node can be assigned to the group
corresponding to the subspace it locates in. Note that the spatial
heterophily can both present in different directions and distances,
thus we propose to perform space partition from both two views.

Direction-Aware Partition. Given the central node 𝑣𝑖 on an ur-
ban graph, we evenly partition the geographic space centered by it
into ten direction sectors S = {𝑠𝑘 | 𝑘 = 0, 1, ..., 9}. Correspondingly,
nodes in the neighborhood N(𝑣𝑖 ) will be divided into the sector
they locate in. Neighbors belonging to the same sector are rede-
fined as the direction-aware neighborhood {N𝑠𝑘 (𝑣𝑖 ) | 𝑘 = 0, 1, ..., 9},
where

⋃9
𝑘=0N𝑠𝑘 (𝑣𝑖 ) = N(𝑣𝑖 ). In this way, the direction-aware

neighborhoods can be regarded as different spatial groups associ-
ated with different spatial relations to the central node. We will
then calculate the discrepancy between different spatial groups.
Figure 1(a) illustrates such a sector partition.

Distance-Aware Partition. As illustrated in Figure 1(b), we
also divide the neighbors based on their distance to the central
node. To be specific, we first determine the distance range of the
neighborhood on an urban graph, by making a statistic of the dis-
tance distribution between connected nodes. Note that we consider
the 90% percentile of this distribution as the maximum distance of
the neighborhood on the graph. This is based on the observation
that the distance distribution often presents a long tail property,
and such a distance cut-off can avoid interference from extremely
distant outliers. And then, the distance range is evenly split into ten
buckets, which results in distance ringsR = {𝑟𝑘 | 𝑘 = 0, 1, ..., 9}. Sim-
ilarly, the original neighborhoodN(𝑣𝑖 ) can be divided into these ten
distance-aware neighborhoods {N𝑟𝑘 (𝑣𝑖 ) | 𝑘 = 0, 1, ..., 9} as another
view of spatial groups, where we also have

⋃9
𝑘=0N𝑟𝑘 (𝑣𝑖 ) = N(𝑣𝑖 ).

3.1.2 Spatial Diversity Score. After the neighborhood partition,
our goal is to further define the spatial diversity score by measuring
the discrepancy between different spatial groups, based on their
distribution distance of label dissimilarity to the central node.

First of all, we define spatial group’s label dissimilarity distri-
bution to the central node. For a node classification task with C
classes, within a spatial group, this distribution is calculated as the
ratio of neighbors belonging to each class (different to the central
node’s). Taking the direction view as an example, for the central
node 𝑣𝑖 , the label dissimilarity distribution of 𝑠𝑘 is formally defined
as 𝑃𝑠𝑘

𝑖
= [ 𝑃𝑠𝑘

𝑖,0 , 𝑃
𝑠𝑘
𝑖,1 , ... , 𝑃

𝑠𝑘
𝑖, | C−1 | ] with:

𝑃
𝑠𝑘
𝑖,𝑐

=
∑︁

𝑣𝑗 ∈N𝑠𝑘
(𝑣𝑖 )∧𝑦 𝑗≠𝑦𝑖

1(𝑦 𝑗,𝑐 = 1) · |N𝑠𝑘 (𝑣𝑖 ) |−1, (1)

where 𝑐 = 0, 1, ..., |C − 1|, 1(·) is the indicator function, and 𝑦𝑖 is
𝑣𝑖 ’s one-hot label vector whose 𝑐-th value is denoted by 𝑦𝑖,𝑐 .

In addition, to improve the generality of thismetric tomore urban
applications (e.g., regression tasks), we also extend the definition of
label dissimilarity distribution above to the node regression task. To
be specific, we first make a statistic of the label difference between
connected nodes on the whole graph Ŷ = {(𝑦 𝑗 −𝑦𝑖 ) | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E},
and calculate the deciles {𝐷1, 𝐷2, , ..., 𝐷9} of this distribution. These
nine deciles can determine ten buckets (intervals), which will be
used for the discretization of continuous label difference value, to
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(a) Discrepancy between rings !! and !" (b) Discrepancy between sector "! (in grey) and others
Figure 2: Illustration of spatial tendency in the distance view (a) and direction view (b).

obtain a similar form of label dissimilarity as the node classification
task. Hence, still for the spatial group N𝑠𝑘 (𝑣𝑖 ) in sector 𝑠𝑘 , its label
dissimilarity distribution will be calculated as the ratio of neighbors
mapped into different buckets, according to their discretized label
difference to the central node, which can be also formulized as:
𝑃
𝑠𝑘
𝑖

= [ 𝑃𝑠𝑘
𝑖,0 , 𝑃

𝑠𝑘
𝑖,1 , ... , 𝑃

𝑠𝑘
𝑖,9], with the 𝑐-th element computed by:

𝑃
𝑠𝑘
𝑖,𝑐

=
∑︁

𝑣𝑗 ∈N𝑠𝑘
(𝑣𝑖 )
1(𝐷𝑐 < 𝑦 𝑗 − 𝑦𝑖 ≤ 𝐷𝑐+1) · |N𝑠𝑘 (𝑣𝑖 ) |−1, (2)

where 𝑐 = 0, 1, ..., 9. The𝐷0 and𝐷10 are used to denote theminimum
and maximum of the label difference distribution on the whole
graph, respectively (i.e., 𝐷0 = min(Ŷ) and 𝐷10 = max(Ŷ)).

Next, the discrepancy between different spatial groups can be
defined by measuring the distance between their label dissimilarity
distributions. Following a recent study on the graph heterophily
[52], we adopt Wasserstein distance (WD) to measure the distribu-
tion distance between two spatial groups. Formally, consider two
spatial groups N𝑠𝑝 (𝑣𝑖 ) and N𝑠𝑞 (𝑣𝑖 ) in sector 𝑠𝑝 and 𝑠𝑞 of node 𝑣𝑖 ,
the discrepancy between them is defined as:

𝐷𝑖𝑠𝑐 (𝑣𝑖 , 𝑠𝑝 , 𝑠𝑞) =𝑊𝐷 (𝑃𝑠𝑝
𝑖
, 𝑃

𝑠𝑞
𝑖
), (3)

where𝑊𝐷 (·, ·) denotes the Wasserstein distance between two dis-
tributions, which can be approximately calculated by the Sinkhorn
iteration algorithm [6].

With such a measurement, we can finally define the spatial di-
versity score to describe the diverse spatial heterophily of an urban
graph. This metric can be computed based on the ratio of nodes
with high discrepancy among different spatial groups:

𝜆𝑠
𝑑
= |V|−1 ·

∑︁
𝑣𝑖 ∈V

1(max
𝑝≠𝑞

𝐷𝑖𝑠𝑐 (𝑣𝑖 , 𝑠𝑝 , 𝑠𝑞) ≥ 1), (4)

where max𝑝≠𝑞 𝐷𝑖𝑠𝑐 (𝑣𝑖 , 𝑠𝑝 , 𝑠𝑞) ≥ 1 with 𝑝, 𝑞 = 0, 1, ..., 9 indicates
that there are at least two sectors being discrepant in terms of their
label dissimilarity distributions to the central node 𝑣𝑖 . In this way,
the score 𝜆𝑠

𝑑
will get higher if there are more nodes whose spatial

groups present high discrepancy on the urban graph. Similarly, we
can also define the score 𝜆𝑟

𝑑
in the distance view, which measures

the discrepancy between spatial groups formed by different rings
in R, with different distances to the central node:

𝜆𝑟
𝑑
= |V|−1 ·

∑︁
𝑣𝑖 ∈V

1(max
𝑝≠𝑞

𝐷𝑖𝑠𝑐 (𝑣𝑖 , 𝑟𝑝 , 𝑟𝑞) ≥ 1), (5)

In practice, when only a part of nodes are labeled on an urban
graph, it’s often sufficient to use the labeled data to estimate 𝜆𝑠

𝑑
and

𝜆𝑟
𝑑
. Figure 1(c) shows the scores of three real-world urban graphs.

As we can see, from both the direction and distance view, urban
graphs can present very high spatial diversity scores (e.g., 0.99 in
crime prediction), which reveals the diverse heterophily in different
spatial groups, with discrepant label dissimilarity distributions.

3.2 Experimental Investigation
Next, we conduct an experimental investigation on synthetic urban
graphs to illustrate the importance of considering the diverse spatial
heterophily on the urban graph. Specifically, we test the perfor-
mance of several GNN models on a series of synthetic urban graphs
with increasing spatial diversity of the heterophily. We generate
10 graphs containing 5000 nodes with 10-dimensional randomly
generated feature vectors. For each node, we build 50 edges and
assume that these neighbors locate at 10 distance rings from near
to far around the central node. To increase the spatial diversity of
heterophily from G1 to G10, we gradually enlarge the discrepancy
of label dissimilarity distributions between neighbors in different
distance rings. Specifically, in graph G𝑖 , we evenly divide the node
set into 𝑖 subsets V𝑖 =

⋃𝑖
𝑗=1V𝑖, 𝑗 , where the labels of nodes in V𝑖, 𝑗

are sampled from the Gaussian distribution N(10 𝑗, 1). Then, the
50 neighbors connected to the node in V𝑖, 𝑗 are randomly selected
from one of subsets {V𝑖,𝑘 }|𝑖𝑘=𝑗 by an equal probability 1/(𝑖 − 𝑗 + 1).
Besides, we let neighbors’ spatial distance be consistent with their
label difference to the central node (i.e., neighbors with smaller
differences locates in the closer distance ring). In this way, these 10
graphs will have increasing spatial diversity scores 𝜆𝑟

𝑑
. Meanwhile,

neighbors in the same distance ring have less discrepancy.
Figure 1(d) shows the node regression error of GCN [18] and two

state-of-the-art heterophic GNNs (FAGCN [2] and GBKGNN [8]) on
10 synthetic graphs. As expected, GCN gets the worst performance,
since it proved unsuitable for heterophily graphs in most cases [24].
For two heterophic GNNs, despite less error than GCN, their per-
formance is still far from optimal when the spatial diversity score
increases. This is because they only model limited dissimilarity
between nodes (e.g., two levels of frequencies [2] or two classes of
nodes [8]), without considering diverse dissimilarity distributions.
However, if the model separately processes neighbors in each dis-
tance ring whose differences to the central node are more similar,
(as our SHGNN did), it can always achieve satisfactory performance.
Thus, it’s reasonable to consider whether we can tackle the diverse
spatial heterophily, by properly grouping together the neighbors
with less discrepancy on the urban graph.
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4 METHODOLOGY
In this section, we first present that the heterophily on urban graphs
often exhibits a spatial tendency: spatially close neighbors have
more similar heterophily distributions than distant ones, which
obeys TFL. This characteristic gives rise to the solution that we can
properly divide neighbors according to their spatial locations, to
achieve grouping neighbors with less discrepancy together. Then,
we introduce our proposed SHGNN that leverages such a spatial
tendency to tackle the spatial heterophily of urban graphs.

Spatial Tendency. In addition to the presence of a discrepancy
between different spatial groups (discussed in Section 3.1), our in-
depth investigation of spatial heterophily further reveals that such a
discrepancy shows a spatial tendency on urban graphs. Specifically,
we observe that the discrepancy between two spatially close groups
is smaller, compared to two distant groups. We conduct a data
analysis to visually present such a tendency. Figure 2 shows the
pair-wise discrepancy of label dissimilarity distributions between
any two spatial groups, which is computed based on real-world
human mobility and regional commercial activeness data. In Figure
2(a), for the spatial group formed by distance ring 𝑟𝑝 , we can find
that its discrepancy with other rings 𝑟𝑞 is highly correlated to
their spatial distance (i.e., the discrepancy gets higher when 𝑟𝑞 is
more distant to 𝑟𝑝 ). For example, the close ring pair (𝑟0, 𝑟1) are less
discrepant than the distant pair (𝑟0, 𝑟9). A similar spatial tendency
can also be observed from the direction view. As shown in Figure
2(b), in most cases, the discrepancy will increase along with the
included angle between sectors. Taking sector 𝑠0 as an example, its
discrepancy with 𝑠1 ∼ 𝑠9 increases first and then decreases, which
is roughly in sync with the change of their included angles. In
other words, a sector is more likely to be discrepant to another
distant sector (e.g., (𝑠1, 𝑠6)) than a nearby one (e.g., (𝑠1, 𝑠2)). This
characteristic motivates us to address the diverse spatial heterophily
on urban graphs, by properly grouping spatially close neighbors
and separately processing each group with less discrepancy inside.

To this end, we propose a novel GNN architecture named SHGNN,
which is illustrated in Figure 3 and 4. Our model consists of two
components: Rotation-Scaling Spatial Aggregation (see Section 4.1)
and Heterophily-Sensitive Spatial Interaction (see Section 4.2).

4.1 Rotation-Scaling Spatial Aggregation
This component aims to properly group spatially close neighbors
and alleviate the diversity of heterophily inside groups in the mes-
sage passing process. In general, we first divide neighbors according
to their relative positions to the central node. Then, the feature
aggregation is performed in each spatial group separately.

4.1.1 Rotation-Scaling Dual-View Partition. Following the neigh-
borhood partition in Section 3.1.1, we also partition the geographic
space into non-overlap subspaces, and neighbors located at the
same subspace are then grouped together. Note that there are two
major differences between the space partition performed in this
component and that in Section 3.1.1. First, we apply a more general
partition with a variable number of subspaces. Second, we intro-
duce a rotation-scaling multi-head partition strategy to model the
neighbor’s spatial location in a more comprehensive way.

To be specific, in the direction view, we evenly partition the space
into a set of sectors S = {𝑠𝑘 | 𝑘 = 0, 1, ..., 𝑛𝑠 − 1}, where 𝑛𝑠 denotes
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Figure 3: Illustration of Rotation-scaling Partition.

the number of partitioned sectors, which can be appropriately set
for different datasets. Nodes in each direction-aware neighborhood
N𝑠𝑘(𝑣𝑖 ) of sector 𝑠𝑘 are grouped together, which we still call spatial
group. In the distance view, the space will be partitioned into 𝑛𝑟
distance rings R = {𝑟𝑘 | 𝑘 = 0, 1, ..., 𝑛𝑟 −1}, which is resulted from a
predefined distance bucket (e.g., < 1𝑘𝑚, 1− 2𝑘𝑚, and > 2𝑘𝑚). Note
that the central node 𝑣𝑖 itself does not belong to any sector or ring,
we regard it as an additional group N𝑠𝑛𝑠

(𝑣𝑖 ) = N𝑟𝑛𝑟
(𝑣𝑖 ) = {𝑣𝑖 }.

Rotation-Scaling Multi-Head Partition. In view of the special case
that a part of neighbors may locate at the boundary between two
subspaces, we further propose a multi-head partition strategy to
simultaneously perform multiple partitions at each view, where
different heads can complement each other. For example, as shown
in Figure 3(a), the orange node 𝑣4 locates at the boundary between
sectors 𝑠0 and 𝑠1, which indicates that the spatial relation of the
neighborhood is still inadequately excavated by the single direction-
based partition. A similar situation can be found in the partition of
distance rings, such as the node 𝑣4 in Figure 3(b).

To overcome this limitation, we extend our partition strategy
by devising two operations, which are sector rotation and ring scal-
ing, to achieve multiple space partitions for capturing the diverse
spatial relations comprehensively. Specifically, as illustrated in Fig-
ure 3(a) and (c), for the originally partitioned direction sectors, we
turn the sector boundary a certain angle (e.g., 45 degrees) to derive
another set of sectors, then the neighbors can be correspondingly
reassigned in these new sectors and form a different set of direction-
aware neighborhoods. Thus, we update the denotation of sectors
as S𝑚 = {𝑠𝑚

𝑘
| 𝑘 = 0, 1, ..., 𝑛𝑠 }, and that of direction-aware neighbor-

hoods as {N𝑠𝑚
𝑘
(𝑣𝑖 ) | 𝑘 = 0, 1, ..., 𝑛𝑠 }, where𝑚 = 1, 2, ..., 𝑀𝑠 denotes

the𝑚-th head partition among total𝑀𝑠 heads. Similarly, from the
distance view, we scale the boundary of the original distance rings
to obtain the supplemental partition, which is shown in Figure 3(b)
and (d). The denotations are updated as R𝑚 = {𝑟𝑚

𝑘
| 𝑘 = 0, 1, ..., 𝑛𝑟 }

and {N𝑟𝑚
𝑘
(𝑣𝑖 ) | 𝑘 = 0, 1, ..., 𝑛𝑟 } for rings and distance-aware neigh-

borhoods, where 𝑚 = 1, 2, ..., 𝑀𝑟 . In this way, different heads of
partitions model the spatial relation between neighbors and the
central node complementarily, and thus we can avoid the improper
grouping under a single partition.

4.1.2 Spatial-Aware Aggregation. After the multi-head partition
from two spatial perspectives, we collect messages from neighbors
to the central node. Rather than mixing the messages (e.g., through
averaging) that most of the GNNs follow [47], our model performs
a group-wise aggregation to handle different spatial groups with
diverse heterophily. An illustration is shown in Figure 4(a).
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Figure 4: The architecture of SHGNN. We only detailedly present the operation under sector partition in the illustration of two
kernel functions and the attentive component selection. The same operation is also performed under ring partition.

Formally, taking the direction view as an example, with the set of
direction-aware neighborhoods (spatial groups) under the𝑚-head
partition {N𝑠𝑚

𝑘
(𝑣𝑖 ) | 𝑘 = 0, 1, ..., 𝑛𝑠 }, we use graph convolution [18]

to respectively aggregate the features of nodes in each neighbor-
hood N𝑠𝑚

𝑘
(𝑣𝑖 ) with the normalization by degree:

𝒛𝑖,𝑠𝑚
𝑘
(𝑙 + 1) =

∑︁
𝑗∈N𝑠𝑚

𝑘
(𝑣𝑖 )

( |N (𝑣𝑖 ) | · |N (𝑣 𝑗 ) |)−
1
2 𝒉 𝑗 (𝑙)𝑾𝑠𝑚

𝑘
(𝑙), (6)

where 𝒛𝑖,𝑠𝑚
𝑘
(𝑙) denotes the 𝑙-layer aggregated message from direc-

tion sector 𝑠𝑚
𝑘
, 𝒉 𝑗 (𝑙) denotes the 𝑙-layer features of neighbor 𝑣 𝑗 with

𝒉 𝑗 (0) = 𝒙 𝑗 , and 𝑾𝑠𝑚
𝑘
(𝑙) is a trainable transformation extracting

useful information from neighbors’ features.
Similarly, at the distance view, we also perform the ring-wise

aggregation in each distance ring separately by:

𝒛𝑖,𝑟𝑚
𝑘
(𝑙 + 1) =

∑︁
𝑗∈N𝑟𝑚

𝑘
(𝑣𝑖 )

( |N (𝑣𝑖 ) | · |N (𝑣 𝑗 ) |)−
1
2 𝒉 𝑗 (𝑙)𝑾𝑟𝑚

𝑘
(𝑙), (7)

where𝑾𝑟𝑚
𝑘
(𝑙) is another feature transformation for neighbors at

different distances. In this way, the aggregated messages can not
only capture the structure information on the graph, but also dis-
criminate their different spatial groups. It avoids losing different
distributions of spatial heterophily on the urban graph.

4.2 Heterophily-Sensitive Spatial Interaction
After the group-wise feature aggregation, SHGNN further captures
the diverse spatial heterophily in different spatial groups on the
urban graph. In detail, we devise two learnable kernel functions
to first respectively capture the commonality and discrepancy be-
tween the central node and each spatial group. Then, an attentive
gate is jointly learned to adaptively determine the ratio of two com-
ponents that should be propagated to the central node. Additionally,
as indicated by the analysis of spatial tendency in Figure 2, the dis-
crepancy of heterophily distributions varies along with the distance
between two spatial groups, we further consider such characteris-
tics by allowing the kernel functions to act between groups, which

encourages the propagation of common and discrepant information
among them. Since we view the central node as an additional group,
this process can be regarded as an interaction among every two
groups. For simplicity, we omit the index 𝑙 and𝑚 of layer and head
in the following discussion.

Commonality Kernel Function. Given the fact that different sec-
tors / rings all belong to the neighborhood of the central node, they
may share some common knowledge that can probably enhance the
representation of each other. Thus, we first design a commonality
kernel function to capture such information among them.

Formally, taking the direction view as an example, with the
representation {𝒛𝑖,𝑠𝑘 | 𝑘 = 0, 1, ..., 𝑛𝑠 } of 𝑛𝑠 sectors centered by 𝑣𝑖 ,
the kernel function K𝑠

𝐶
(·, ·) that models the commonality degree

between sector 𝑠𝑝 and 𝑠𝑞 (including 𝑣𝑖 itself) is defined as:

K𝑠
𝐶 (𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑞 ) = < �̂�𝑖,𝑠𝑝 , �̂�𝑖,𝑠𝑞>, �̂�𝑖,𝑠𝑘 = 𝒛𝑖,𝑠𝑘𝑾

𝑠
𝐶 , (8)

where <·, ·> denotes the inner product and 𝑾𝑠
𝐶
is the learnable

matrix for common knowledge extraction. The larger output value
suggests a higher similarity (i.e., commonality) between inputs.
Based on this measurement, we enhance the sector representation
with the extracted useful information from other sectors:

𝒛𝐶𝑖,𝑠𝑝 =

𝑛𝑠∑︁
𝑞=0

𝛼
𝐶,𝑠
𝑝𝑞 𝒛𝑖,𝑠𝑞𝑾

𝑠
𝐶 , (9)

𝛼
𝐶,𝑠
𝑝𝑞 =

𝑒𝑥𝑝 ( K𝑠
𝐶
(𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑞 ))∑𝑛𝑠

𝑘=0 𝑒𝑥𝑝 (K
𝑠
𝐶
(𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑘 ))

, (10)

where the coefficient 𝛼𝐶,𝑠𝑝𝑞 is the level of commonality normalized
by the softmax function. In the same way, we can also obtain the
representation of each distance ring 𝒛𝐶

𝑖,𝑟𝑝
with the enhancement

of common knowledge from other rings using a similar kernel
function K𝑟

𝐶
(·, ·) parametrized by𝑾𝑟

𝐶
.

Discrepancy Kernel Function. In addition to the common knowl-
edge, modeling the difference information is critical on heterophilic
urban graphs. Thus, we devise another kernel function to capture
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diverse dissimilarity between the central node and every group, as
well as between any two groups. We introduce it from the direc-
tion view. Specifically, taking the original representation {𝒛𝑖,𝑠𝑘 |𝑘 =

0, 1, ..., 𝑛𝑠 } as inputs, the discrepancy kernel is defined as:

K𝑠
𝐷 (𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑞 ) = <𝒛𝑖,𝑠𝑝𝑾

𝑠,𝑎
𝐷

, (𝒛𝑖,𝑠𝑝𝑾
𝑠,𝑎
𝐷

− 𝒛𝑖,𝑠𝑞𝑾
𝑠,𝑏
𝐷

)>, (11)

where𝑾𝑠,𝑎
𝐷

and𝑾𝑠,𝑏
𝐷

denote two transformations that learn to ex-
tract the difference of sector 𝑠𝑞 compared to sector 𝑠𝑝 . According
to [12], the kernel function K𝑠

𝐷
(𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑞 ) can be regarded as cal-

culating the dissimilarity degree between two inputs, which tends
to be higher when 𝑠𝑝 and 𝑠𝑞 are more dissimilar. Subsequently, our
model facilitates each sector to be aware of the helpful difference
information from others with this measurement of discrepancy:

𝒛𝐷𝑖,𝑠𝑝 =

𝑛𝑠∑︁
𝑞=0

𝛼
𝐷,𝑠
𝑝𝑞 (𝒛𝑖,𝑠𝑝𝑾

𝑠,𝑎
𝐷

− 𝒛𝑖,𝑠𝑞𝑾
𝑠,𝑏
𝐷

), (12)

𝛼
𝐷,𝑠
𝑝𝑞 =

𝑒𝑥𝑝 ( K𝑠
𝐷
(𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑞 ))∑𝑛𝑠

𝑘=0 𝑒𝑥𝑝 (K
𝑠
𝐷
(𝒛𝑖,𝑠𝑝 , 𝒛𝑖,𝑠𝑘 ))

. (13)

Similarly, we utilize an analogous kernel function, which is denoted
as K𝑟

𝐷
(·,·) with parameters𝑾𝑟,𝑎

𝐷
and𝑾𝑟,𝑏

𝐷
to capture such discrep-

ancy at the distance view and derive the ring representation 𝒛𝐷
𝑖,𝑟𝑝

aware of the diverse distributions of spatial heterophily.

Attentive Component Selection. With these two kernel functions,
we can exploit both the common knowledge and diverse discrep-
ancy information between the central node and neighbors in differ-
ent groups. However, different nodes may possess varying levels of
spatial heterophily in various applications. Thus, SHGNN learns to
derive a gate that adaptively determines the ratio of common and
difference information in an end-to-end manner.

Specifically, for each central node 𝑣𝑖 , we concatenate both the
commonality and discrepancy components of all sectors, to derive
a scalar with a transformation:

𝛽𝑠𝑖 = 𝜎 (∥ 𝑗∈{𝐶,𝐷 } ∥𝑛𝑠𝑘=0 𝒛
𝑗
𝑖,𝑠𝑘

𝑾𝑠
𝑡 ), (14)

where 𝑾𝑠
𝑡 denotes the trainable transformation mapping the in-

put to a scalar and 𝜎 denotes the Sigmoid function restricting the
output value into (0, 1). Then, 𝛽𝑠

𝑖
serves as a gate controlling the

ratio of the commonality and discrepancy components in the final
representation of each sector:

�̃�𝑖,𝑠𝑘 = 𝛽𝑠𝑖 · 𝒛
𝐶
𝑖,𝑠𝑘

+ (1 − 𝛽𝑠𝑖 ) · 𝒛
𝐷
𝑖,𝑠𝑘

. (15)

In the same way, we learn to derive the gate 𝛽𝑟
𝑖
that determines the

ratio in each ring’s final representation �̃�𝑖,𝑟𝑘 .
After the propagation among spatial groups (including the cen-

tral node), different groups can contain diverse discrepancy infor-
mation in the neighborhood, which is vital to the heterophilic urban
graph. We then integrate this group-wise representation by con-
catenation (instead of summation, to avoid the mixing of diverse
distributions of spatial heterophily) to obtain the global representa-
tion of two views. Since we adopt the multi-head partition strategy,
a following concatenation is used to combine different heads at
each view. The above two processes can be jointly expressed as:

𝒉𝑖,𝑠 = ∥𝑀𝑠

𝑚=1 (∥𝑛𝑠
𝑘=0 �̃�𝑖,𝑠𝑚

𝑘
), 𝒉𝑖,𝑟 = ∥𝑀𝑟

𝑚=1 (∥𝑛𝑟
𝑘=0 �̃�𝑖,𝑟𝑚

𝑘
) . (16)

Table 1: Statistics of three real-world datasets.
Task Dataset # Nodes # Edges # Labeled 𝝀𝒔

𝒅
𝝀𝒓
𝒅

CAP Shenzhen 82,510 9,486,879 9,121 0.89 0.78
CP Manhattan 180 3,780 180 0.98 0.98

DRSD Los Angeles 253,985 1,365,289 15,274 0.23 0.14

Fusion of Two Spatial Views. Finally, we fuse two spatial views
with a learnable weighted summation to update the central node’s
representation as follows:

𝒉𝑖 = 𝛾 𝒉𝑖,𝑠𝑾
𝑠
𝑓
+ (1 − 𝛾) 𝒉𝑖,𝑟𝑾𝑟

𝑓
, (17)

where𝑾𝑠
𝑓
and𝑾𝑟

𝑓
are two weight matrices transforming the rep-

resentation vectors of two views into the same space, and 𝛾 is a
trainable trade-off parameter activated by Sigmoid function, which
learns to assign different importance to the direction and distance
view according to the target task.

4.3 Prediction and Optimization
Consistent with general GNNs, we use the 𝐿-layer output activated
by ReLU function 𝒉𝑖 =𝜎 (𝒉(𝐿)𝑖

) as the node representation to make a
prediction in different downstream tasks, and optimize the model by
the appropriate loss function: L( 𝐿𝑅(𝒉𝑖 ) , 𝑦𝑖 ). In node regression
tasks, 𝐿𝑅(·) is the linear regressor, 𝑦𝑖 ∈R denotes the ground truth
of labeled nodes, and L can be L2 loss. While for node classification
tasks, 𝐿𝑅(·) performs the logistic regression, 𝑦𝑖 ∈ {0, 1}C is a one-
hot label vector of C classes, and L can be cross entropy loss.

5 EXPERIMENTS
In this section, we conduct extensive experiments on real-world
datasets in three different tasks upon two types of urban graphs
to evaluate the effectiveness of our model. The code of SHGNN
is available at https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/research/SHGNN.

5.1 Experiment Settings
5.1.1 Tasks and Data Description. We first briefly introduce the
three datasets corresponding to three different tasks, and details of
how to build each dataset are described in Appendix A.1. Table 1
summarizes the statistical information of the three datasets.

Commercial Activeness Prediction (CAP) is a node regres-
sion task on a mobility graph. Similar to [42], we use the number
of comments to POIs in each region as the indicator of regional
commercial activeness. To form the dataset of this task, we collect
the following urban data in Shenzhen city in China from Baidu
Maps, including POI data and satellite images in September 2019 to
construct region features, the daily human flow data from July 2019
to September 2019 for building the edge set of the urban graph, and
the number of regional POI comments from June 2019 to April 2020
which is regarded as the ground truth.

Crime Prediction (CP) is also a node regression task on the
mobility graph. We collect the real-world dataset of New York City
from NYC open data website1 for this task. The dataset contains
180 regions in Manhattan, with the POI data and crime number
in each region, as well as taxi trips between regions [40, 51]. We
construct node features from POIs. Taxi trips are used to build the
1opendata.cityofnewyork.us

https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SHGNN
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SHGNN
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Table 2: Performance comparison. ‘TASK-S’ refers to task-specific baseline for CAP (KnowCL), CP (NNCCRF), and DRSD (RFN).
Symbol ∗, ▲ and △ indicate that SHGNN achieves significant improvements with 𝑝 < 0.001, 𝑝 < 0.01 and 𝑝 < 0.05, respectively.

Commercial Activeness Prediction Crime Prediction Dangerous Road Section Detection
Methods RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑ AUC ↑ F1-score ↑
GCN 8.354 ± 0.020* 5.018 ± 0.028* 0.388 ± 0.003* 156.1 ± 1.312* 114.5 ± 1.005* 0.082 ± 0.015* 0.634 ± 0.002* 0.229 ± 0.003*
GAT 8.952 ± 0.153* 5.134 ± 0.099* 0.298 ± 0.023* 166.8 ± 5.750* 127.1 ± 4.359* -0.040 ± 0.071* 0.613 ± 0.006* 0.213 ± 0.008▲

Mixhop 8.168 ± 0.038* 4.981 ± 0.010* 0.415 ± 0.005* 147.6 ± 0.576* 109.0 ± 0.398* 0.179 ± 0.006* 0.636 ± 0.003* 0.229 ± 0.005*
FAGCN 8.327 ± 0.018* 5.063 ± 0.031* 0.392 ± 0.002* 150.9 ± 3.618* 108.1 ± 2.179▲ 0.142 ± 0.041* 0.632 ± 0.004* 0.228 ± 0.009▲
NLGCN 8.495 ± 0.108* 4.883 ± 0.053* 0.367 ± 0.016* 151.7 ± 4.496* 110.2 ± 3.557▲ 0.133 ± 0.050* 0.626 ± 0.003* 0.224 ± 0.004*
GBKGNN 8.490 ± 0.017* 5.004 ± 0.074▲ 0.368 ± 0.002* 133.6 ± 4.095▲ 98.28 ± 3.792 0.327 ± 0.041▲ 0.626 ± 0.011* 0.225 ± 0.013▲
GPRGNN 8.139 ± 0.016▲ 4.975 ± 0.025* 0.419 ± 0.002▲ 152.4 ± 0.338* 107.0 ± 0.319* 0.126 ± 0.003* 0.635 ± 0.003* 0.226 ± 0.004*
PRIM 8.928 ± 0.144* 5.186 ± 0.086* 0.301 ± 0.022* 151.7 ± 6.243* 118.6 ± 4.320* 0.131 ± 0.070* 0.615 ± 0.008* 0.210 ± 0.005*
SAGNN 8.843 ± 0.068* 5.305 ± 0.057* 0.315 ± 0.010* 142.2 ± 2.451* 108.6 ± 1.360* 0.238 ± 0.026* 0.630 ± 0.006* 0.216 ± 0.008*
TASK-S 8.360 ± 0.068* 4.875 ± 0.028* 0.387 ± 0.010* 138.8 ± 2.619* 100.4 ± 0.945▲ 0.274 ± 0.027* 0.638 ± 0.012▲ 0.240 ± 0.008▲
SHGNN 7.605 ± 0.131 4.485 ± 0.056 0.493 ± 0.017 118.7 ± 4.135 91.16 ± 2.754 0.469 ± 0.036 0.684 ± 0.004 0.263 ± 0.003
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Figure 5: Performance comparison between SHGNN and its variants on three tasks.
urban graph, where we only keep the 20 most important edges for
each region w.r.t. the number of trip records.

Dangerous Road Section Detection (DRSD) is a node clas-
sification task performed on the road network. In this work, the
dangerous section is defined as the road section with a high in-
cidence of traffic accidents. We build a real-world dataset in Los
Angeles based on the road network data from OSMnx Street Net-
works in Harvard Dataverse2 and the traffic accident records in
December 2021 from Kaggle dataset website3. First, we make statis-
tics of the number of accident records on each road section. Then,
the sections containing more than 3 accident records in a month
will be considered as dangerous road sections in our experiments.

To select the best hyper-parameters for all the comparing meth-
ods, we randomly split each dataset into three parts with 60% for
training, 20% for validation and 20% for test.

5.1.2 Baselines. We compare SHGNN with a variety of state-of-
the-art GNN models, including two classical message passing neu-
ral networks (GCN [18] and GAT [36]), five representative meth-
ods for heterophilic graphs (Mixhop [1], FAGCN [2], NLGCN
[26], GPRGNN [5] and GBKGNN [8]), two spatial GNN models
(SAGNN [20] and PRIM [4]), as well as three task-specific base-
lines (KnowCL [27] for CAP, NNCCRF [49] for CP and RFN [13]
for DRSD). Detailed descriptions are introduced in Appendix A.3.

5.1.3 Evaluation Metrics. For the two regression tasks, we evaluate
all methods with Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and the coefficient of determination (R2). For the node
classification task, we use Area Under Curve (AUC) and F1-score.

5.2 Performance Evaluation
5.2.1 Overall Comparison. The performance comparison of our
SHGNN and baselines is presented in Table 2, in which the mean
and standard deviation of all metrics are obtained through five

2https://dataverse.harvard.edu/dataverse/osmnx-street-networks
3https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents

random runs. As we can see, SHGNN consistently achieves the best
performance in three tasks on two kinds of urban graphs, with 6.6%
and 11.2% reductions of RMSE in commercial activeness prediction
(CAP) and crime prediction (CP), as well as 7.2% improvements of
AUC in dangerous road section detection (DRSD) over the most
competitive baseline of each task. We also conduct a pairwise t-test
between SHGNN and each baseline to demonstrate that our model
outperforms all of them significantly. Note that although the spatial
diversity of heterophily on the road network in DRSD task is not so
strong (𝜆𝑠

𝑑
= 0.23 and 𝜆𝑟

𝑑
= 0.14) as another two urban graphs, our

model can still improve the accuracy in a large margin. It indicates
the effectiveness of SHGNN can be general but not just limited to
urban graphs with strong spatial heterophily.

Specifically, the ordinary GNN models (GCN and GAT) gener-
ally have the worst overall performance. By contrast, approaches
designed to deal with graph heterophily (Mixhop, FAGCN, NLGCN,
GBKGNN and GPRGNN) evidently perform better. It indicates the
inappropriateness of simply treating an urban graph as a general
homophilic graph. However, as a specially designed model to han-
dle spatial heterophily, our SHGNN remarkably outperforms these
general heterophilic GNNs. The spatial GNN methods (SAGNN
and PRIM) perform better than GCN and GAT sometimes, but
perform worse than the methods for heterophilic graphs in many
cases. And for task-specific baselines, it can also be found that some
heterophilic GNNs are level pegging with them (such as Mixhop
and GPRGNN vs. KnowCL in CAP task, GBKGNN vs. NNCCRF
in CP task and Mixhop vs. RFN in DRSD task). These results also
demonstrate the importance to take the spatial heterophily into
consideration when using GNNs over an urban graph. To sum up,
our SHGNN is much more effective in considering and alleviating
the spatial heterophily on urban graphs in all the tasks.
5.2.2 Ablation Study. To verify the effectiveness of each design in
our model, we further compare SHGNN with its five variants:
• SHGNN-S removes the direction section partition, which only
models spatial heterophily from the distance view.
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Figure 6: Parameter analysis in CP task.

• SHGNN-R removes the distance ring partition, which only mod-
els spatial heterophily from the direction view.

• SHGNN-M removes the multi-head partition strategy.
• SHGNN-C removes the commonality kernel function, without
sharing common knowledge among spatial groups.

• SHGNN-D removes the discrepancy kernel function. It cannot
capture the difference among spatial groups.

As shown in Figure 5, SHGNN outperforms all the variants, proving
the significance of our designs in tackling spatial heterophily. Specif-
ically, the performances get worse if we remove either the partition
of direction sections or distance rings (SHGNN-S and SHGNN-R),
which indicates the necessity of considering the spatial heterophily
from both views. Besides, the rotation-scaling multi-head parti-
tion strategy can evidently help to model diverse spatial relations
(SHGNN-M). In addition, the performance degrades if the common-
ality kernel function is not used, suggesting the effectiveness of
sharing knowledge among neighbors. More importantly, removing
the discrepancy kernel function results in a notable performance
decline, which verifies the importance of further capturing and
exploiting the difference information on heterophilic urban graphs.

5.2.3 Parameters Analysis. We further investigate the influence of
several important hyper-parameters on the performance of SHGNN
while keeping other parameters fixed. Figure 6 presents the results
in CP task, and other results are in Appendix A.4.

Number of spatial groups 𝑛𝑠/𝑛𝑟 .We first analyze the effects
made by the number of partitioned sectors 𝑛𝑠 and rings 𝑛𝑟 . By
increasing 𝑛𝑠/𝑛𝑟 to partition more subspaces, SHGNN can model
more diverse spatial relations and further capture the diversity of
spatial heterophily in a more fine-grained manner. However, over-
dense partitions bring no further improvements but even slight
performance declines. A possible explanation is that some subspaces
contain too few neighbors to support its representation learning.

Partition head number𝑀𝑠/𝑀𝑟 .We also study the impact of
head number 𝑀𝑠/𝑀𝑟 in the multi-head partition strategy. It can
be observed that, compared to the single partition (𝑀𝑠 , 𝑀𝑟 = 1),
SHGNN using such a strategy (𝑀𝑠 , 𝑀𝑟 = 2) can evidently perform
better, thanks to the complementing role between two heads. When
𝑀𝑠 and 𝑀𝑟 continue to increase, the model generally gets fewer
further improvements, and too many heads with additional redun-
dancy may sometimes result in performance degradation. Thus, we
recommend to set a small head number but larger than 1(e.g., 2),
which is good enough while keeping efficiency.

6 RELATEDWORK
Here we briefly review two related topics: GNNs for urban applica-
tions and GNNs with heterophily.

GNNs for Urban Applications. As a powerful approach to
representing relational data, GNN models are widely adapted in
recent studies to learn on urban graphs, and achieve remarkable
performance in various applications, including traffic forecasting
[9, 25, 31, 33, 37, 43, 50], bike demand prediction [19], region em-
bedding [40, 51], regional economy prediction [45] and special
region discovery [44]. There are a few works that tend to encode
the location information in GNNs’ message passing process [4, 20]
in a special domain (POI relation prediction). But these methods
fail to generalize to urban graphs with heterophily, which may sig-
nificantly degrade their performance in other urban applications.

GNNs with Heterophily. Our research is also related to the
studies of graph heterophily. Herewe onlymake a brief introduction
to heterophilic GNNs and refer readers to a recent comprehensive
survey [53]. Such approaches solve the heterophily problem basi-
cally in the following two ways. The first branch is to reconstruct
the homophilic neighborhood with similar nodes on the graph mea-
sured by different criteria. The used criteria include the structural
similarity defined by the distance in latent space [29] or degree
sequence [34], the difference of attention scores [26], cosine similar-
ity of node attributes [15, 16], nodes’ ability to mutually represent
each other [21] and so on. However, as pointed out by He et al. [11],
these methods will damage the network topology and tamper with
the original real-world dependencies on the urban graph.

Another branch tends to modify the GNN architecture to handle
the difference information on heterophilic graphs, in contrast to
the Laplacian smoothing [38] of typical GNNs, such as processing
neighbors in different classes separately [7, 8], explicitly aggregat-
ing features from higher-order neighbors in each layer [1, 56], al-
lowing the high-frequency information by passing signed messages
[2, 28, 41, 46, 47], and combining outputs of each layer (including
ego features) to also empower the GNNs with a high-pass ability
[3, 5, 56]. However, most of these methods do not consider the
diversity of dissimilarity distribution between the central node and
different neighbors, especially with different spatial relations.

7 CONCLUSION
In this paper, we studied the unique spatial heterophily of the urban
graph and developed a spatial heterophily-aware graph neural net-
work. We designed a spatial diversity score to uncover the diversity
of heterophily at different spatial locations in the neighborhood,
and showed the limitation of existing GNNs for handling diverse
heterophily distributions on urban graphs. Further, motivated by
the analysis that spatially close neighbors present a more similar
mode of heterophily, we proposed a novel method, named SHGNN,
which can group spatially close neighbors together and separately
process each group with less diversity inside, to tackle the spa-
tial heterophily in a divide-and-conquer way. Finally, extensive
evaluations demonstrate the effectiveness of our approach.
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A APPENDIX
A.1 Datasets Construction
In this section, we make a supplementary explanation of the con-
struction of three real-world datasets in three tasks.

A.1.1 Commercial Activeness Prediction (CAP). Following many
previous studies (e.g. [22, 37]) that divide a city into grids for various
urban analyses, we also divide Shenzhen city into a set of 128𝑚 ×
128𝑚 grids, which are regarded as the regions in this task. We
construct two groups of region features for commercial activeness
prediction, which are POI features and satellite image features.

A. POI Features. We construct three types of POI features from
the POI data, to reflect a region’s functionality, which is highly
correlated with commercial activeness [42].

(a) Category Distribution. For each region, we compute the ratios
of different categories of POIs, to obtain the category distribution
histogram as a feature vector. The total number of POIs is also
appended in this vector. In our experiments, we consider the follow-
ing 23 categories: Food Service, Hotel, Shopping Place, Life Service,
Beauty Industry, Scenic Spot, Leisure and Entertainment, Sports
and Fitness, Education, Cultural Media, Medicine, Auto Service,
Transportation Facility, Financial Service, Real Estate, Company,
Government Apparatus, Entrance and Exit, Topographical Object,
Road, Railway, Greenland, and Bus Route. To include more sur-
rounding information, we also compute the distribution in the 3× 3
regions centered by the given region.

(b) POI Radius. This feature is defined as the shortest distance
between a certain type of POIs and the region, such as hospital
radius. The distance is discretized into different buckets (< 0.5𝑘𝑚,
0.5 ∼ 1.5𝑘𝑚, 1.5 ∼ 3𝑘𝑚 and > 3𝑘𝑚). We calculated 15 kinds of
radius in total: Hospital, Clinic, College, School, Bus Stop, Sub-
way Station, Airport, Train Station, Coach Station, Shopping Mall,
Supermarket, Market, Shop, Police Station, and Scenic Spot.

(c) Perfect Degree of Living Facility. It’s a binary index that reflects
whether residents can satisfy their daily consumption demands
around the region. It will be assigned one if there are all the follow-
ing types of facilities within 1𝑘𝑚 of the current region, which are
Medical Service, Shopping Place, Sports Venue, Education Service,
Food Service, Financial Service, Communication Service, Public
Security Organ and Transportation Facility. We select these types
of POIs according to the official document 4.

B. Satellite Image Features. The satellite image data are 3-
channel 256 × 256 RGB images with 0.5 spatial resolution. We use
the pre-trained VGG16 [32] with the last two dense layers removed,
to extract semantic features from the satellite image of each region.

A.1.2 Crime Prediction (CP). We provide more details about the
Manhattan dataset. As introduced in [40, 51]: (1) Census block data
contains the boundaries of 180 regions split by streets in Manhattan.
(2) Taxi trip data records around 10 million taxi trips during one
month among regions. (3) POI data includes information of nearly
20 thousand POIs, which can be divided into 14 categories. (4)
Crime data consists of more than 35 thousand crime records during
one year in these 180 regions. We construct 14-dimensional POI
category distribution region features similar to CAP task.

4http://www.mohurd.gov.cn/wjfb/201811/W02018113004480.pdf

A.1.3 Dangerous Road Section Detection (DRSD). We further in-
troduce the road data and traffic accident record data used to build
the Los Angeles dataset. The road data describes the location and
connecting relationship of road sections in a city. It is used to build
the graph of road networks, where nodes are road sections, and
edges are added between connected sections. For each node, we
apply Deepwalk [30] to generate the embedding as node features.
As for the accident data, it records the occurrence time and location
of nearly 20 thousand car accidents in December 2021.

A.2 Implementations
We first introduce some basic settings (e.g., input and output layers)
for three tasks. For CAP task, since the input POI and satellite image
features are from different modalities, we apply two dense layers
with 64 hidden units to transform them into the same space, and
concatenate them together to obtain the initial representation (i.e.,
𝒉(0)
𝑖

) of each region. For CP task, the 14 POI category features are
directly used as the initial representation. For DRSD task, the node
representation is initialized by the 64-𝑑 embedding vector learned
by Deepwalk algorithm [30], where we set the walk length as 10,
the number of random walk as 80, and the window size as 5. As
for the output layer, we adopt Linear Regression to get the final
prediction in CAP and CP task. For the node classification in DRSD
task, we use Logistic Regression to obtain the output probability.
Moreover, for all three tasks, we use Adam optimizer for model
training with the learning rate set to 0.001.

Next, we introduce other hyper-parameter settings in SHGNN.
For rotation-scaling spatial aggregation module, we set the head
number𝑀𝑠 = 𝑀𝑟 = 2 to divide neighbors from both the direction
and distance view. Specifically, we partition 𝑛𝑠 = 4 sectors under
each head and the rotation angle is set to 45 degrees for all three
tasks. In the distance view, we set different ring numbers in three
tasks. For CAP task and CP task, we partition 𝑛𝑟 = 3 rings per
head, and the interval of each distance bucket is set to 1.5𝑘𝑚 (under
the head 𝑚 = 1) and 2.5𝑘𝑚 (head 𝑚 = 2), while for DRSD task,
we set 𝑛𝑟 = 2 with 100𝑚 (head𝑚 = 1) and 200𝑚 (head𝑚 = 2) as
bucket intervals. The hidden size is set to 32 for all the tasks. For
heterophily-sensitive spatial interaction module, the hidden size of
the two dense layers used to fuse two spatial views are set to 32,
128, and 32 for CAP, CP, and DRSD task, respectively. We apply
one SHGNN layer between the input and output layer to learn the
node representation based on the urban graph.

A.3 Baseline Descriptions
• GCN [18] is a classic message passing homophilic GNN model.
• GAT [36] uses self-attention mechanism in the feature aggrega-
tion. It also implicitly assumes that the graph is homophilic.

• Mixhop [1] is a GNN model for heterophilic graphs. It directly
aggregates features from higher-order neighbors, which can iden-
tify feature differences among neighbors.

• FAGCN [2] is a heterophily GNN that extends the message from
neighbors to be signed value. Its aggregation process can capture
the high-frequency signals in the neighborhood.

• NLGCN [26] tackles the heterophily by rebuilding the homophilic
neighborhood for similar nodes. The similarity of two nodes is
measured by their attention scores to a calibration vector.
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Table 3: Efficiency comparison in the commercial activeness prediction task.
GCN GAT Mixhop FAGCN NLGCN GBKGNN GPRGNN PRIM SAGNN KnowCL SHGNN

Training time (s / epoch) 0.054 0.125 0.113 0.105 0.070 0.222 0.057 0.172 0.474 0.017 0.392
Inference time (s / instance) 0.003 0.004 0.033 0.005 0.031 0.005 0.003 0.006 0.008 0.001 0.018

• GPRGNN [5] combines intermediate representations from each
GNN layer (including ego features). It achieves remarkable per-
formance on general heterophilic graphs.

• GBKGNN [8] tackles the graph heterophily problem by applying
two different feature transformations for homophily node pairs
and heterophily node pairs, respectively.

• SAGNN [20] includes the spatial information of neighbors in
feature aggregation. It considers neighbors’ direction by splitting
sectors, and processes their relative position by dividing grids.

• PRIM [4] is a GNN-based framework working on POI graphs,
with the consideration of geographical influence. When aggre-
gating neighbor features, it modifies the attention score with a
spatial distance score calculated by radial basis function (RBF).

• KnowCL [27] is specifically designed for socioeconomic predic-
tion. It uses GCN encoder to extract multiple knowledge from
an urban knowledge graph, and infuse it to region’s visual repre-
sentation through cross-modality contrastive learning.

• NNCCRF [49] is a crime prediction method. It integrates Con-
tinuous Conditional Random Field (CCRF) with neural network
to model region interactions for crime prediction.

• RFN [13] is an improved GCN designed for prediction tasks on
road networks. It simultaneously captures two interdependent
views of relations, between both intersections and road segments.

A.4 Additional Experimental Results
Efficiency.We also conducted an experiment in CAP task to evalu-
ate the efficiency of SHGNN. We compare SHGNN and all baselines
in this task, in terms of the training time per epoch and the infer-
ence time of an instance. As shown in Table 3, the efficiency of
SHGNN is affordable (0.392 seconds for training one epoch, and
0.018 seconds for inferring one instance), since our model can han-
dle spatial heterophily on the urban graph, and achieves significant
performance improvements over all baselines.

Parameter Analysis. The results of parameter analysis in CAP
and DRSD task are shown in Figure 7 and 8.

A.5 Complexity Analysis
We further analyze the complexity of SHGNN. First, in the rotation-
scaling spatial aggregation module, the computation cost comes
from the spatial-aware aggregation process. Its complexity is:

O((𝑀𝑠𝑛𝑠 +𝑀𝑟𝑛𝑟 ) |V|𝑑2 + (𝑀𝑠 +𝑀𝑟 ) |E |𝑑),
where |V| and |E | denote the number of nodes and edges, and 𝑑
denotes the node feature dimension. 𝑛𝑠 and 𝑛𝑟 denote the number
of sectors and rings. 𝑀𝑠 and 𝑀𝑟 are head numbers of the multi-
head sector partition in direction view and ring partition in distance
view. To explain, in the direction view, the term O(𝑀𝑠𝑛𝑠 |V|𝑑2) is
the cost of feature transformation for nodes in 𝑛𝑠 different sectors,
under𝑀𝑠 heads of sector partitions. And O(𝑀𝑠 |E |𝑑) corresponds
to the cost of the feature aggregation process. Similarly, the part
O(𝑀𝑟𝑛𝑟 |V|𝑑2 +𝑀𝑟 |E |𝑑) is for the distance view.
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Figure 7: Parameter analysis in CAP task.
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Figure 8: Parameter analysis in DRSD task.

Table 4: Mathematical notations.

Notation Description

G The urban graph
V, E,𝑿 The node set, edge set and node attributes of G
N(𝑣𝑖 ) The neighborhood of node 𝑣𝑖 on G
𝒉𝑖 The representation of node 𝑣𝑖

𝑠𝑘 , 𝑟𝑘 The partitioned direction sector and distance ring
N𝑠𝑘

(𝑣𝑖 ) The direction-aware neighborhood of node 𝑣𝑖
N𝑟𝑘

(𝑣𝑖 ) The distance-aware neighborhood of node 𝑣𝑖
𝒛𝑖,𝑠𝑘 The representation of sector 𝑠𝑘 around node 𝑣𝑖
𝒛𝑖,𝑟𝑘 The representation of ring 𝑟𝑘 around node 𝑣𝑖

In the heterophily-sensitive spatial interaction module, the com-
plexity of commonality and discrepancy kernel are both:

O((𝑀𝑠𝑛𝑠 +𝑀𝑟𝑛𝑟 ) |V|𝑑2 + (𝑀𝑠𝑛
2
𝑠 +𝑀𝑟𝑛

2
𝑟 ) |V|𝑑),

where the first term is to extract the common knowledge / differ-
ence information, and the second term is the cost to compute the
commonality / dissimilarity degree among sectors and among rings.
Then, the computation cost of attentive component selection is also
O((𝑀𝑠𝑛𝑠 +𝑀𝑟𝑛𝑟 ) |V|𝑑2). Overall, the total complexity of SHGNN
is the combination of the above two modules:

O((𝑀𝑠𝑛𝑠 +𝑀𝑟𝑛𝑟 ) |V|𝑑2 + (𝑀𝑠𝑛
2
𝑠 +𝑀𝑟𝑛

2
𝑟 ) |V|𝑑 + (𝑀𝑠 +𝑀𝑟 ) |E |𝑑) .
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