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Abstract—
Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise
in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the 3D geometry-based biomolecular
structural information is not fully utilized. The essential intermolecular interactions with long-range dependencies, including type-wise
interactions and molecule-wise interactions, are also neglected in GNN models. To this end, we propose a geometry-aware interactive
graph neural network (GIANT) which consists of two components: 3D geometric graph learning network (3DG-NET) and pairwise
interactive learning network (PI-NET). Specifically, 3DG-NET iteratively performs the node-edge interaction process to update
embeddings of nodes and edges in a unified framework while preserving the 3D geometric factors among atoms, including spatial
distance, polar angle and dihedral angle information in 3D space. Moreover, PI-NET is adopted to incorporate both element type-level
and molecule-level interactions. Specially, interactive edges are gathered with a subsequent reconstruction loss to reflect the global
type-level interactions. Meanwhile, a pairwise attentive pooling scheme is designed to identify the critical interactive atoms for complex
representation learning from a semantic view. An exhaustive experimental study on two benchmarks verifies the superiority of GIANT.

Index Terms—Binding affinity prediction, graph neural network, geometry modeling, drug discovery, compound-protein interaction.

✦

1 INTRODUCTION

The prediction of protein-ligand binding affinity has been
widely considered as one of the most important tasks in
computational drug discovery [1]. Here ligands are usually
drug candidates including small molecules and biologics
which can interact with proteins as agonists or inhibitors in
the biological processes to cure diseases. Given a protein, we
are interested in understanding how well a drug molecule
(called a ligand) can interact with this protein. The strength
of interaction between them can be quantified as a numer-
ical score (called the binding affinity), which potentially
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determines whether a ligand can have an effective influence
on the protein (for example, to inactivate a protein to cure
a disease). Therefore, the calculation of binding affinity
is of great significance, and our target is to estimate this
valuable interaction score. Although it can be measured by
experimental methods, those biological tests are laborious
and time-consuming. Thus, data-driven computational ap-
proaches have become increasingly necessary and achieved
remarkable success in various drug discovery applications,
including protein interaction mining [2], molecule genera-
tion [3], and drug reactions prediction [4], which highlight
the efficacy of such methods in tackling complex problems
for drug-based data mining and knowledge discovery. With
similar data-driven learning models, binding affinities can
be predicted in the early stage of drug discovery. Instead
of applying costly biological methods directly to screen
numerous candidate molecules, the prediction of binding
affinity can help to rank drug candidates and prioritize the
appropriate ones for subsequent testing to accelerate the
process of drug screening [5].

With the development of structural biology and protein
structure prediction [6], especially the recent Alphafold
II model [7], there are growing three-dimensional (3D)
structure protein data, which enables a new paradigm
for structure-based drug discovery [8]–[10]. It has been
demonstrated that 3D structural information can effectively
contribute to the drug design [11]. Indeed, since there are
already many accurate and robust algorithms to find poses
of protein-ligand complexes (e.g., binding site prediction
methods and docking methods), it is significant to focus on
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Fig. 1. A brief summary for protein-ligand binding affinity prediction. (1)
Top left: An example of protein-ligand complex (Structure ID in Protein
Data Bank (PDB): 5HMI). (2) Top right: Various complex representa-
tions. (3) Bottom left: Traditional Methods. (4) Bottom right: Machine
learning and deep learning methods.

the much harder task of binding affinity prediction [12]. To
learn useful 3D structure from a protein-ligand complex, as
illustrated in Figure 1, many efforts have been devoted to
estimating more accurate binding affinity for effective drug
design. Docking methods [13]–[15] play an important role
to predict how a specific ligand binds to the target protein
with affordable computational costs. While the docking
process can identify the binding pose of the protein-ligand
complex with relatively high accuracy, its prediction of
binding affinity is inaccurate and unreliable due to poor
scoring functions [12], [16], which limits the applicability of
docking methods in drug discovery. Compared to docking
calculations, traditional machine learning methods [12], [17]
have improved the performance by learning the extracted
features from protein-ligand complexes. However, these ap-
proaches with limited generalizability require expert knowl-
edge and heavily rely on feature engineering.

Recently, deep learning for binding affinity prediction
has become an emerging research area, which represents the
complex as sequence data [18], [19], 3D grid-like data [20]
or graph data [21] to employ various neural networks. One
of the key challenges of deep learning in structural biology
is how to model the 3D spatial structure for better perfor-
mance. To this end, most of the existing works [20], [22],
[23] attempt to apply 3D convolutional neural networks (3D
CNNs) by treating the complex as a 3D-grid representation.
However, the cost of these models is huge, especially when
considering long-range structural interactions. In addition,
both the absence of topological information and the sensi-
tivity to rotation in the complex have a negative effect on
the prediction results.

Despite the powerful ability of graph neural networks
(GNNs) to learn graph representations [24], there are only
a few studies [21], [25] using GNNs to predict the protein-
ligand binding affinity. By contrast, many researchers have
developed GNN models in other fields of drug discovery
[26], [27], such as predicting molecular property [28]–[31],
biological network linking [32], and chemical reactions [33].
Nevertheless, these domain-specific models tend to lose
their effectiveness when modeling the larger biomolecules,
e.g., protein-ligand complexes. In general, most of the exist-
ing GNNs in drug design aim to learn the spatial structure
by incorporating the distance information, which is insuf-
ficient to model the 3D geometric structure of complex.
Moreover, the fundamental pairwise interactive information

between proteins and ligands, which is valuable for predict-
ing the binding affinity [34], cannot be handled under the
current GNN framework.

This paper is an extension of our preliminary work [35].
To overcome the above limitations, in this paper, we propose
a novel Geometry-aware Interactive Graph Neural Network
(GIANT) to learn the constructed complex interaction graph
for protein-ligand binding affinity prediction. GIANT is
equipped with two components to correspondingly address
the challenges, namely the 3D geometric graph learning net-
work (3DG-NET) for modeling the geometric structure in 3D
space and the pairwise interaction learning network (PI-NET)
for leveraging both element type-level and molecule-level
interactions with long-range intermolecular dependencies.

As the first part of GIANT, the key idea of 3DG-NET is
illustrated in Figure 2 which aims to construct the spherical
space for each central target and to apply the node-edge
interactive scheme iteratively. 3DG-NET has the ability to
preserve spatial distance, polar angle and dihedral angle
information of neighbors when performing the aggregation
process, thus it can effectively learn the 3D structure of
protein-ligand complexes.

PI-NET is designed as the secondary part of GIANT
to incorporate global intermolecular interactions. On the
one hand, in view of the large size of the protein, it is
redundant to contain the complete protein structure in the
graph and we construct the spatial-based interaction graph
from the central key structure of complex, but in this way
the type-level long-range interactive information (including
distant solvation effects [36] and electrostatic interactions
[34]) between the protein and the ligand cannot be cap-
tured through such complicated graph without the complete
structure. To deal with this issue, we employ an atomic type-
aware pooling process on edges by introducing an auxil-
iary learning task to reconstruct the interactive matrix for
type-level interaction injection. On the other hand, several
important atoms of the complex can affect pairwise inter-
actions and contribute to the binding affinity. Therefore, we
finally utilize the molecule-level attentive pooling network
to extract the informative biological semantics.

By means of 3DG-NET and PI-NET from two perspec-
tives, our proposed GIANT can enhance the representation
learning for complexes with involving both 3D geometric
structures and global interactions. To summarize, the main
contributions of this paper are as follows:

• To the best of our knowledge, we are among the first to
develop graph neural networks from the perspective of
comprehensive biochemical representation learning in 3D
space for structure-based binding affinity prediction.

• We propose a novel geometry-aware interactive graph
neural network (GIANT), which can capture not only
3D geometric information through distance-aware graph
attention and angle-oriented graph convolution with a tri-
angular fusion scheme in 3DG-NET, but also global long-
range interactions through pairwise interaction learning
network (PI-NET) in a semi-supervised manner.

• We conduct extensive experiments using two benchmark
datasets to evaluate the performance of the proposed
model, which demonstrates the superiority of GIANT
compared with state-of-the-art baselines.
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Fig. 2. An illustration of complex geometric division with three angle domains (in different colors) in 3D space, where θi represents polar angle and
ϕi,j denotes dihedral angle between two adjacent planes.

Compared with our previous conference paper SIGN
[35], the major improvements include: 1) For geometry
modeling, we present a new sufficient paradigm to model
the 3D view for protein-ligand complexes and replace the
angle-oriented graph attention with a triple-wise dihedral
graph aggregation process (TAGG) to enhance the structure
learning. We fulfil the 3DG-NET for integrated complex
modeling with complementary dihedral angle information.
In this way, the proposed GIANT can learn the compre-
hensive 3D geometry instead of partial geometry in SIGN.
2) For interaction modeling, we devise a novel pairwise
interaction learning network PI-NET to further facilitate the
complex representation learning with adding the molecule-
level interaction component, which can capture the inter-
active correlations of both biological element types and
high-level molecules. 3) We significantly extend our exper-
imental evaluation by comparing with our primary work
[35] and showing additional quantitative results for model
effectiveness and parameter analysis. 4) We also provide a
case study to analyze the interpretability of our model in
understanding the protein-ligand interaction patterns.

2 RELATED WORK

In this section, we first review the related literatures about
predicting protein-ligand binding affinity and then detail re-
cent advances in graph neural networks for drug discovery.

Protein-Ligand Binding Affinity Prediction. As a cru-
cial stage in drug discovery, predicting protein-ligand bind-
ing affinity has been intensively studied for a long time [37],
[38], which is of great importance for efficient and accurate
drug screening. The earlier empirical-based methods [14],
[39], [40] design docking and scoring functions specially
to make predictions, while expert domain knowledge is
required to encode internal biochemical interactions. Later
on, statistical and machine learning-based methods [41] are
developed to predict binding affinity based on data-driven
learning, which attempt to extract protein-ligand features
and use classic models for regression, such as random forest
[12] and SVM [17]. These approaches are dependent on the
quality of hand-crafted features and lack of generality on the
larger dataset. Recently, several deep learning-based models
[18], [19] utilize 1D convolutions and pooling to capture
potential patterns from raw sequence information of both
ligands and proteins. However, only using separate charac-
ter representations fails to achieve desirable performance.

Recently, AlphaFold II [7] makes a remarkable achieve-
ment in the field of protein structure prediction, which
adopts the Transformer-based framework designed for pre-
dicting protein’s 3D structure given the amino acid sequence
of the protein. As the increasing availability of 3D-structure
protein-ligand data [42], there is another hot research area
of studying structure-based approaches, which focus on
learning from 3D-structure protein-ligand complexes to pre-
dict binding affinity. The problem of Alphafold II and the
binding affinity prediction problem are two complementary
problems, both of which hold great importance for biologi-
cal data mining and drug knowledge discovery. Some recent
works [22], [23] represent the protein-ligand complex as 3D
grid-like data and use 3D convolutions (3D-CNNs) to take
advantage of spatially-local correlations. Though these ap-
proaches can learn spatial information, one limitation is that
positions of proteins and ligands in different complexes are
changeable, such as different angle rotations, which means
the spatial structure of 3D grid-like modeling is inevitably
incomplete. More recently, OnionNet [43] employs CNN
models to learn the complex representation from the ex-
tracted element-specific interaction features between a pro-
tein and its ligand. However, all the above models neglect
the critical topological structure information of complexes.
In the work [25], a protein-ligand complex is represented as
a weighted graph with distance information. Then graph at-
tention networks are applied to predicting the interactions.
Nevertheless, only distance information between atoms is
not adequate to model 3D-structure interactions. In this
paper, we also focus on the structure-based prediction of
protein-ligand binding affinity with incorporating abundant
spatial information.

Graph Neural Networks for Drug Discovery. Inspired
by the great advantage of graph neural networks (GNNs) in
modeling graph data, more attention has been devoted to
applying them in computational drug discovery [26], such
as the prediction of molecular property [44] and protein
interface [45]. Treating the molecule as a graph, GNNs can
learn the graph-level representation for drug or protein by
aggregating structural information. GraphDTA [21] adopts
GNN models [46]–[48] to learn drug presentation with com-
bining the protein representation from 1D convolutions to
predict binding affinity. In attributed molecular graphs, the
edges between atoms contain valuable information, such as
distance or bond order. To leverage rich attributes in the
molecule, edge-oriented message passing neural networks
[28], [49], [50] are proposed to update both node and edge
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Fig. 3. An illustrative example of converting the protein-ligand complex
into a complex interaction graph.

TABLE 1
Mathematical notations.

Notation Description

VP ,VL The atom node sets of protein and ligand
MP ,ML The 3D position matrices of protein and ligand
GI The complex interaction graph
ai The i-th atom node in GI
eij The directed edge from atom ai to atom aj

Ne(ai), Ne(eij) The neighboring edges of atom ai and edge eij
ai, eij The embedding vectors of atom ai and edge eij
dij The spatial embedding vector between ai and aj
Q The number of angle domains
θkij The polar angle between eki and eij

ϕk1ik2
The dihedral angle between ek1i and ek2i

hP , hL The graph embeddings of protein and ligand

embeddings. Meanwhile, there are also some efforts to
model the 3D-structure of molecule by improving GNNs
with spatial information, such as distance [25], [29], angle
[30], [51], and 3D coordinate [52]. However, these models
fail to consider the spatial interactions between proteins
and ligands. In addition, the function of learning angle
information in [30] is designed for density functional theory,
which is only beneficial for predicting molecular properties
rather than protein-ligand binding affinity. Moreover, re-
cently there are long-range interaction learning GNN mod-
els, while they are designed for specific applications (such
as user-item interaction in social recommendation [53], [54])
and only focus on node-wise interactions [55]. To overcome
these limitations, we propose an multi-level interaction-
aware GNN framework with integrating both distance and
angle factors harmoniously.

3 PRELIMINARIES

In this section, we introduce some definitions used in our
model and formulate the structure-based prediction prob-
lem for protein-ligand binding affinity. The frequently used
key notations in this paper are summarized in Table 1.

Definition 1. Complex Interaction Graph. Given a protein-
ligand complex as shown in Figure 3(a), we define
the atom node sets of protein and ligand as VP =
{aP1 , ..., aPm} and VL = {aL1 , ..., aLn} with the position
matrix MP ∈ Rm×3 and ML ∈ Rn×3 for 3D atomic
coordinates, respectively. Then we define the complex
interaction graph as a directional graph GI =< V, E >,
where the vertex set V is a subset of atom node sets
of protein and ligand, i.e. V ⊆ VP ∪ VL and the un-
weighted edge set E = fe(VP ,VL,MP ,ML) is con-
structed based on the spatial positions of atoms in the
complex. Specifically, except the VL, the protein’s atoms

close to the ligand from VP are selected to add into V .
We then update the complex edge set E by adding into
the edges of atom pairs whose distances are shorter
than the cutoff threshold θd. The distance between atom
nodes is calculated using the Euclidean distance, which
is a widely employed distance metric that measures
the straight-line spatial distance between two points
in three-dimensional space. By applying the Euclidean
distance calculation, denoted as dij =

√
(ML

i −MP
j )2,

we can precisely quantify the spatial separation between
atom nodes. Formally, the edge set is represented as
E = {(ai, aj)|ai, aj ∈ V, s.t. dij ≤ rθ}. The detailed
construction process is described in Algorithm 1.

Algorithm 1: Graph Construction Process.
Input : The position matrix MP and node set VP

The position matrix ML and node set VL

The cutoff distance rθ
Output: The graph GI =< V, E >

1 Initialize V ← VL, E ← {};
2 for atom node pair (ai, aj) ∈ VL × VP do
3 Calculate distance dij ← |ML(ai)−MP (aj)|;
4 if dij ≤ rθ then
5 Update node set V ← V ∪ {aj};
6 end
7 end
8 Combined position matrix

M ← CONCAT (ML,MP );
9 for atom node pair (ai, aj) ∈ V × V do

10 Calculate distance dij ← |M(ai)−M(aj)|;
11 if dij ≤ rθ then
12 Update edge set E ← E ∪ {eij = (ai, aj)};
13 end
14 end
15 return V, E

Definition 2. Edge-oriented Neighbors. Given an atom
node ai or a directed edge eij (i.e., ai → aj) in the
complex interaction graph GI , the edge-oriented neigh-
bors Ne of ai or eij are defined as the sets of directed
edges {eki, ..., eli} which point to the target atom ai or
the target edge eij .

Taking Figure 3(b) as an example, the edges e21 and
e41 are connected to the edge e13 via the common node
a1, the edge-oriented neighbors of e13 are denoted as
Ne(e13) = {e21, e41}. Similarly, the edges e13, e53 and e63
point to the atom node a3, resulting in the neighbors set
Ne(a3) = {e13, e53, e63}.

Problem 1.
Structure-based Protein-Ligand Binding Affinity Pre-
diction. Given a protein-ligand complex with 3D struc-
ture, i.e., the complex interaction graph GI and the 3D
position matrix M , our goal is to learn a regression
model f(GI ,M) to precisely predict the numerical bind-
ing affinity score, which represents the strength of inter-
action. Then we can discover drug molecules (ligands)
with higher scores, which reflect stronger interactions
between proteins and ligands.

4 MODEL FRAMEWORK

In this section, we present the proposed GIANT model for
protein-ligand binding affinity prediction. We first introduce
the overall framework and then describe the details of each
component for geometric and interactive modeling.
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Fig. 4. The distribution of distances between atoms within 5 Å in the
protein-ligand complex from PDBbind dataset.

4.1 Overview

Figure 5 exhibits the architecture which takes the complex
interaction graph GI as an input. We start with the 3D
geometric graph learning network (3DG-NET), which is
composed of node→edge and edge→node interaction layers.
3DG-NET can propagate the node’s and edge’s embeddings
alternately with learning the geometric distance and angle
information in the 3D space. The two parts of 3DG-NET
play a synergistic effect on modeling the spatial structure of
the complex. After that, we apply the pairwise interaction
learning network (PI-NET) which explores the interactive
correlations in both type-level and molecule-level views.
The type-level interaction layer performs on the edges’
representations to obtain the atomic type-based interaction
matrix of the complex, while the molecule-level interaction
layer can learn the interactive pattern across the semantic
structures of proteins and ligands to generate the ultimate
representation. From a global view, PI-NET aims to approx-
imate the overall interactions between proteins and ligands
to improve the prediction performance. Finally, the model
is trained through multi-task learning with augmented con-
straints for the interaction matrix and the spatial distribu-
tion, which serves as additional self-supervised tasks.

4.2 3D Geometric Graph Learning Network

Standard GNNs have shown great advantages in learn-
ing topological structure of the general graph, which can-
not take atom’s spatial position into account in the 3-
dimensional space. To model the 3D structure of a complex,
an intuitive method is to provide atom’s 3-dimensional
coordinate in the GNN architecture [52]. However, the po-
sition information under the Cartesian coordinate system
is sensitive to both translations and rotations, causing poor
generalization of models when learning the complex repre-
sentation. Several models, such as GNN-DTI [30] and MAT
[29], manage to combine the distance information in the
aggregation process, while only pairwise distance is not ad-
equate. Different from DimeNet [30], which specially design
spherical Bessel functions in GNN for density functional
theory (DFT) approximation with limited ability to model
the larger biological complex, we propose to employ itera-
tive geometry-aware node→edge and edge→node interaction
layers to incorporate both distance and angle information
from a spatial distribution perspective.

4.2.1 The Architecture of 3DG-NET

Inspired by the spherical coordinate which is composed
of radial distance r, polar angle θ and dihedral angle ϕ,
we develop an interaction-based graph neural network to
leverage both the distance between nodes and the angles

between edges in a collaborative framework. As illustrated
in Figure 2, when aggregating for edge eij , we treat it as
the zenith direction z. To easily understand the geometric
distribution in the original 3D space, we show the 2D view
profile graph along the direction of z in Figure 2(b). To
keep the original 3D geometric factors, in the profile graph
of 2D view, we preserve the real polar angle and radial
distance which are calculated in the 3D space for each
edge. The edges in the 2D view graph can be seen as the
rotated edges from the 3D space to the 2D plane with the
same polar angles. Under such a definite polar coordinate
system in 2D view graph, the edge-oriented neighbors are
distributed around eij with unique identifying coordinates
(r, θ). Through the method of dividing angle domains in 3D
space, the spatial distribution for the complex can be taken
into account. In each angle domain, the dihedral angle ϕ
is formed by two adjacent planes and we can obtain the
domain-specific angular views in Figure 2(c). To integrate
the dihedral angle and further learn the comprehensive 3D
geometry, we develop the 3DG-NET by means of angle-
oriented interaction scheme for edges for protein-ligand
structure understanding in our framework. Specifically, the
triple-wise angular aggregation (TAGG) module first locally
incorporates projection angles in each domain, then all
domain-level representations are combined via the global
aggregation stage.

Moreover, the distance factor is also helpful for structure
modeling, which reveals spatial correlations. Figure 4 shows
the statistical distribution of distance between atoms. It
can be seen that the distances of covalent bonds mainly
range from 1 to 2 Å, while noncovalent interactions, like
hydrophobic and van der Waals interactions, and hydro-
gen bonds, are distributed over longer distances. Atomic
interactions in the complex vary from different distances,
which indicate different spatial relations for atom pairs.
Given the radial distance r between atoms ai and aj , as
shown in Figure 2(d), we first map r to a bucket (i.e., a
distance domain corresponding to a type of relation) and
obtain the one-hot vector xij . Then we apply a dense layer
transformation to get the spatial relation embedding:

dij = Wsxij , (1)

where Ws ∈ Rds×b is the transformation weight matrix and
b is the number of buckets (i.e., spatial relations). To factor in
these correlations, we design the distance-aware attention in
the second interaction stage for nodes. As shown in Figure
5(a), the overall geometry-aware interaction process at l-th
layer is defined as:

e
(l)
ij = f (l)

({
(a

(l−1)
k ,a

(l−1)
i ),∀eki ∈ Ne(eij)

})
,

a
(l)
j = g(l)

(
a
(l−1)
j ,

{
e
(l)
kj ,∀ekj ∈ Ne(aj)

})
,

(2)

where e
(l)
ij is the edge embedding, a(l)

j is the node (atom)
embedding, Ne(eij) and Ne(aj) are the edge-oriented
neighbors of edge eij and node aj respectively, and f(·) and
g(·) are interaction functions of node→edge and edge→node
layers which are introduced as follows.

4.2.2 Angle-oriented Node→Edge Interaction Layer
Failing to distinguish neighbor nodes from different direc-
tions in the aggregation process is a weakness of the existing
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Fig. 5. Illustration of the proposed GIANT framework. (a), (b): The two key components 3DG-NET and PI-NET. (c): The joint multi-task learning
module for model optimization. (d), (e): The two inner structures of component 3DG-NET. (f): The type-level interaction layer in the PI-NET.

GNN models. To overcome this inadequacy, we adopt an
angle-oriented graph learning layer to update the edge
representations with integrating abundant geometric angle
information. Since the angle exists between the two edges,
as shown in Figure 5(d), we first get the edge embedding
through aggregating the node features:

e
(l)
ij = σ(W (l)

a→e · [a
(l−1)
i ∥ a(l−1)

j ∥ dij ]), (3)

where W
(l)
a→e is the transformation matrix for atomic com-

bination, the operator ∥ represents concatenation, and σ is
the Relu function.

After obtaining the representations {e(l)ij , e
(l)
ki , .., e

(l)
mi} of

edge eij and its neighbors, we further separate the neigh-
boring edges in 3-dimensional space by applying an angle-
domain divider DA, which plays an intermediate role to
assign each neighbor to the specific angle domain. For exam-
ple, in Figure 2(b), there are seven edge-oriented neighbors
e1i, e2i, ..., and e7i around the central target edge eij . These
neighboring edges are located in three different local angle
domains according to the polar angles between edge eij and
its neighbors. Given the number of angle domains Q (e.g.,
Q = 3 in Figure 2) and the target edge eij for aggregation,
DA can map each neighbor eki to the located angle domain
index:

Indki = DA(eki, eij , Q) =

{
⌈Q · θkij

180◦ ⌉, θkij ≤ 180◦

⌈Q · 360◦−θkij

180◦ ⌉, θkij > 180◦
(4)

where ⌈·⌉ denotes rounding operation to get the integer
index, θkij ∈ [0, 360◦] is the calculated polar angle between

edges eki and eij . Then the subset of edge-oriented neigh-
bors located in the q-th angle domain can be defined as:

N q
e (eij) = {eki | eki ∈ Ne(eij) ∧ Indki = q}. (5)

After reorganizing the neighbors of eij through divider
DA based on the projected profile in 2D view, we then
feed all neighbor subsets from different angle domains
into Q independent propagation layers to capture high-
order dependencies in the complex interaction graph. As
shown in Figure 2(a), the spatial area scope of each angle
domain forms a spherical cone, where exists several local
neighboring edges. The spatial distribution in 3D space is
synergistically determined by polar angle θ and dihedral
angle ϕ. While the separated angle domains can indicate the
geometric information of polar angle, the other geometric
factor, dihedral angle, should also be perceived by the edge-
level interactive stage.

To incorporate the significant dihedral angle information
into the GNN, we further devise a triple-wise local aggrega-
tion (TAGG) process in each angle domain. As illustrated
in Figure 2(b) and Figure 2(c), all neighboring edges in
one angle domain are projected into a two-dimensional
plane, which is called azimuthal pattern, to incarnate the
local distribution from the aspect of projection angle. To
calculate the consecutive angles between edges, we specify
the clockwise direction and obtain the dihedral angle ϕk1ik2

between two adjacent edges ek1i and ek2i in the q-th angle
domain Aq . We define the update function for the q-th
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azimuthal pattern as:

m
(l)
ij,q =

∑
ek1i∈Nq

e (eij)

ek2i∈Nq
e (eij)

ftri,q(e
(l)
k1i

, ϕk1ik2 , e
(l)
k2i

) · fadj(ek1i, ek2i),

e
(l)
ij,q = Mupdate

q

(
Mfe

q (e
(l−1)
ij ),m

(l)
ij,q

)
, 1 ≤ q ≤ Q,

(6)

where m
(l)
ij,q is the q-th local aggregated edge represen-

tation at l-th layer, ftri,q represents the triple-wise angle
learning function introduced later, the boolean function
fadj(ek1i, ek2i) returns 1 only if ek1i is adjacent to ek2i along
the clockwise direction, Mupdate

q and Mfe
q refer to dense

layers for edge transformation in each angle domain. More-
over, we first apply the RBF (Radial Basis Function) kernel
which has been proved to be advantageous for geometry
encoding [56] to convert the scalar dihedral angle ϕk1ik2

to
the geometric feature:

ϕk1ik2
= RBF(ϕk1ik2

) =
K
⌢
k=1

exp
(
− β(ϕk1ik2

− µk)
2
)
, (7)

where ⌢ means the concatenation operator over the scalar
angle value to form a K-dimensional geometric representa-
tion. The K central points {µk} are uniformly picked out
between 0 and 2π, while β is ( 2πK )−2. Under the assumption
of equal distribution [56], RBF learning process can encode
dihedral angles based on the fine-grained spatial splitting
with learnable parameters and then map the geometry
into comprehensive vectors. Since the two adjacent edges
constitute the angle, we adopt the pairwise edge encoder to
extract the angle context representation ẽ

(l)
k1ik2,q

:

ẽ
(l)
k1ik2,q

= Mp
q

(
Mfe

q (e
(l)
k1i

) ∥Mfe
q (e

(l)
k2i

)
)
, (8)

The dense layers Mfe
q can project edge representations to

the same space. Mp
q are utilized to combine the pairwise

information. Then we propose a triangular fusion scheme to
integrate informative dihedral angles continuously:

ftri,q(e
(l)
k1i

, ϕk1ik2 , e
(l)
k2i

) = GRU
(
ẽ
(l)
k1ik2,q

,W
(l)
ϕ,qϕk1ik2

)
, (9)

where Wϕ,q is the trainable parameter matrix for geomet-
ric transformation in q-th angle domain. GRU represents
the Gated Recurrent Unit for learning spatial order-aware
dependency, which assembles the pairwise edge context
feature and the geometric information of dihedral angle to
comprehend the spatial distribution in 3D space.

Finally we combine all aggregated edge embeddings
obtained from Eq. (6). To completely preserve the geometric
information in different local angle domains, we concatenate
the representations as the global aggregation to update the
angle-aware edge embedding:

e
(l)
ij = [e

(l)
ij,1 ∥ e

(l)
ij,2 ∥ · · · ∥ e

(l)
ij,Q]. (10)

4.2.3 Distance-aware Edge→Node Interaction Layer

After injecting the angle information into the edge embed-
ding e

(l)
ij , we make further efforts to develop an attention-

based edge→node interaction layer to incorporate another
geometric factor in the spherical coordinate system, that is
distance. Specifically, since edges and nodes (atoms) have

different feature spaces, we first convert the edge embed-
ding and node embedding into the hidden representation
ẽ
(l)
ij and ã

(l−1)
j in the same vector space:

ẽ
(l)
ij = W (l)

e · e(l)ij ,

ã
(l)
j = W (l)

a · a(l−1)
j ,

(11)

where W
(l)
e and W

(l)
a are linear transformation matrices,

a
(l−1)
j is the embedding of atom aj from (l − 1)-th layer.

As a result of the variant distances and atomic attributes,
the neighboring edges have different impacts on the target
node. However, the existing GNN models cannot effectively
capture the influence of the distance factor. Hence, as shown
in Figure 2(d) and 5(e), we propose to extend the original
GAT [47] with the distance-aware attention to fuse the
distance information with the capability of discriminating
multiple spatial relations among atoms:

w
(l)
ij = LeakyRelu(vT

l · [ẽ(l)ij ∥ ã(l)
j ∥W (l)

d dij ]),

β
(l)
ij =

exp(w
(l)
ij )∑

etj∈Ne(aj)
exp(w

(l)
tj )

,
(12)

where vl is the trainable parameter of edge→node attention
at l-th layer, W (l)

d is the trainable parameter matrix for dis-
tance transformation, the final calculated attention weight
β
(l)
ij reflects how important the edge eij is for the node aj .

Then we develop the distance-aware attention to multi-head
attention version as GAT for better stability and apply the
aggregation process from edge to node:

a
(l)
j =

1

C

C∑
c=1

∑
eij∈Ne(aj)

β
(l)
ij,c · ẽ

(l)
ij,c, (13)

where C is the number of independent attention heads.
Due to the angle injection for edge embedding ẽ

(l)
ij,c and the

distance injection for attention weight β
(l)
ij,c, our proposed

model can comprehensively incorporate multiple geometric
information in the complex.

After performing L geometric interaction layers, finally
we obtain the node embedding aj = a

(L)
j for atom aj and

the edge embedding eij = e
(L)
ij between atoms ai and aj .

4.3 Pairwise Interaction Learning Network

The binding affinity between the protein and the ligand is
heavily dependent on multiple cross-molecular interactions,
which include atom-level, element type-level and molecule-
level correlations. A pair of influential protein-ligand atomic
nodes can be disconnected and distant from each other (e.g.,
over 10 angstroms). Since interactive atomic pairs may not
reach to each other through a multi-hop message passing
process in a topological view, stacking many GNN layers
may still fail to capture such distant correlations even if it
possibly suffers from the over-smooth problem [57]. As a
result, only node-wise interaction is not adequate without
high-level correlations. As presented in Figure 6, our model
aims to capture multi-level correlations with following a
hierarchical interaction learning scheme: node-wise interac-
tion → type-wise interaction → molecule-wise interaction.
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Fig. 6. The illustration of three different correlations in the protein-ligand complex.

Despite the design of 3DG-NET for atom-level interac-
tions, the global inter-relationship between two molecules
is still not taken into consideration. Specifically, while 3DG-
NET treats the protein-ligand complex as a geometric-
enhanced graph and focuses on aggregating local spatial
information for node-wise interaction, this component fails
to capture the type-wise and molecule-wise interaction. As
illustrated in Figure 6(b) and 6(c), type embedding and
molecular embedding are essential inputs to capture high-
level correlations. However, the 3DG-NET can not utilize
these inputs, which motivates us to design PI-NET to handle
global protein-ligand correlations at the level of element
types and molecules. To tackle this problem, we manage to
develop the PI-NET to throughly learn the representation for
the interaction graph, which can enhance the global protein-
ligand interactions from two perspectives: long-range de-
pendence modeling with type-wise interaction and impor-
tant atom identification with molecule-wise interaction.

From the view of type-wise interaction, the correlations
exist between element type-based aggregations for the pro-
tein and the ligand. We obtain the type embeddings and
construct the interactive matrix with type-wise interactions,
which can be optimized by the first module of PI-NET
(Type-level Pairwise Interactive Constraint). From the view
of molecule-wise interaction, the second module (Molecule-
level Pairwise Interaction Modeling) is adopted to take
advantage of molecular embeddings and identify the inter-
active atoms for the binding affinity.

4.3.1 Type-level Pairwise Interactive Constraint

The complete long-range intermolecular interactions at the
type level between protein and ligand have effects on the
binding affinity [12], [34], while GI cannot provide such
type-level interactive information. To capture the element
type-wise long-range interactions in the complex (e.g., the
Carbon-Carbon co-occurrence interaction), we further in-
put the obtained intermolecular edge representation set
EI as well as the interaction matrix Z constructed from
the additional complete protein structure and introduce an
additional type-level pairwise interactive constraint via self-
supervised training.

Specifically, we first construct the pairwise interaction
matrix Z ∈ R|SP |×|SL| from the complete protein and its
ligand, where SP and SL are atomic type sets of the protein
and its ligand. Each element Tk in SP or Tl in SL represents
the atomic number (e.g., 6) of a certain atom (e.g., carbon
atom C). Following the previous work [12], we calculate
the number of occurrences for a specific atomic type pair
(Tk, Tl) (e.g., (6, 7) for <C,N> pair) within a certain distance

and normalize the result to get the matrix Z:

n(Tk, Tl) =
∑

ai∈VP

∑
aj∈VL

δ(τ(ai), Tk)δ(τ(aj), Tl)Θ(dρ − dij),

Zkl =
n(Tk, Tl)∑

(ai,aj)∈VP×VL Θ(dρ − dij)
,

(14)

where the function τ(ai) returns the atomic type of ai,
δ(·, ·) is a Kronecker delta function which outputs 1 only if
the type of atom is Tk (or Tl) and 0 otherwise, dρ is referred
to as the interaction cutoff distance and a Heaviside step
function Θ is adopted to count protein–ligand atomic type
pairs within the distance dρ.

Since the complex interaction graph is composed of a
protein molecule and a ligand molecule, we aim to leverage
the global intermolecular interactions which focus on the
high-level type pairwise relationships. We use the atomic
type-specific aggregation for node representations which
can integrate the chemical attribute knowledge and struc-
tural context at an appropriate granularity. Specifically, we
take the edge embeddings obtained from 3DG-NET as input
to the atomic type-aware pooling layer, which is shown in
Figure 5(b). There are |SP | × |SL| pooling blocks for type
pairs. One block to gather edge representations belonging
to atomic type pair (Tk, Tl) can be formulated as:

hk,l =
∑

eij∈EI

δ(τ(ai), Tk)δ(τ(aj), Tl)︸ ︷︷ ︸
Divider

Whe
(L)
ij , (15)

where Wh is the shared parameter matrix for edge pooling,
EI contains all representations of the intermolecular edges
in the complex GI , ai and aj are atom nodes connected by
eij , the two δ(·, ·) functions act as a divider to pick up the
corresponding edges. Then we calculate each value of the
approximate interaction matrix:

Z̃kl =
exp(qThk,l)∑
i,j exp(q

Thi,j)
, (16)

where q is the trainable parameter. In the training stage,
we use an additional proximity loss to draw the interaction
matrix Z̃ and Z closer:

Lz =
∑
GI∈D

∥F (Z̃)− F (Z)∥, (17)

where F (·) is the flatten operation for matrix, D is the
training set.

4.3.2 Molecule-level Pairwise Interaction Modeling
After obtaining the representations of node (atom) and edge
(bond) in the complex interaction graph GI , we select out



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

𝒂𝟏,𝑳

𝒂𝟐,𝑳

𝒂𝑳𝑵,𝑳

…

𝒂𝟏,𝑷

𝒂𝟐,𝑷

𝒂𝑷𝑵,𝑷

…

𝑮𝑹𝑼𝑳

𝑮𝑹𝑼𝑷𝒉&'

𝒉('

Attn

Attn

𝑪(→&'

𝒉(*

Attn

𝑮𝑹𝑼𝑳

Attn

𝑮𝑹𝑼𝑷𝒉&*

…

…

𝒉(
+"

𝒉&
+"

𝒉'

…

…

𝒆𝟏𝟐 𝒆𝟏𝟑

Fusion

…

𝑮𝑹𝑼𝑰

Attn

Intermolecular edges

𝒉+#.*

𝑮𝑹𝑼𝑰

Attn

𝒆𝟑𝟒

𝒉𝑻𝒈

𝒆𝒊%𝒋%

…𝒉*

Fused Global Pooling

Decoupled Cross Pooling

𝑪(→&*

𝑪&→(' 𝑪&→(*

Fig. 7. The architecture of the molecule-level interaction network.

three representation sets (protein node set VP , ligand node
set VL and intermolecular edge set EI ) with re-indexing
through the decoupling module:

VP = {ai′,P | ai ∈ VP },
VL = {ai′,L | ai ∈ VL},
EI = {ei′j′ | ai ∈ VP , aj ∈ VL}.

(18)

Then the decoupled representations are fed into the
interaction-aware attentive pooling scheme. We leverage the
GRU as the basic block for molecule-level interaction learn-
ing, which can integrate pairwise molecular embeddings
with the semantic dependence. Different from AttentiveFP
[33] which learns on the small molecular graph and fails
to handle the associated double molecular structures, the
novel PI-NET aims to aggregate the interactive information
from the other molecule (protein or ligand) into each graph
embedding for pairwise characteristics learning.
Decoupled Cross Pooling. As shown in Figure 7, we first
sum the atomic vectors of each molecule and get the initial
molecule-level representations h0

P for protein and h0
L for

ligand. Then the crossed graph attentive pooling layers
with communicative channels for protein and ligand are
employed to learn the interactive context with fusing the
updated molecular embedding. For the protein channel, the
aggregation step with cross attention mechanism at the t-th
layer can be formalized as follows:

αt−1
i,P = LeakyRelu

(
(qt−1

P )T · [ht−1
L ∥ ai,P ]

)
,

Ct−1
L→P =

∑
ai,P∈VP

softmax(αt−1
i,P )W t−1

P ai,P , (19)

where qt−1
P is the trainable parameter to calculate the cross

attention weight αt−1
i,P with combining the ligand embed-

ding in an interactive manner. Ct−1
L→P represents the aggre-

gated context vector, which can figure out the influential
protein atoms for the ligand molecule to guide the interac-
tion. Since the decoupled pooling process is symmetric for
the protein and the ligand, the context vector Ct−1

P→L from
protein to ligand can be generated through the similar cross
attention layer. Then we employ the GRU block to update
the decoupled embeddings for the protein and the ligand:

ht
P = GRU(ht−1

P ,Ct−1
L→P ),

ht
L = GRU(ht−1

L ,Ct−1
P→L),

(20)

Fused Global Pooling. After the derivation of protein em-
bedding hTc

P and ligand embedding hTc

L with Tc stacked
cross pooling layers, we further introduce the fused global

pooling layer to better capture the protein-ligand interac-
tions. We first get the integrated complex representation h0

through the weighting fusion:

h0 = αhTc

L + (1− α)hTc

P (21)

where α ∈ [0, 1] measures the factor between two molecules
when contributing to the fused comprehensive represen-
tation. Considering the situation that the binding affinity
derives from the complicated effects of the interactive edges
between the protein and the ligand, we propose to apply
the attentive global pooling to aggregate the significant
edge embeddings, some of which carry the crucial reactive
information. The pooling mechanism over intermolecular
edges is given as:

γt−1
ij = LeakyRelu

(
(qt−1

I )T · [ht−1 ∥ eij ]
)
,

Ct−1
inter =

∑
eij∈EI

softmax(γt−1
ij )W t−1

I eij ,

ht = GRU(ht−1,Ct−1
inter), t = 0, 1, .., Tg

(22)

where qt−1
I and W t−1

I are learnable parameters at the t-
th global pooling layer. The attention coefficient γt−1

ij re-
veals how important the intermolecular edge eij is to the
affinity. The GRU block is adopted to determine how much
information aggregated from abundant edge embeddings
to be leveraged and how much information of the fused
molecular embedding to be reserved. Benefiting from the
global interactive attention mechanism between protein and
ligand, the influential atomic pairs which greatly contribute
to the binding interactions can be picked out to provide
valuable explanations for the prediction result.

4.4 Optimization Objective
In the last part, we get the final complex representation hTg

after the interaction network PI-NET and use MLP layers as
the regressor to predict the protein-ligand binding affinity:

ŷ = MLP (hTg ). (23)

Then the absolute error between the predicted binding
affinity ŷ and the measured ground truth y is used to
calculate the loss. Thus, we adopt the L1 loss function to
optimize the model:

La =
∑
GI∈D

|ŷ − y|, (24)

where D contains all the protein-ligand complexes with
binding affinities. Moreover, we introduce the graph regu-
larization for spatial angle domains into the loss function,
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which is in view of the assumption that adjacent angle
domains in 3D space should have similar azimuthal trans-
formation matrices in the aggregation process of 3DG-NET:

Ls =
L∑

l=1

Q−1∑
q=1

∥W l
ϕ,q+1 −W l

ϕ,q∥2, (25)

To integrate the effectiveness of both interaction and
geometry for better complex representation learning, we
further combine with the complex interaction constraint in
Eq. (17) as well as the spatial constraint from a geometric
view, and we reach the following overall objective function:

L = La + λzLz + λsLs, (26)

where λz and λs are balancing hyper-parameters to control
the strength of interaction loss and geometric graph regu-
larization respectively.

5 EXPERIMENTS

In this section, we conduct experiments on two standard
datasets to investigate the following research questions:

• RQ1. How does the proposed GIANT model perform
compared against the state-of-the-art methods?

• RQ2. How does the generalizability of GIANT when
trained on the larger but lower-quality dataset?

• RQ3. Will the geometric and interactive factors be effec-
tive and benefit the prediction?

• RQ4. How do the parameter settings (e.g., cutoff distance
and angle domain divisions) affect the prediction result?

• RQ5. How efficient is GIANT compared with the state-of-
the-art models?

• RQ6. Can GIANT provides reasonable interpretations
about the binding affinity from a interactive view?

5.1 Experiment Settings

5.1.1 Datasets
We evaluate all models on the following public standard
datasets for protein-ligand binding affinity prediction.

PDBbind1 is a well-known public dataset [42] in devel-
opment which provides 3D binding structures of protein-
ligand complexes with experimentally determined binding
affinities. In our experiment, we mainly use the PDBbind
v2016 dataset, which is most frequently used in recent works
[23], [43]. Specifically, it includes three overlapping subsets,
i.e., general, refined and core set. The general set contains all
13,283 protein-ligand complexes, while the 4,057 complexes
in refined set are selected out of the general set with better
quality. Moreover, the core set with 290 complexes serves as
the highest quality benchmark for testing through a careful
selection process [58]. Conveniently, we call the difference
between the refined and core subsets, that is 3,767 complexes,
as refined set of PDBbind in the following.

CSAR-HiQ2 is an additional benchmark dataset [59],
containing two subsets with 176 and 167 protein-ligand
complexes. We use this external dataset from an indepen-
dent source to further evaluate the generalization ability.

1. http://www.pdbbind-cn.org
2. http://www.csardock.org

5.1.2 Setup

Following [12], we choose the refined set of PDBbind as our
primary training data because there is considerable overlap
between the full general set and CSAR-HiQ dataset. We
randomly split the protein-ligand complexes in refined set
with a ratio of 9:1 for training and validation. For testing
sets, we use the core set and CSAR-HiQ set with removing
the complexes present in refined set.

Since the lower-quality data of the general set can still
improve the performance of models [60], we conduct the
supplemental experiment on the full general set which is
larger but of worse quality to analyze the generalizability
of our model and baseline methods. As stated above, we
can only evaluate the performance on the core set due to the
overlapping problem of CSAR-HiQ dataset. Following [23],
[43], We randomly select 1,000 complexes from the refined
set as the validating set. The remaining 11,993 complexes in
the general set are used for training.

5.1.3 Evaluation Metrics

To comprehensively evaluate the model performance, fol-
lowing [23], [43], we use Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Pearson’s correlation coeffi-
cient (R) and the standard deviation (SD) in regression to
measure the prediction error. As introduced in [23], SD is

defined as : SD =
√

1
|D|−1

∑|D|
i=1[yi − (a+ bŷi)]2, where ŷi

and yi respectively represent the predicted and experimen-
tal value of the i-th complex in dataset D, and a and b are the
intercept and the slope of the regression line, respectively.

5.1.4 Baselines

We compare our proposed model with comparative meth-
ods including machine learning-based methods (LR, SVR,
and RF-Score [12]), CNN-based methods (Pafnucy [23] and
OnionNet [43]), GNN models GraphDTA [21] for protein-
ligand binding affinity prediction, and GNN-based global
structure learning models (GraphTrans [61] and NL-GCN
[55]). Moreover, various state-of-the-art GNN-based mod-
els which also consider the geometric information (e.g.,
distance or angle) for molecular modeling (SGCN [52],
DMPNN [28], MAT [29], DimeNet [30], and CMPNN [49])
and protein-ligand structure learning (GNN-DTI [25] and
SIGN [35]) are compared to evaluate the performance of
GIANT. The details of baseline descriptions for GraphTrans,
NL-GCN and SIGN are as follows, while other baselines are
introduced in the original paper [35].

• GraphTrans [61] combines the Transformer-based self-
attention with GNN model to learn long-range pairwise
relationship, which can obtain the global graph embed-
ding with topological structural information.

• NL-GCN [55] enables the non-local aggregation scheme
with an attention-guided sorting mechanism for GNNs.
A single calibration vector is utilized to redefine non-local
neighborhoods for global structure learning.

• SIGN [35] is our preliminary state-of-the-art graph net-
work model for the prediction of binding affinity. It is a
basic variant of GIANT, which captures the distance and
angle information as well as structural interactions.
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TABLE 2
Performance comparison on PDBbind core set and CSAR-HiQ set based on the refined training set.

Method PDBbind core set CSAR-HiQ set

RMSE ↓ MAE ↓ SD ↓ R ↑ RMSE ↓ MAE ↓ SD ↓ R ↑

ML-based
Methods

LR 1.675 (0.000) 1.358 (0.000) 1.612 (0.000) 0.671 (0.000) 2.071 (0.000) 1.622 (0.000) 1.973 (0.000) 0.652 (0.000)
SVR 1.555 (0.000) 1.264 (0.000) 1.493 (0.000) 0.727 (0.000) 1.995 (0.000) 1.553 (0.000) 1.911 (0.000) 0.679 (0.000)
RF-Score 1.446 (0.008) 1.161 (0.007) 1.335 (0.010) 0.789(0.003) 1.947 (0.012) 1.466 (0.009) 1.796 (0.020) 0.723 (0.007)

CNN-based
Methods

Pafnucy 1.585 (0.013) 1.284 (0.021) 1.563 (0.022) 0.695 (0.011) 1.939 (0.103) 1.562 (0.094) 1.885 (0.071) 0.686 (0.027)
OnionNet 1.407 (0.034) 1.078 (0.028) 1.391 (0.038) 0.768 (0.014) 1.927 (0.071) 1.471 (0.031) 1.877 (0.097) 0.690 (0.040)

GraphDTA
Methods

GCN 1.735 (0.034) 1.343 (0.037) 1.719 (0.027) 0.613 (0.016) 2.324 (0.079) 1.732 (0.065) 2.302 (0.061) 0.464 (0.047)
GAT 1.765 (0.026) 1.354 (0.033) 1.740 (0.027) 0.601 (0.016) 2.213 (0.053) 1.651 (0.061) 2.215 (0.050) 0.524 (0.032)
GIN 1.640 (0.044) 1.261 (0.044) 1.621 (0.036) 0.667 (0.018) 2.158 (0.074) 1.624 (0.058) 2.156 (0.088) 0.558 (0.047)
GAT-GCN 1.562 (0.022) 1.191 (0.016) 1.558 (0.018) 0.697 (0.008) 1.980 (0.055) 1.493 (0.046) 1.969 (0.057) 0.653 (0.026)

GNN-based
Methods

SGCN 1.583 (0.033) 1.250 (0.036) 1.582 (0.320) 0.686 (0.015) 1.902 (0.063) 1.472 (0.067) 1.891 (0.077) 0.686 (0.030)
GraphTrans 1.539 (0.044) 1.182 (0.046) 1.521 (0.042) 0.714 (0.019) 1.950 (0.072) 1.508 (0.069) 1.886 (0.083) 0.687 (0.033)
NL-GCN 1.516 (0.019) 1.198 (0.013) 1.511 (0.024) 0.720 (0.010) 1.840 (0.024) 1.393 (0.016) 1.817 (0.028) 0.716 (0.011)
GNN-DTI 1.492 (0.025) 1.192 (0.032) 1.471 (0.051) 0.736 (0.021) 1.972 (0.061) 1.547 (0.058) 1.834 (0.090) 0.709 (0.035)
DMPNN 1.493 (0.016) 1.188 (0.009) 1.489 (0.014) 0.729 (0.006) 1.886 (0.026) 1.488 (0.054) 1.865 (0.035) 0.697 (0.013)
MAT 1.457 (0.037) 1.154 (0.037) 1.445 (0.033) 0.747 (0.013) 1.879 (0.065) 1.435 (0.058) 1.816 (0.083) 0.715 (0.030)
DimeNet 1.453 (0.027) 1.138 (0.026) 1.434 (0.023) 0.752 (0.010) 1.805 (0.036) 1.338 (0.026) 1.798 (0.027) 0.723 (0.010)
CMPNN 1.408 (0.028) 1.117 (0.031) 1.399 (0.025) 0.765 (0.009) 1.839 (0.096) 1.411 (0.064) 1.767 (0.103) 0.730 (0.052)
SIGN 1.316 (0.031) 1.027 (0.025) 1.312 (0.035) 0.797 (0.012) 1.735 (0.031) 1.327 (0.040) 1.709 (0.044) 0.754 (0.014)

Ours GIANT 1.269 (0.020) 0.999 (0.018) 1.265 (0.024) 0.814 (0.008) 1.666 (0.024) 1.242 (0.030) 1.633 (0.034) 0.779 (0.011)
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Fig. 8. Performance of OnionNet models with different learning rates.

5.1.5 Parameter Settings

For the proposed GIANT, we use Adam optimizer for model
training with a learning rate of 0.001 and set the batch size
as 32. The balancing hyper-parameters λz and λs are set to
1.75 and 1e-4 respectively according to the performance on
validation set. We construct the complex interaction graph
and interaction matrix with cutoff-threshold θd = 5Å and
θρ = 12Å as suggested in [36], respectively. The basic
dimensions of node and edge embeddings are both set to
128. The number of buckets for spatial relation b is set to
4 with the splitting granularity of 1Å. For 3DG-NET with
two layers, we set the dimension K of the RBF kernel
to 64, the number of attention heads C to 4, the dropout
rate to 0.2, and the number of angle domains N to 6. For
semantic interaction modeling in PI-NET, we set the number
of decoupled cross pooling layers and fused global pooling
layers as 2 and 1 respectively. The fusion parameter α is set
to 0.7. For structure-level interaction layer in PI-NET, there
are 36 pooling blocks in total, where the two atomic type
sets SP and SL are defined as stated in [12]. We implement
GIANT based on PaddlePaddle and the code is available3.

For baseline models, we tune the parameters of each
method based on recommended settings in the paper to
ensure the best performance. For our primary model SIGN
[35], the hyper-parameters are the same as described in
the original paper. For ML-based baselines, the number of
decision trees in RF-score is set to 100, the max-depth of trees
is set to 5, the maximum number of features is set to 3 and
the minimum number of samples required to split is set to

3. https://github.com/PaddlePaddle/PaddleHelix/tree/dev/
apps/drug target interaction/giant

10. For the CNN-based models, we set the channels of three-
layer 3D convolutions for Pafnucy with the learning rate of
1e-5 as 64, 128 and 256. For OnionNet, we experimented
with different learning rates and found that a learning rate
of 0.001 achieved the best performance in our experimental
setup. As shown in Figure 8, instead of using the default
learning rate (0.01) in the original paper [43], our tuned
experiments show that using a learning rate of 0.001 can
further improve OnionNet’s performance in our running
environment with 1.3% and 3.8% improvements of RMSE
and MAE when trained on refined set. Thus, we report the
best performance achieved by a learning rate of 0.001 in our
experimental setup. The number of input features is 3840
and there are 32, 64, and 128 filters in the three convolutional
layers with the kernel size as 4. The maximum length of
protein sequences is set to 1000 and the learning rate is
set to 5e-4 in GraphDTA. The number of graph learning
layers for GCN, GAT, GCN-GAT and GIN are set to 3, 2, 2
and 5 respectively. For GNN-based models, the number of
filters in three-layer SGCN is set to 32 with the dimension
as 36 and the learning rate as 5e-4. We also apply the
data augmentation process to ensure optimal performance.
For fair comparison, the embedding dimension of other
baselines is set to 128 (same as GIANT). For GraphTrans
with 5 GNN layers and 4 transformer layers, the learning
rate is set to 1e-3 with a cosine annealing schedule for
learning rate decay. The kernel size of convolution in NL-
GCN is 5, while the learning rate is fixed to 1e-3. Note that
we stack two layers for non-local graph convolution and
apply the global summation readout with a two-layer MLP
regressor for the binding affinity prediction task. GNN-
DTI with the learning rate of 1e-4 adopts the four-layer
graph attention module, and the initial µ and δ for distance
learning in GAT layers are set to 4.0 and 1.0, respectively.
The weighting coefficients for self-attention, distance, and
adjacency matrices in MAT with the learning rate of 5e-4 are
set to 0.3, 0.3, and 0.4, respectively. For DimeNet with the
learning rate of 1e-3, the number of spherical harmonics and
radial basis functions are set to 4 and 3, respectively. We use
two-layer interaction blocks and three-layer bilinear layers



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

RF-Score
Pafnucy

OnionNet

GraphDTA
SGCN

GraphTrans
NL-GCN

GNN-DTI
DimeNet

DMPNN
CMPNN MAT

SIGN
GIANT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
M

S
E

-0.83%

-9.59%

-7.32%

-6.47%
-2.53%

-2.47%
-8.45% -6.77%

-5.02%
-7.03%

-5.33%
-3.98%

-7.67%
-6.46%

refined set general set

RF-Score
Pafnucy

OnionNet

GraphDTA
SGCN

GraphTrans
NL-GCN

GNN-DTI
DimeNet

DMPNN
CMPNN MAT

SIGN
GIANT

0.8

0.9

1.0

1.1

1.2

1.3

1.4

M
A

E

-2.07%

-11.14%

-5.94%

-5.21%

-0.32%

-1.78% -8.51% -7.05%

-4.39%
-5.81%

-4.39%
-6.5%

-8.28%
-7.81%

refined set general set

Fig. 9. Performance improvements on PDBbind benchmark when training on the general training set.

to make DimeNet work in our experiment. For DMPNN and
CMPNN with the learning rate of 1e-3, the number of edge-
oriented message passing layers is set to 3 and we use MLP
as the communication module in CMPNN.

5.2 Performance Comparison

5.2.1 Overall Comparison (RQ1)

We first compare our proposed GIANT with baseline ap-
proaches on two benchmark datasets. As shown in Table 2,
the average and the standard deviation of four indicators
for testing performance are reported across five random
runs. In general, we can observe that our proposed SIGN
and GIANT achieves the best performance on two datasets,
especially GIANT is with 9.8% and 7.7% improvement of
RMSE over the best baseline models on PDBbind and CSAR-
HiQ datasets, respectively. We also observe the significant
improvements by comparing GIANT with its variant SIGN
owing to the designed 3D geometric learning and the ad-
ditional semantic interaction modeling. We further have the
following observations.

Among all baselines, GraphDTA methods show rela-
tively poor performance due to the failure of considering the
spatial structure and interactions between proteins and lig-
ands. It indicates that simply modeling the molecular graph
with protein sequence information is not capable of pre-
dicting structure-based protein-ligand binding affinity. By
contrast, from the perspective of interaction modeling, the
machine learning-based methods and OnionNet model take
advantage of long-range interaction features and achieve
better results. Please note that the original paper of Onion-
Net only conducted experiments on the larger general train-
ing set. As shown in Figure 8, we conducted comprehensive
experiments under both refined and general training set-
tings to provide a more thorough evaluation. In this experi-
ment, we focus on comparing the performance of OnionNet
trained on the refined set, while we will further compare
and discuss the experimental results of OnionNet trained on
the general set in the next Section 5.2.2. However, these data-
driven approaches relying on feature engineering ignore
the informative spatial structures of complexes and have
limited generalization capability on the additional CSAR-
HiQ dataset. For the global graph structure learning meth-
ods, GraphTrans and NL-GCN perform significantly better
than classic GCN and GAT models due to the capability of
capturing non-local graph topological information. Never-
theless, the lack of global type-wise and molecule-wise inter-
action leads to unsatisfying performance, and these methods
perform much worse than GIANT. From the perspective of
spatial structural modeling, we find that SGCN and GNN-
DTI which incorporate position and distance information
exhibit considerable improvement over the vanilla GCN

and GAT. Since SGCN takes atomic position coordinates
as input directly, it will be easily affected by the rotation
and translation of atoms, and the 3D CNN model Pafnucy
suffers from a similar issue. Thus, the prediction results are
not ideal. Despite leveraging a transformer-like attention
mechanism to handle the spatial structure, MAT is not better
than RF-Score and OnionNet, suggesting the importance of
combining spatial and interactive information. The edge-
oriented model CMPNN outperforms the above methods
because it enhances DMPNN with communication while
propagating the distance information, which shows the sig-
nificance of node-edge message passing process. Although
DimeNet can learn from angle information and perform
slightly better, the performance is still not ideal due to
its limited ability of modeling larger biomolecules. Our
proposed GIANT can not only capture more comprehensive
3D angle-enhanced geometric information instead of just
distance, but also handle both type-level and molecule-level
interactions in the complex through attentive pooling and
multi-task learning framework. Therefore, GIANT is much
effective for modeling the protein-ligand complex and can
accurately predict the binding affinity.

5.2.2 Generalizability Comparison (RQ2)
There is increasing 3D structure-based protein-ligand data
with binding affinity, whereas the amount of high-quality
data in refined set is relatively small. Thus, the ability of
utilizing more lower-quality data to improve performance
shows the generalizability of model, which is another nec-
essary measurement of performance evaluation. As intro-
duced in Section 5.1.2, we conduct the extra experiment of
generalizability on the general set of PDBbind dataset. As
illustrated in Figure 9, we compare the proposed GIANT
with major competitive baselines on two training sets. The
results show that GIANT gets the lowest prediction error
remarkably under both training settings. More importantly,
our model improves the performance by around 6.5% on
RMSE and 7.8% on MAE when trained on the general set
and it further expands the prediction advantage compared
to baselines. Therefore, GIANT is proved to be more gener-
alizable to more data in large quantity but poor quality.

5.3 Effectiveness of Geometric-Interactive Learning
To verify the effectiveness of factors that influence the final
performance, we compare GIANT with its variants on the
two benchmarks. Due to the page limit, we only report
the performance on RMSE metric since the results on other
metrics are also consistent with our analysis.

5.3.1 Impact of 3D Geometry Modeling (RQ3)
We first investigate the impact of geometric learning com-
ponent. The geometry-reduced variants are as follows:
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Fig. 10. Ablation study for geometry, interaction, and multi-task learning.

• noDist excludes the distance-aware graph attention.
• noLocalAngle excludes the triple-wise aggregation mod-

ule without azimuthal angle information.
• noAngle excludes angle-oriented interaction component.
• noGeom excludes 3D geometry factors in 3DG-NET.
• no3DG-Net replaces 3DG-NET with a distance weighted

GCN for protein-ligand structure learning.
Figure 10(a) presents the comparison results of geometry

learning on RMSE. Specifically, noDist, noLocalAngle, and
noAngle perform worse than GIANT since they can only
capture the one-sided geometric structural information, i.e.,
distance or angle information in the complex. We can
also observe that noLocalAngle achieves better performance
than noAngle, demonstrating the importance of azimuthal
angle factor for structure learning. The GCN-based vari-
ant no3DG-Net performs much worse than GIANT, which
shows the general GNN model with distance information
is not effective for complicated protein-ligand geometry
learning. Furthermore, the prediction errors of noGeom
and no3DG-Net are especially high among all variants.
It indicates that modeling the complete geometric struc-
ture has a significant impact on performance improvement.
Overall, our proposed 3DG-NET component of GIANT is
effective for the geometry-based graph and greatly benefits
the protein-ligand representation learning.

5.3.2 Impact of Interactive Modeling (RQ3)
In addition to geometric factors, we also conduct experi-
ments to analyze the impact of pairwise interactive model-
ing. We study the performance of GIANT with the following
settings on the interaction learning network PI-NET:
• noCrossPool excludes decoupled cross pooling process.
• noGlobalPool is lack of fused global pooling process.
• noMolecule removes molecule-level interaction module.

As we can see in Figure 10(b), GIANT outperforms all
the variants removing either cross pooling or global pooling,
verifying each pooling component has its contribution. The
results also show that the lack of molecule-level interactions
leads to performance reduction, which confirms that only
utilizing the geometric factors is insufficient and will lose
the important molecule-wise interactive information.

5.3.3 Impact of Multi-task Learning (RQ3)
To further validate the effectiveness of the multi-task learn-
ing architecture about the incorporation of geometry and
interaction, we remove the additional loss for experiments:
• noInterLoss removes the interaction constraint Lz .
• noSpatLoss removes the spatial regularization loss Ls.

From 10(c), we can note that GIANT achieves better per-
formance than noInterLoss and noSpatLoss on two datasets.
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Fig. 11. Parameter sensitivity on PDBbind dataset.

This indicates the complementary supervised information
from both 3D geometry learning and type-level interactions
can boost the model training and contributes to the perfor-
mance improvements.

As a whole, Figure 10 shows that the proposed GIANT
significantly outperforms all other variants, proving the
necessity of handling the geometric and interactive infor-
mation synergistically which is essential for protein-ligand
binding affinity prediction.

5.4 Parameters Analysis (RQ4)
As depicted in Figure 11, we investigate the perfor-
mance variation for GIANT w.r.t several necessary hyper-
parameters by varying each parameter while keeping oth-
ers fixed as default settings.

Number of 3DG-NET layers L. We first study the
influence of multi-hop propagation with stacking node-edge
interaction layers from 1 to 4. We observe that increasing
the number of layers would not always give rise to a better
result in Figure 11(a). The model with one 3DG-NET layer
has limited ability to model high-order information in the
complex. As a result of over-fitting, the performance of the
model using more than two layers starts to degenerate grad-
ually. Therefore, applying two interaction layers in GIANT
is enough to capture sufficient spatial information.
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TABLE 3
The efficiency studies on the PDBbind dataset.

Model Training (s/epoch) Inference (ms/sample)

Pafnucy 1637.13 11.91
OnionNet 13.54 1.25
DimeNet 30.61 3.23
CMPNN 118.48 30.34
SIGN 34.47 5.46
GIANT 47.43 7.45

Cutoff distance θd. As illustrated in Figure 11(b), we
then analyze the effect of cutoff distance for complex in-
teraction graph construction when varying θd from 3 to 6.
With the increase of θd, more geometric information in the
complex is available to our model and beneficial for learn-
ing complex representation better, which leads to dramatic
performance improvements when θd ≤ 5 Å. After that, too
long cutoff distance will introduce additional redundancies
and degrade the performance.

Angle domain divisions Q. To look deeper into the
impact of angle information in our model, we divide the
angle domains varying from 2 to 10. The results are reported
in Figure 11(c). We can see that the model performs best
when the number of angle domains is 6. Too fine-grained or
coarse-grained divisions will result in performance degra-
dation. One possible explanation is that too fine-grained
divisions cannot provide distinguishable information in 3D
space while the angle domain at a too big granularity
contains quite sparse atomic neighbors, both of which have
an adverse effect on learning 3D geometric structures.

Interactive coefficient λz . Moreover, we change the co-
efficient λz to control the trade-off between the prediction
loss and interaction loss. Figure 11(d) shows that the perfor-
mance first tends to get better with incorporating more type-
level interactive information for long-range dependencies,
and then begins to drop off slightly. In general, our model is
stable with varying coefficients and always achieves better
performance than all baseline methods.

Spatial coefficient λs. We also perform experiments
to evaluate the sensitivity of another balancing coefficient
for spatial regularization. From the results in Figure 11(e),
we observe that applying the spatial regularization can
remarkably improve the prediction performance. Similarly,
the appropriate spatial coefficient can strengthen the ability
of learning the geometric information, while too much effort
on this regularization can also challenge the model training
and make the performance start dropping.

Fusion Factor α. Finally, we test the effect of the fusion
factor α in Eq. (21), and vary it from 0.1 to 0.9. As shown in
Figure 11(f), the performances increase first and then start
to decrease. GIANT achieves the best performance when α
is 0.7, which demonstrates the proposed model should pay
more attention to the central ligand molecule with fewer
atoms for better fused representation learning.

5.5 Efficiency Analysis (RQ5)

To evaluate the computation cost for efficiency analysis,
we compare the proposed GIANT with several competi-
tive CNN-based and GNN-based models in Table 3, which
shows the training time per epoch (3390 samples) and the
average inference time for one sample. It can be observed
that Pafnucy runs much slower due to learning from the

3D structure with the time-consuming 3D-CNN. What’s
more, the 2D-CNN model OnionNet is the most efficient
method thanks to the preliminary feature extraction and
reduces the model running time. However, the complicated
pre-processing stage requires expert knowledge and the
performance is not satisfying. The GNN methods DimeNet
and CMPNN are less efficient since they apply the more
effective message passing scheme to complex structures and
need iterative computation for node-edge interactions. Note
that our GIANT runs much faster than CMPNN and has
the moderate computation cost with significant performance
improvements (9.8% better than OnionNet and 12.7% better
than DimeNet). Moreover, the average prediction time per
protein-ligand complex is around 7.45ms and GIANT is
slightly slower than the primary SIGN, which demonstrates
the computational efficiency of the additionally designed 3D
geometric structure learning and molecule-level interactive
modeling. In summary, the experimental results show that
our model achieves the best prediction accuracy with low
computational cost, which is a promising method for real-
world drug discovery applications in practice.

5.6 Interactive Visualization and Interpretation (RQ6)
Since our proposed GIANT can achieve state-of-the-art
performance, it is quite profitable to further analyze the
predictive interpretability for understanding protein-ligand
interaction patterns. We manage to extract intermolecular
attention coefficients which can reveal significant atomic
pairs in semantic modeling layer to explain the derivation
of the reactive binding affinity. The higher coefficient γij
indicates the more important atomic pair (ai, aj) (i.e., eij)
for interactive contribution. As presented in Figure 12, we
exhibit the top four most influential pairs and top four
least influential pairs between the protein and the ligand
to demonstrate the effective interpretability of GIANT. From
the visualization result for 3D structure, we can observe that
the proposed model is capable of identifying the meaningful
interaction patterns, which are almost consistent with the
knowledge-based interaction analysis by expert. Specifi-
cally, the oxygen atom in the ligand molecule are highly
compatible with the SER-963 and GLU-966 residues and can
promote the final binding affinity. What’s more, the GLU-
957 residue and the nearby nitrogen atom can form the
hydrogen bond and give a high contribution to the protein-
ligand interactions. On the contrary, the LEU-881 and VAL-
889 residues are less correlated to the ligand and have little
impact on the interactive process. In brief, GIANT shows
good agreement with the expert-level domain knowledge
and can provide valuable suggestions to understand the
complex interactions.

6 CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to improve the predic-
tion of binding affinity between proteins and ligands. Specif-
ically, we proposed a GNN-based model, GIANT, to learn
the representations of protein-ligand complexes for better
binding affinity prediction by leveraging the fine-grained
geometric structures and interaction information among
atoms. Along this line, we designed the 3D geometric graph
learning network (3DG-NET) to integrate both distance and
angle information for 3D spatial structure modeling. Also, to
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Fig. 12. Protein-ligand interaction analysis for the complex (4IVB in the core testing set) with the knowledge-based result adopted from [62].

further improve the prediction performance, we introduced
a well-designed pairwise molecular interaction network PI-
NET to capture semantic and structural interactions for
comprehensive representation learning. Finally, the experi-
mental results on two benchmarks showed the effectiveness
and the generalizability of the proposed model.

The integration of heterogeneous graph neural networks
(such as HetGNN [63] and HPN [64]) into the proposed
GIANT framework can potentially improve the model’s
ability to handle diverse interactions among the protein and
the ligand in drug discovery applications. In the future, we
will consider various node types and multiple edge types
for different interactions between proteins and ligands to
construct the heterogeneous interaction graph. Furthermore,
we will combine geometric structure modeling with het-
erogeneous graph learning through the meta-path feature
fusion and an effective training strategy, which enables our
model to learn from large-scale heterogeneous drug data.
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