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Abstract— Online surrogate model-assisted evolution algo-
rithms (SAEAs) are very efficient for analog/RF circuit optimiza-
tion. To improve modeling accuracy/sizing results, we propose an
efficient transfer learning-assisted global optimization (TLAGO)
scheme that can transfer useful knowledge between neural
networks to improve modeling accuracy in SAEAs. The novelty
mainly relies on a novel transfer learning scheme, including a
modeling strategy and novel adaptive transfer learning network,
for high-accuracy modeling, and greedy strategy for balancing
exploration and exploitation. With lower optimization time,
TLAGO can have a faster rate of convergence and more than
8% better performances than GASPAD.

I. INTRODUCTION

To reduce the time-to-market, previous works have reported
many analog/RF circuit sizing algorithms. Among these meth-
ods, simulation-based optimizers usually leverage learning-
based methods to explore design space [1]. Traditionally,
model-free simulation-based algorithms, such as advanced dif-
ferential evolution (DE) algorithm [2] and particle swarm op-
timization [3], perform abundant actual simulations to achieve
good convergence. However, to achieve global optimization,
these methods often require lots of SPICE simulation which
leads to expensive costs.

To avoid abundant simulations when exploring design
space, the parameter (inputs) to specification (outputs) surro-
gate model is popular for assisting optimizers as a “simulator”
to predict circuit performances. Many state-of-the-art model-
based optimization algorithms [4], [5] were reported in the
literature. For example, GASPAD [5], using Gaussian Process
Regression (GPR) as the surrogate model and DE as the
global optimization engine, proposes a classical and efficient
surrogate model-assisted evolutionary algorithm (SAEA). The
main challenge of GPR-based global optimization methods is
their huge modeling time requirement because GPR has the
cubical complexity as the number of samples.

Oriented to multi-performance and stringent constrained
commercial circuits, instead of using GPR, some deep learning
surrogate models have attracted recent attention, such as effi-
cient reinforcement learning-based DNN-Opt [1] and EESAB
methods [6]. These algorithms show the excellent advantages
of neural network (NN) methods in less optimization time
and better optimization results due to low modeling costs and
robust capability in high-dimensional modeling. On the other
hand, PVT fluctuation, as a very critical problem, needs to
be considered in optimization. Generally, we can consider
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the worst result under all corners as the final performance
assessment. PVT simulations will increase sharply in circuit
simulation costs and lead to higher non-linearity, which ex-
pand the demand for high-precision surrogate models. Thus,
with regard to the NN-based methods further improving the
model accuracy (evaluated by optimization results in this
paper) with less modeling time has become an essential task.

Transfer Learning, which learns and transfers some knowl-
edge from the source domain to the target domain, has been
successfully applied to many modeling approaches [7], [8] in
the analog/RF EDA community. Still, none is applied to online
evolution sizing algorithms. In other words, although model-
based evolutionary algorithms have been extensively studied,
none has focused on model storage and reuse of knowledge.
Our insight is that there exists a similarity between different
online modeling sample tasks in SAEA. This work aims to
explore how the transfer learning approach can effectively
transfer knowledge across online models in SAEA algorithms.

We propose a Transfer Learning-Assisted Global Optimiza-
tion scheme (named TLAGO for short). TLAGO obeys the
classical SAEA structures like [5], [9] which use population
elite strategy and surrogate model for sample-efficient ana-
log/RF circuit optimizations. The key idea of TLAGO is to
transfer reusable model knowledge for building high-accuracy
model within the iterative optimization process.

At first, it uses a randomly initialized NN model as a
surrogate model to provide well-trained source domain mod-
els. Importantly, the novelty of our approach lies in the
incorporation of a specifically engineered adaptive transfer
learning (ATL) network component, which is particularly
crucial given that not all model knowledge is universally
transferable across different domains, owing to the complexity
of the circuits. To address this, the devised ATL network
encompasses several key elements. Firstly, a primary network
is constructed based on the source model, with the last layers
removed, to facilitate continuous feature transfer. Secondly,
a separate lightweight adapter is developed from scratch,
enabling independent learning of the unique (private) features
specific to the current target domain. Lastly, the remaining
layers are responsible for predicting circuit performances.

When starting transfer learning, the most similar models
are selected from history domains to help to construct the
proposed ATL network. In the process of continuous transfer
learning, common model knowledge is learned adaptively and
private features learned by the adapter are discarded. To bal-
ance exploration and exploitation of the design space, a greedy
strategy is used to provide uncertainty for selected promising
simulation designs due to the existence of prediction errors.

Moreover, TLAGO adopts a pseudo-sample strategy pro-



posed in [6] for data enhancement. To avoid over-fitting during
the continuous transfer process, we use weight decay for
training. We summarize our contributions as follows.

• To the best of our knowledge, this is the first work to
leverage transfer learning as a surrogate model of online
evolutionary algorithms.

• We focus on knowledge reuse between online models and
propose a modeling strategy. We also propose a novel
ATL network that can transfer shared features and forget
private features adaptively.

• In order to balance exploration and exploitation of design
spaces, we leverage greedy strategy to provide uncer-
tainty for selection.

In Section II, we show the problem definition. In Section III,
we introduce the proposed optimization scheme. The details
of TLAGO are shown in Section IV, and the efficiency of
TLAGO is demonstrated in Section V. Finally, we conclude
this work in Section VI.

II. BACKGROUND

A. Problem Definition

The circuit sizing can be formulated as a constrained one-
goal optimization problem as follows.

minimize f(x)

s.t. cmin ≤ ci(x) ≤ cmax,∀ i ∈ 1...M,
(1)

where x ∈ Rd represents design variables of circuits (d
is the number of parameters), f(x) denotes the Figure of
Merit (FOM) of circuits and ci(x) means the i − th circuit
constraints. In this paper, we formulate normalized violation
error V IO as a constraint satisfaction standard as follows.

V IO =

M∑
i=1

V IOi,

V IOi =

{
0 if ci(x) is satisfied

|ci(x)∗−ci(x)|
max(|ci(x)∗|,|ci(x)|) if ci(x) is not satisfied

(2)

where ci(x) and ci(x)
∗ are i − th actual simulation values

and constraint values, respectively. Clearly, V IO ≥ 0, and
V IO = 0 mean feasible solutions for which each constrained
specification is acceptable to designers.

III. THE PROPOSED TLAGO SCHEME

A. Flow of TLAGO

TLAGO (Fig. 1) works as follows. First, given a certain
design space (Lower bounds (LB) and upper bounds (UB)
of design parameters) of analog/RF circuits, we use the
Latin Hypercube sampling (LHS) method [10] to perform
initialization and obtain α design parameters. Then, we run
the SPICE simulator to generate samples. These samples will
make the initial database. Then, we rank all simulated design
samples using the criterion in [5] (first rank feasible solutions
(V IO=0), then rank all feasible solutions by minimizing the
FOM value) and select λ best designs as a parent population.

Next, it will start an online iteration. First, applying the
robust DE/Best/1 strategy to perform mutation and crossover
operations, and generating λ child designs. Then, we select
τ designs and their labels from the sample database, which
are nearest to the mean value of λ child design parameters

(evaluated by Euclidean distance). The actual simulated de-
signs and their performances will generate pseudo-samples for
data enhancement from [1]. To build models for training and
prediction, we propose an online transfer learning architecture
that includes modeling strategies and different neural network
structures. Depending on the strategy, TLAGO selects an
artificial neural network (ANN) or adaptive transfer learning
(ATL) network to train and predict. Note that we use weight-
decay to avoid over-fitting when training the model. In the
process of online iteration, storing pseudo-samples and trained
models in a list, knowledge is passed down in a way of
weight reuse. Then, the performances of λ child designs are
predicted by the trained model. We rank all these predicted
designs and select the next simulation sample by the proposed
greedy selection rule. Next, we simulate the most promising
design and add this sample to the database. After that, a novel
online iteration will begin. If meeting a maximum number of
iterations T , TLAGO will output the optimal sizing result.

IV. IMPLEMENT DETAILS

A. Transfer Learning in SAEAs

Why can the transfer learning methods be incorporated into
SAEAs? In TLAGO, all samples are derived from the sample
database, and the samples can be repeatedly used for models.
Thus, online modeling samples usually are similar, especially
in the later stage local region of optimization. The existence
of this similarity makes transfer learning feasible.

We consider a source domain Ds = {xsi,ysi}Ns
i=1 and

target domain Dt = {xti,yti}Nt
i=1, two online evolutionary

sample datasets which are not the same. In our circuit sizing
task, the inputs and outputs of the source and target online
model have the same feature dimension. However, different
domains correspond to different circuit behaviors. In other
words, the probability distribution is different in each domain,
i.e., Ps(xs,ys) ̸= Pt(xt,yt). Therefore, this research problem
belongs to the domain adaptation aspect in Transfer Learning.

Fine-tuning the pre-trained model has been recognized as
an efficient learning method in domain adaptation. To be more
specific, the trained source domain model weights will be
taken as the priority and ideal initial solutions for the target
model. This work will consider when to fine-tune and how to
learn for target model ft based on trained fs.

B. Transfer Learning Modeling Scheme

1) Modeling Strategy: The proposed modeling strategy
divides online modeling into three ways: 1) training ANN in
a way of random initialization, 2) selecting the most similar
model from the historical models for constructing ATL, and
3) continuously adaptive transfer learning.

In the early stage of optimization, a rough model is built in
a wide range and simulation samples even contain some par-
ticularly bad designs from vast design regions. At this stage,
the sample similarity of different online modeling domains
is low, and the model knowledge may be difficult to retain
and transfer as effective information. Therefore, TLAGO first
performs randomly initialized ANN modeling and store these
trained model for follow-up transfer learning.

It is difficult to ensure that adjacent online samples are
always the most similar because samples found by optimizers



`

Selecting model for train 

by  modeling strategy

Generating next 

simulation sample 

by greedy strategy

Population evolutionSelecting modeling 

sample and data 

enhancement

Train

Prediction

MutationCrossover

Initialization
. . . . . . . . . . .
Initialization
. . . . . . . . . . .

Specs, Bounds

Iteration numbers

Specs, Bounds

Iteration numbers

Simulator

Simulator

Best design paras

(Width, Length, ...)Output

ANN 

…

ATL

+

ANN 

…

ATL

+

… …

Training from pre-trained model

Training from scratch Adaptive Transfer learning

…

…

Concat

Input

Fig. 1. The proposed TLAGO scheme

are in various regions. In this situation, transfer learning
between less similar sample domains is invalid and will
accumulate in the later optimization process. In order to avoid
ineffective transfer learning and its cumulative negative im-
pact, we perform model selection based on sample similarity
in every iteration (introduced in Section IV-B-3). Based on the
selected source domain model, we can build the ATL which
will be fine-tuned.

Due to the existence of sample similarity, after the first fine-
tuning from the selected model, we continuously fine-tune the
last trained ATL model in each sub-region. The ATL uses the
main network to perform transfer learning continuously, while
learned private features by adapter are not reused. ATL method
can perform adaptive knowledge transfer and cumulatively
improve the accuracy of the model in each region.
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Fig. 2. The proposed modeling strategy

We divide the fine-tuned part into 5 subintervals, the model-
ing strategy for the t− th modeling can be represented in Fig.
2. The start number S of the transfer learning process is related
to modeling difficulty (dimensions of design parameters and
target specifications) and modeling database. In TLAGO, we
set it as ((M +1)d− τ) ∼ 2((M +1)d− τ). If the calculated
value of S is less than or equal to 2, it is regarded as 2.

2) Artificial Neural Network: For training ANN model
more efficiently, we leverage a pseudo-sample method to pro-
vide more information instead of actual simulation samples.
TLAGO uses an ANN model to predict all specifications (a
vector y with M + 1 dimensions, including one FOM and
M constraints) by pseudo-sample inputs (a vector x with
2d dimensions). For τ modeling designs, we can obtain τ2

modeling pseudo-samples.

xij = (xi, xj − xi), yij = yj1, yj2, ..., yj(M+1)

i = 1, 2, ..., τ, j = 1, 2, ..., τ
(3)

We leverage L-layer fully connected (FC) neural networks
as ANN structure and use Exponential Linear Units (ELU) as
the activation function of each layer.

3) Adaptive Transfer Learning Network: ATL consists of
a pre-trained model and an adapter trained from scratch. The
source pre-trained weights may be copied from historic source
models (ANN or ATL). The pre-trained model can provide
a prior initial solution for the current training task so as

to greatly improve the modeling accuracy. Parallel adapter
can learn private features to bridge the differences between
the target domain and the source domain. In other words,
the adapter is trained specifically for the target task. ATL
also adopts a pseudo-sample method for data enhancement.
mathematically, target domain model ft can be obtained by
the following relation:

y = g3(Concat(g2(x), g1(x))) (4)

where g1, g2, and g3 are FC networks with the ELU activation.
g1 is trained by fine-tuning source pre-trained model weight
fs (deleting the last layer for ANN) and represents well-
learned features of the source domain. g2 is a lightweight
adapter generated by random initialization and represents the
complementary features. g3, a single layer, processes the
output features learned by g1 and g2 and predicts final circuit
performances. If the selected source model is ANN, g3 can not
be copied because of unequal dimensions and will be trained
from scratch. However, it also will be copied and then fine-
tuned when the source model is ATL.

In TLAGO, the similarity between different modeling sam-
ples is evaluated by the average distance of design parameters.
We first compute the average of the inputs to the current mod-
eling pseudo-sample. Note that the average pseudo-sample
inputs actually represent the average of the design parameters,
which is demonstrated in Eq. (6).

1

τ

τ∑
i=0

(xi, 0) =
1

τ2

τ∑
i=0

τ∑
j=0

(xi, xj − xi) (5)

Next, we calculate the Euclidean distance between the mean
value of the current sample and mean value of the historical
modeling database. Based on the selected model which has
the minimum value of Euclidean distance, we can construct
the ATL structure.

When transferring knowledge between different design do-
mains, some knowledge needs to be forgotten and other
knowledge needs to be passed on due to the diversity of circuit
behavior. In ATL, the main network g1 and g3 is responsible
for transferable knowledge, and the parallel adapter g2 needs
to be forgotten. Moreover, we do not just freeze the pre-
trained model fs and leverage the parameter-efficient method
to only train the adapter model for target domain modeling.
Firstly, there may be huge differences and fluctuations in
circuit performances between the early and final design spaces.
We cannot simply pass on invariable early knowledge for
all design spaces. Therefore, the model parameters must be
adjusted to learn for the new data set. Moreover, the source



domain and the target domain have the same number of
training samples. Because of the use of pseudo samples, we
can easily obtain thousands of training samples. Therefore,
these data can support us in retraining model weights that
are copied from the source domain. Finally, the ANN model
adopted has a low training cost, allowing us to fine-tune all
model parameters.

Specifically, compared with g2 which has a small network,
g1 has a more complex network depth and number of neurons.
For g1, two deep layers are sufficient, the number of neurons
is set as 128, the input dimension is 2d, and output dimension
is 128. For g2, the number of neurons equal is 32, and only
one single FC layer with ELU. Thus, g2 can be considered as
a slave layer for g1 network. The g3 is a single-layer network.

4) Training Methods: In TLAGO, all models adopt the
same train method. We train all ANN models with the Loss
Back Propagation algorithm by calculating the mean squared
error distance. The Adam optimizer is leveraged in TLAGO.
Weight decay is employed as a regularization strategy to
prevent overfitting by inducing a predefined reduction in the
model’s weights before each gradient descent iteration. The
value of weight decay in Adam optimizer is set as 1e-6.
In our numerical experiments, weight decay can effectively
help TLAGO achieve better optimization results. All modeled
specifications of analog/RF circuits are re-scaled to [0,1]. All
models are trained with only 5 epochs (a very low cost), and
the initial learning rate lr of Adam optimizer is set as 0.001.

C. Greedy selection

In TLAGO, we adopt the sorting rule proposed by [5] for
predicted population designs. However, due to the existence of
model prediction error, we cannot just pick the best solution
and must provide a certain uncertainty to explore unknown
design solution spaces (also avoid local optimum). ANN
method cannot provide prediction uncertainty with the help
of expected improvement and a lower confidence bound. To
solve this problem, this Section proposes a new selection rule
based on a greedy strategy.

When selecting the next simulation design based on ranked
results, there is a small ε probability for the random selection
from top-n potential values (including the most promising
solution) and 1 -ε probability for the most promising solution.
In TLAGO, the t+1-th simulation point is selected by the
following equation based on the ranked population designs.

x∗
t ← argmax

xt

xλ
t

xt+1 ←
{

x∗
t if random(0, 1) >= ε

random(topn(x
λ
t )) if random(0, 1) < ε

(6)

where xλ
t represents the t − th child designs, x∗

t is the most
promising solution, and xt+1 is the next selected simulation
design. n = 3 and ε = 0.01 in this study.

V. EXPERIMENTAL RESULTS

We will show the practical effectiveness of the TLAGO
by three analog/RF circuits, two-stage operational amplifier
under 180 nm process, lower noise amplifier (LNA) under
65 nm process, and three-stage Operational Transconductance
Amplifier (OTA) under 65 nm process.

We compare our method with the well-known GASPAD
and conventional DE methods. We can not use pseudo-
sample technology for GASPAD because it clearly leads to
a significant increase in modeling costs. For GASPAD, we
use the authors’ recommendations to determine the number
of modeling samples, perform hyperparameter optimization,
and build a single model for each performance. For TLAGO
and GASPAD, we limit the maximum number of simulations
to 500 (α+ T , initialization samples are included) in the first
two cases. We increased the simulation budget to 600 for the
third complex circuit. For DE, the simulation budget is set to
10000. We keep two decimal points for all design parameters
during searches. All experiments are carried out 10 times to
average out the random fluctuations.

A. Two-stage Operational Amplifier
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Fig. 3. The schematic figure of OPA

The first test case (shown in Fig. 3) is an OPA with 14
design parameters. The parameters and search regions are in
Table I. The synthesis problem of OPA circuit is:

minimize −Gain

s.t. PM ≥ 60◦ UGF ≥ 40MHz
(7)

For both TLAGO and GASPAD, the parameter settings:
λ=α=τ=60. S of TLAGO is 2. They both perform 440 online
iterations. Fig. 4 (a) shows the constraint convergence process
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Fig. 4. The optimized values vary simulations with different methods.

of all algorithms in 440 online simulations. We observe that all
methods can search the feasible solutions (V IO=0). However,
these surrogate model-assisted approaches look for feasible
solutions much earlier than DE. Constraint specifications
found by TLAGO: PM=61.27 deg and UGF=41.14M Hz.

From Fig. 4 (b), we can see FOM value may increase in
the early stage because no feasible solution is found and the
optimization task is to minimize the violation value (V IO).
After 440 online simulations, TLAGO and GASPAD can
search for better solutions than DE. However, compared with
the two methods, TLAGO can obtain the optimal results (It is
far superior to other methods). Moreover, as design spaces
shrink, the similarity between modeling samples becomes
stronger and stronger, and the advantages of TLAGO become
more and more obvious.



TABLE I
THE SOLVED DESIGN PARAMETERS AND THEIR SEARCH REGIONS.

Parameters LB UB Parameters LB UB
Width of M1∼ M6 1u 100u Length of M1∼ M6 180n 600n

R1 100 500 Cc 1p 10p

In Table II, we list the mean, best and worst values of FOM.
Note that “Success” means the number of runs finding feasible
solutions in 10 total experiments. We have three observations
from Table II. First, compared with the conventional DE
method, the total run-time cost is greatly reduced, and TLAGO
can achieve even better optimization results with 20X sample
reduction and 13.2x run-time speed up. Moreover, TLAGO
can find a higher gain (6.26 dB, 8.9%) compared to GASPAD
with the same number of iterations. In addition, GASPAD
spends more on modeling costs (1.66x) than TLAGO because
of the cube time complexity of GPR (close to simulation time).

TABLE II
THE RESULTS ABOUT TLAGO AND COMPARED METHODS.

Technique TLAGOTLAGOTLAGO GASPAD DE
Mean Gain (dB) 76.8676.8676.86 70.60 76.02
Max Gain (dB) 78.3978.3978.39 72.25 76.79
Min Gain (dB) 74.7274.7274.72 67.18 75.21

Mean VIO 0 0 0
Success 10/10 10/10 10/10

Number of simulations 500 500 10000
Modeling time 0.098h0.098h0.098h 0.163h 0

Simulation time 0.189h 0.189h 3.78h
Total run-time 0.287h0.287h0.287h 0.352h 3.78h

B. Lower Noise Amplifier

The second test case is RF LNA circuit (Fig. 5) with 12 de-
sign parameters shown in Table III. 9 corners (TT/SS/FF&27◦

C/0◦ C/−45◦ C) are considered in this circuit. We added more
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Fig. 5. The schematic figure of LNA
constraint specifications to verify the efficiency of TLAGO.
The synthesis problem of LNA is:

minimize Power

s.t. S21 ≥ 8dB, S11 ≤ −8dB
S22 ≤ −8dB, S12 ≤ −30dB, NF ≤ 3dB

(8)

For both TLAGO and GASPAD, as case 1, λ=α=τ=60.

TABLE III
THE SOLVED DESIGN PARAMETERS AND THEIR SEARCH REGIONS.

Parameters LB UB Parameters LB UB
Width of M1/M2 1u 5u Finger of M1/M2 5 50

Width of C1∼ C3 5u 30u Width of Cgs 5u 30u
Width of Lg-Ls-Ld 4u 10u Radius of Lg-Ls-Ld 20u 60u

We can make a novel observation from Fig. 6. Given the
same simulation budget, TLAGO can find a feasible solution
more quickly and still find a better FOM value compared to
other reference methods. TLAGO, using greedy strategy and
benefiting from continuous model accuracy improvement, can
find the optimal global design solution.
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Fig. 6. The optimized values vary simulations with different methods.

TABLE IV
THE RESULTS ABOUT TLAGO AND COMPARED METHODS.

Technique TLAGOTLAGOTLAGO GASPAD DE
Mean power (A) 0.01860.01860.0186 0.0204 0.0209
Max power (A) 0.02410.02410.0241 0.0278 0.0242
Min power (A) 0.01550.01550.0155 0.0155 0.0160

Mean VIO 0 0 0
Success 10/10 10/10 10/10

Number of simulations 500 500 7200
Modeling time 0.133h0.133h0.133h 0.279h 0

Simulation time 2.65h 2.65h 38.2h
Total run-time 2.78h2.78h2.78h 2.93h 38.2h

From Table IV, we can see that TLAGO is still efficient in
optimization time and solution quality compared with other
methods. Moreover, for six specifications, lots of modeling
time is spent by GASPAD. With better average optimization
results (8.8%) and the same simulation numbers, TLAGO
can significantly reduce power consumption compared to
GASPAD and at a small modeling cost (0.279h to 0.133h).
Finally, performing over 120 generations of evolution (7200
simulations), DE costs more than 38.2h to find comparable
results to TLAGO. This also shows that it is very difficult
to optimize power in complex RF circuit with PVT experi-
ments. However, TLAGO can obtain even better performances
and save more than 13.74x total run-time than DE. There,
constraints found by TLAGO: S21=13.36 dB, S11=-9.08 dB,
S22=-8.21 dB, S12=-31.33 dB, and NF=2.83 dB.

C. Three-stage Operational Transconductance Amplifier

The final test case is a three-stage OTA shown in Fig. 7. The
circuit has 24 design parameters (Table V). We run simulations
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Fig. 7. The schematic figure of OTA
under 9 corners to obtain performances. The synthesis problem
of OTA is:

minimize Power

s.t. Gain ≥ 50dB, PM ≥ 50◦

UGF ≥ 40MHz, Loop Gain ≥ 50dB

PM&CM ≥ 50◦, UGF&CM ≥ 60MHz

(9)



TABLE V
THE SOLVED DESIGN PARAMETERS AND THEIR SEARCH REGIONS.

Parameters LB UB Parameters LB UB
Width of M11∼ M112 1u 200u Length of M11∼ M112 100n 300n

R1/R2 100 500 C1/C2 1p 5p
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Fig. 8. The optimized values vary simulations with different methods.

For both TLAGO and GASPAD, the parameter settings:
λ=α=τ=120. S of TLAGO is 50. First of our observations
from Fig. 8 and Table VI, given the upper limit of 600 simula-
tions, consuming less modeling time compared with GASPAD,
TLAGO can find 10 times feasible solutions in this difficult
task. There, mean constraints found by TLAGO: Gain=54.17
dB, PM=77.54 deg, UGF=58.38 MHz, Loop Gain=62.52 dB,
PM&CM=55.3 deg, and UGF&CM=67.45 MHz. However, in
this complex high-dimension circuit, GASPAD has the worst
performances (V IO>0) and cannot find feasible solutions in
all runs. It can be seen from Fig. 8 (a) that TLAGO is far
superior to GASPAD in the convergence rate of constraint
satisfaction. The power value (Fig. 8 (b)) found by GASPAD
is invalid because the constraints are not satisfied. Finally,
TLAGO is much better than other methods considering total
time and optimization results and can find a globally optimal
solution similar to DE with 7320 simulations. However, the
search for such a solution is a long and tedious process using
DE (11.65x run-time than TLAGO).

D. Other Study

Based on the TLAGO, we change the modeling method and
perform more experiments on the three circuit examples with
(1) ANN: Greedy selection is not used, a surrogate model is
ANN (Section IV-B-2)) trained with scratch. (2) ANN+G:
Greedy selection is used, surrogate model is ANN trained with

TABLE VI
THE RESULTS ABOUT TLAGO AND COMPARED METHODS.

Technique TLAGOTLAGOTLAGO GASPAD DE
Mean power (A) 0.001690.001690.00169 0.00175 0.00169
Max power (A) 0.002690.002690.00269 0.00235 0.00284
Min power (A) 0.000970.000970.00097 0.00106 0.00104

Mean VIO 0 0.11 0
Success 10/10 7/10 10/10

Number of simulations 600 600 7320
Modeling time 0.43h0.43h0.43h 0.47h 0

Simulation time 9.14h 9.14h 111.45h
Total run-time 9.57h9.57h9.57h 9.61h 111.45h

TABLE VII
STUDY ON TRANSFER LEARNING SHCEME AND GREEDY STRATEGY.

Performances ANN ANN+G TL TLAGOTLAGOTLAGO

Case 1 Mean Gain(dB) 70.61 70.78 76.33 76.8676.8676.86
Mean VIO 0 0 0 0

Case 2 Mean Power (A) 0.0265 0.0251 0.0196 0.01860.01860.0186
Mean VIO 0.0275 0.0194 0 0

Case 3 Mean Power (A) 0.001825 0.001828 0.001977 0.001690.001690.00169
Mean VIO 0.1 0.0157 0.0073 0

scratch. (3) TL: Greedy selection is not used, surrogate model
is the proposed transfer learning modeling scheme. To be fair,
they also use pseudo-sample and weight decay techniques. We
perform the same hyperparametric effort for all methods.

From Table VII, if only ANN is used, all examples achieve
the worst optimization results due to inadequate modeling. In
the second and third cases, feasible solutions can even not
be found. However, once the proposed model architecture is
used, the improvement of modeling precision can lead to great
effects on final circuit performances. It also can be seen that
using a greedy strategy can help ANN or TL to find better
solutions by balancing exploration and exploitation (avoid
falling into local optimality). The greedy strategy can help
ATL architecture to achieve better global optimizations.

VI. CONCLUSIONS

This paper has proposed a transfer learning surrogate
model-assisted global optimization algorithm which has been
demonstrated as an efficient sizing method for analog and RF
circuits. We make experiments on three circuits even consid-
ering PVT corners. With lower optimization time, TLAGO
has a faster rate of convergence and more than 8% better
performances than GASPAD. TLAGO can achieve even better
optimization results with a few simulations and has a more
than 11x run-time speedup than conventional DE methods.
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