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Abstract—Computational methods can automate the task
of protein function prediction, which is expensive and time-
consuming if conducted in traditional laboratory settings. How-
ever, most of the current methods overlook the inherent primary-
tertiary hierarchy that exists between the different representation
phases a protein goes through. That is sequence and three-
dimensional (3D) structure conformation. They either work with
one form of representation or the other. In this work, we
propose a deep learning model that successively leverages the 3D
representation and sequence representation for protein function
prediction. We conduct an extensive experimental evaluation
on two public datasets to show that our method outperforms
state-of-the-art approaches on protein function prediction. Source
code and data are available at https://github.com/PaddlePaddle/
PaddleHelix/tree/dev/apps/protein function prediction/PTHL. A
web server to represent the proposed method for protein
function prediction is available at https://paddlehelix.baidu.com/
technique#PTHL.

Index Terms—Protein function prediction, Graph neural net-
works, Protein 3D geometry, Protein sequence

I. INTRODUCTION

Proteins display a wide variety of functions ranging from
the growth to the maintenance of the body [1]. Being able
to determine these function(s) can be instrumental in solving
tasks such as the development of new drug therapies [2–
4]. Manually determining these functions through wet-lab
experiments can be expensive and time-consuming. Many
computational methods are therefore being employed, among
which learning-based methods are showing exciting results.

A protein is a sequence of amio acids/residues (at the
primary structure level) which determines how the protein will
fold into a three-dimensional (3D) structural conformation (in
the tertiary structure level) in an Euclidean space. As shown in
Fig. 1, this structural conformation determines the function(s)
of the protein [5, 6]. There is, therefore, an inherent primary-
tertiary hierarchy entailed in a protein representation. Due to
the great success of deep learning on sequential data such as
texts, natural language processing (NLP) models have been
used for the protein function prediction, where the protein
sequence is considered as a sentence, that is, a sequence of
characters [7–11]. Other methods have only focused on ex-
ploiting the structural representation of proteins instead. Here
as well, following the success of 3D Convolutional Neural
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Fig. 1. A protein starts as a sequence of amino acid residues (in the primary
level) and later folds into a 3D structure (in the tertiary level) which, in turn,
determines functions of the protein.

Networks (CNN) in Computer Vision, some proposed methods
have considered representing the 3D spatial representations as
3D grids [12]. However, this approach is not memory efficient,
as the decomposition of a protein into grids is not trivial
and most of the space is unoccupied. An alternate structural
representation treats a protein as a 2D graph generated from
its contact-map [13, 14]. Yet, representing a 3D object in 2D
loses some critical 3D geometry features. In both cases, that
is, sequence representation only and structure representation
only, important information is ignored.

We propose Primary-Tertiary Hierarchical Learning (PTHL)
for protein function prediction that represents proteins by
considering both primary (sequential) and tertiary (3D struc-
ture) levels. The 3D structure is utilized to learn fine-grained
representation with a specially designed Protein Geometry-
aware GNN (PG-GNN). This representation is then used in
a sequence learning model, Primary-Tertiary encoder (PT-
Encoder), to get the final representation of a protein. This
learns protein representation hierarchically with information
flowing from the fine-grained 3D structural conformation to
the sequential representation.

PG-GNN aims to learn the protein geometry information
at the tertiary structure level. The novelty of PG-GNN relies
on a Residue-wise Reflection Vector Perceptron (RR-VP),
as well as an α → β oriented message passing tailored
to learn protein tertiary structure. Taking Geometric Vector
Perceptron (GVP) [15] as the basis model to process the
residue features, RR-VP is devised to encode the geometry
information of each residue associated with its local reference
frame. Compared with the common message passing of GNNs,
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the novel part of the α → β oriented message passing is
to take the relative positions/directions between two residues
into consideration. The primary-tertiary encoder (PT-Encoder)
uses a transformer encoder to process the sequence of residues
whose representations are output by PG-GNN.

In summary, the main contributions of this work are:
• We propose a method, PTHL, for protein function predic-

tion that processes a protein in a hierarchical way by first
learning the fine-grained 3D structural conformation of
residues. These are later leveraged by a sequence model
to predict the final protein function.

• We propose a protein geometry-aware graph neural net-
work which uses RR-VP to preserves not only the geome-
try of the 3D structural conformation of a protein, but also
the geometry of each residue. We further improve this
method by incorporating the relative position of residues
when doing message passing.

• Experimental evaluation performed on several public
datasets shows improvement in performance compared
to state-of-the-art methods.

II. RELATED WORK

Proteins are mainly represented as either sequence or struc-
ture data. Sequence-based methods have borrowed methods
developed in NLP by considering the protein sequence as a
sentence [16]. The majority of methods for protein/enzyme
function prediction in the sequence-based category have em-
ployed 1D CNNs [8, 9, 17]. Similar trends have been also
observed in other protein-related tasks such as protein fold
classification [18], and protein-compound interaction [19].
The increasing availability of public protein databases has
prompted an advancement in protein representation learning
[20–23], however, these methods usually require a very high
computation cost to train protein language models on a large
amount of protein database. Since proteins’ functions are
strongly dependent on their spatial representations, 3D CNNs
have been adopted where a protein is treated as a volume that
can be divided into a 3D grid [12].

Other approaches consider proteins as graphs, where
residues are represented as nodes and the links between them
are generated based on their proximity in the Euclidean space.
GNNs are the go-to deep learning architectures when taking
the graph representation approach [13, 14, 24–26]. Jing et al.
[15] proposed geometric vector perceptrons/neurons which
extends 1D scalar operations to 3D vectors for protein 3D
representation learning. However, these methods overlook the
inherent hierarchy between different structure levels of a
protein. That is, the sequential and structural representations.
In this work, we present a method that combines them by
flowing information from the fine-grained 3D representation
of a protein to the sequential one, from which the final protein
representation is derived.

III. PROBLEM FORMULATION

Proteins are composed of one or more long chains of
residues (amino acids) called protein chains. Each protein

chain plays a set of roles that define its functions in the
organism. We are, therefore, predicting the function(s) of the
individual protein chains (of a protein). This task follows
the same setting of previous studies, like [13]. Furthermore,
protein functions, depending on biological activities they are
involved in, environments where they occur, are divided into
three categories: molecular function (MF), cellular component
(CC), and biological process (BP). A protein chain can have
functions belonging to each one of these categories.

We now formulate the task of protein function as follows.
Given a set of protein chains P = {pi} and the sets of protein
functions Fo (where o ={MF, CC, BP}) , we are proposing
a method that can approximate the underlining (complex)
mapping functions fo : P → Fo that exists between a protein
chain and its function.

IV. METHOD

The overall architecture of our methodPTHL is in Fig. 2.

A. Protein Primary and Tertiary Structures
Our method works successively with proteins’ 3D confor-

mations (tertiary level) and sequences of residues (primary
level). A protein is first represented as a graph G = (V,E),
where each node vi ∈ V represents a residue Ri, and
E ⊂ V × V are the edges. Each node vi is associated
with a 3D vector ci(∈ R3) to account for the protein’s 3D
conformation. This is chosen to be the coordinates of the C-α
of the residue Ri. There is an edge between vi and vj if their
Euclidean distance is less than a given threshold δ, that is,
∥ci − cj∥2 ≤ δ. After learning residues’ 3D representations,
they are rearranged in a sequence (as they naturally occur in
the protein), processed with a sequence-based model to output
the protein’s final representation.

B. Protein Geometry-aware GNN
The basic component of our Protein Geometry-aware GNN

(PG-GNN) is the geometric vector perceptron (GVP)[15].
We improve the GPV as a Residue-wise Reflection Vector
Perpection (RR-VP) to consider the geometry information of
each residue. Finally, we introduce how to use the proposed
α − β oriented message passing method to take the relative
position between residues into consideration of the PG-GNN.

Using a graph to represent a protein loses important 3D
geometry features because graphs only show topological struc-
tures of objects,. To remediate to that, some recent works have
proposed to redefine the notion of features, by distinguishing
between scalar features and vector features [15]. The latter
are derived from vectors and should be treated differently.
Equipping a graph with vector features can preserve and
leverage the information contained in the 3D conformation of
a protein, central to protein functions. Each node is associated
with scalar features s ∈ Rn and vector features V ∈ Rν×3,
represented as a tuple (s,V) ∈ Rn × Rν×3. These features
are processed by a geometric vector perceptron (GVP) in-
stead of the ordinary multi-layer perceptron (MLP) [15] to
obtain the updated features (s′,V′) ∈ Rm × Rµ×3. That is,
(s′,V′) = GVP(s,V) [15].
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Fig. 2. Overall architecture of PTHL. A protein is first transformed into a graph with scalar & vector features. This is fed into our geometry-aware GNN,
PG-GNN, which preserves and learns 3D information from graph. Nodes with ouput features learned from PG-GNN are re-arranged according to the amino
acid sequence order, which is fed to PT-Encoder, a transformer encoder, for sequential learning. The output from the encoder is used for the final prediction
of the protein functions.

1) Residue-wise Reflection Vector Perceptron (RR-VP):
Residues are 3D objects with a conformation of their own.
We propose RR-VP to include this additional geometry infor-
mation into GVP. Each residue Ri is associated with a local
reference frame defined by a base Bi ∈ R3×3, which is used
for message passing and node update in the GNN. Given a
residue Ri (node vi) with Bi, (si,Vi), and N(vi) = {vj |
(vj , vi) ∈ E}, the message passing operation is :

mj→i = [sj ∥ sj,i] ∀j | vj ∈ N(vi) (1)
Mj→i = [Vj ∥ Vj,i]Bi ∀j | vj ∈ N(vi) (2)

(m′
j→i,M

′
j→i) = GVP(mj→i,Mj→i) (3)

where ∥ denotes concatenation, (sj,i,Vj,i) are the features
of the edge from the node vj to vi. Note that in Eq. (2),
vector features are multiplied by Bi to convert them from the
global reference to the local reference of node vi. Updated
node features (s′i,V

′
i) of vi are obtained as follows:

ai =
∑

j:vj∈N(vi)

m′
j→i Ai =

∑
j:vj∈N(vi)

M′
j→iB

T
i (4)

(sselfi ,Vself
i ) = GVP(si,Vi) (5)

s′i = sselfi + ai V′
i = Vself

i +Ai (6)

In Eq. (4), the vector features are multiplied by the transpose
of Bi of node vi to bring them back to global reference system.

2) α → β Oriented Message Passing: Local reference
frame and RR-VP improve the awareness of the 3D geometry
in a graph representation of a protein. However, the 3D
conformations of residues, which are reduced to single points
(nodes) in the graph, are not very much exploited. Therefore,
we improve on these 3D geometry aware operations by con-
sidering the relative positions/directions between 2 residues
when doing message passing.

We define the direction of a residue Ri as the one of the
unit vector pointing from its Cα to its Cβ . Cα is the central
point in the backbone of a protein chain where the different
substituents attach to an amino acid. Cβ is the first carbon
atom of an amino acid side chain. Considering the elative
position between residues is important because the side chains
of residues are instrumental to overall protein 3D conformation
and to determine the functions of the protein.

When updating the features of Ri, its neighborhood is
divided into 2 regions: front (for nodes with direction vectors
within 90◦ from it), and back (for nodes beyond 90◦) (Fig. 3).
These two regions are treated separately during message pass-
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Update for vi is then reformulated from Eq. (6) to obtain:

s′i = sselfi +Wa[a
(front)
i ∥ a

(back)
i ] (7)

V′
i = Vself

i +WA[A
(front)
i ∥ A

(back)
i ] (8)

The rationale behind dividing the neighborhood of a residue
into two regions is supported by the fact that side-chains of
residues (where Cβ is found) point into different directions.
Thus, adjacent residues would likely face into different direc-
tions (which forms the direction Cα → Cβ).

C. Primary-Tertiary Encoder

After applying the PG-GNN on the tertiary structure, we
propose to use a primary-tertiary Encoder (PT-Encoder) to
learn the protein representation upon the primary structure.
After L layers of PG-GNN, we get (sLi ,V

L
i ) for residue Ri.

However, we use only the scalar features sLi for the sequential
learning part. sLi contain the fine-grained 3D geometry which
will be exploited in the primary structure level sequence
representation. To process this sequence we use a Transformer
encoder [27]. The final representation of the protein p ∈ RF is
therefore computed from its sequence features sL1 , s

L
2 , . . . , s

L
n .

o1,o2, . . . ,on = Encoder(sL1 , s
L
2 , . . . , s

L
n) (9)

p =

n∑
i

oi (10)

D. Prediction and Loss Function

Functions of a protein represented by pi are predicted as:

ŷi = sigmoid(MLP(pi)) ∈ [0, 1]C (11)

where C = {|FMF |, |FCC |, |FBP |} (Section III). It is a multi-
label prediction problem on which we apply the binary cross-
entropy loss function LBCE as the objective function.

LBCE =

|P|∑
i=1

C∑
j=1

−yij log(ŷij)− (1− yij) log(1− ŷij)

where ŷij is the jth component of the predicted function
vector of pi and yij is the jth component of its ground truth.

V. EXPERIMENTS

We conducted experiments on two datasets, one for protein
function prediction and the other for enzyme classification.

A. Datasets

We downloaded the PDB dataset 1 and followed the process-
ing and splits proposed by [13] with a threshold δ = 10 Å for
graph generation. Only protein chains with sequences less than
1000 were kept because of the right-skewed distribution of
protein lengths in the PDB dataset. The training, validation
and test sets are split with ratios 8:1:1, that is, 80% of data for
training, and 10% for validation and testing, respectively. The
test set and the remaining sets (that is, training and validation)
are split in a way that there is at most only 40% of sequence

1https://www.wwpdb.org/ftp/pdb-ftp-sites

identity between them. Thus, generalization is accessed on
protein chains (from the test set) with little similarity to those
seen during training and validation. We also consider the
enzyme prediction dataset also proposed in [13]. The dataset
can be downloaded from here2.

B. Settings

1) Features: For residue Ri, si ∈ R22 is a one-hot vector
representing the amino acid type, V ∈ R2×3 is composed of
the units vectors vp, vs ∈ R3 from itself to its predecessor
and successor residue Rp, Rs, respectively. That is,

vp/s = Normalize(cp/s − ci) (12)

Bi of the local reference frame of the residue Ri is defined
as in [28] by considering the x-axis as the vector from Ri’s
N atom to C-α, the y-axis as the cross product between the
x-axis and the vector between its C atom and C-α. z-axis is
the cross-product between the x-axis and y-axis.

2) Metrics: We use the protein-centric metrics Fmax and
term-centric area under the Precision-Recall curve (AUPRC)
for the evaluation of our method same as in [13]

C. Baselines

• DeepFRI [13]: represents proteins as graphs and uses a pre-
trained language model for node feature initialization.

• 3D-CNN: we implimented a 3D-CNN where a protein is
considered as a box which is voxelized following [12]

• 1D-CNN: 1D-CNN for protein representation like in[8]
• CNN RNN follows from [29]. Combination of 1D-CNN

and GRU.
• GCN+PT-Encoder: This method is similar to our method,

but GeomGNN is replaced with GCN [30].
• GAT+PT-Encoder: This method is similar to our method,

but GeomGNN is replaced with GAT [31].
• We also ablate some components of PTHL. PG-GNN,

no transformer encoder; PT-Encoder transformer encoder
only; PTHL(w/o b & f) ignores the division of a residue’s
neighborhood into front and back regions; PTHL(w/o RR-
VP) does not apply the frame reference.

D. Performance Evaluation

TABLE I shows the experiment results. Overall, we can see
that our method performs the best for protein function predic-
tion in most of these categories. This proves how important
it is to consider both states (i.e., sequential and structural)
of proteins for better representation. GAT/GNN+PT-Encoder
are similar to our method but perform poorly, this is because
they fail to capture the 3D geometry of protein structure
which is paramount in determining their functions. However,
failing to model this 3D geometry correctly may also produce
poor performance. For instance, 3D-CNN models proteins as
boxes, which usually results in empty/unoccupied spaces in
the model, and loss of rotation-invariant property of proteins.
Sequential approaches (such as 1D-CNN, CNN RNN) per-
form even better than 3D-CNN due to the lack of proper

2https://github.com/flatironinstitute/DeepFRI



TABLE I
COMPARATIVE PERFORMANCE OF DIFFERENT APPROACHES WITH OUR PROPOSED METHOD. BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE.

Method Molecular Function Biological Process Cellular Component Enzyme
Fmax AUPRC Fmax AUPRC Fmax AUPRC Fmax AUPRC

DeepFRI 45.65 37.81 37.11 17.52 45.01 20.02 67.40 69.32
3D-CNN 29.59 22.60 24.78 10.80 30.20 12.54 45.04 47.80
1D-CNN 28.89 21.23 27.47 12.07 31.82 13.91 47.26 50.61
CNN RNN 38.44 32.88 26.91 14.85 36.30 18.36 52.77 52.28
GCN+PT-Encoder 38.80 32.08 24.58 14.77 25.60 18.85 57.83 52.61
GAT+PT-Encoder 43.08 36.37 28.25 16.19 28.35 19.67 65.24 60.21
PG-GNN 48.35 39.78 32.91 13.13 40.84 17.58 70.11 68.17
PT-Encoder 26.68 15.03 27.92 08.77 37.60 15.16 37.73 36.95

PTHL (Ours) 55.30 50.07 34.89 20.74 34.35 23.01 75.44 75.51

3D geometry handling. Even though PG-GNN is capable of
handling 3D geometry of proteins, it lacks the sequential
representation of proteins, and therefore, resulting in poor
performance compared to PTHL.

E. Ablation Analysis

We further discuss about PTHL and its variants (lacking one
of the components) to showcase its expressiveness (Fig. 4) on
both protein function prediction dataset and enzyme classifi-
cation dataset. We can see that where both the primary and
tertiary structures are used; that is, PTHL, PTHL(w/o RR-VP)
and PTHL(w/o b&f); we have recorded better results than
where this combination is missing (PG-GNN and PT-Encoder).
With the tertiary structure or primary structure taken alone,
there is a decrease in performance, with the worse performance
results registered from PT-Encoder. Even though these two
sources of information are used together in PTHL(w/o b
&f), we can, however, notice a boost in performance when
considering (in PTHL) the back and front regions of a residue
during the message passing, which is also crucial because the
side chains of residues are instrumental to overall protein 3D
conformation. We can also see the importance of performing
the transformation from local system to global system and vice
versa during message passing with RR-VP as PTHL performs
better than PTHL(w/o RR-VP) in most cases.

VI. CONCLUSION

In this paper, we propose a method that models proteins by
leveraging both their primary structure and tertiary structure
representations for protein function prediction. A specially
designed protein geometry-aware GNN processes the 3D struc-
ture of proteins for fine-grained feature learning to be used in a
sequential modeling method for function prediction. We show
through experiments how this combination (primary + tertiary)
is so crucial by quantitatively comparing our proposed method
to the state-of-the-art approaches which usually consider only
one type of representation (i.e., either sequence or 3D struc-
ture). For future work, we want to improve on the protein
geometric learning more appropriate for 3D representation.
How to utilize the primary structure and tertiary structure
learning in other ways also deserves a future investigation.
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[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
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