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Abstract—Urban villages (UVs) refer to the underdeveloped
informal settlement falling behind the rapid urbanization in a
city. Since there are high levels of social inequality and social risks
in these UVs, it is critical for city managers to discover all UVs for
making appropriate renovation policies. Existing approaches to
detecting UVs are labor-intensive or have not fully addressed the
unique challenges in UV detection such as the scarcity of labeled
UVs and the diverse urban patterns in different regions. To this
end, we first build an urban region graph (URG) to model the
urban area in a hierarchically structured way. Then, we design a
novel contextual master-slave framework to effectively detect the
urban village from the URG. The core idea of such a framework
is to firstly pre-train a basis (or master) model over the URG,
and then to adaptively derive specific (or slave) models from the
basis model for different regions. The proposed framework can
learn to balance the generality and specificity for UV detection
in an urban area. Finally, we conduct extensive experiments in
three cities to demonstrate the effectiveness of our approach.

Index Terms—Urban Villages, Urban Region Graph, Graph
Neural Networks, Master-Slave Framework.

I. INTRODUCTION

The imbalanced development of urban cities has led to
the formation of urban villages (UVs) due to the absence
of planning and management. Because of the low house
rent, UVs have gradually become settlements of migrants and
low-income groups who also have significant socioeconomic
contributions to the city. However, UVs face serious social
inequality and social risks, such as high epidemic infection
risks [1], harmful environmental pollution [2], [3], and poor
public order [4]. According to the Sustainable Development
Goals Report 2018 [5], more than 1 billion people live in such
UV-like informal settlements worldwide. Good knowledge of
UVs will help city planners to make appropriate renovation
policies aiming to build sustainable cities and communities.

As the first step towards solving the UV problem, how to
detect UVs in a whole city is recognized as an indispensable
but challenging task. The city planner usually fails to possess
the panorama of UV distribution, and even local authorities
of various levels only know a fairly limited part of them
(e.g. some well-known communities). The traditional detection
methods mainly depend on fieldwork and social investigation
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by the government [2], [6], which are impracticably time-
consuming and labor-intensive. Therefore, a lot of research
attention [2], [6]–[11] has lain in detecting UVs in the city
based on data-driven learning with some expert annotations.
The early index-based approaches [2], [3] use classic machine
learning models with a series of hand-crafted metrics from
satellite images for UV detection. Some studies also attempt
to incorporate multi-modal data [9]–[11] for UV detection.

There are a few recent studies [6], [8], [12] to handle UV
detection by directly adopting advanced deep learning (DL)
models, such as fully convolutional neural networks [8], U-Net
[6] and Mask-RCNN [12], but without considering the special
challenging points of this problem. Nevertheless, we observe
that there are two unique issues for UV detection which have
not been seriously investigated by previous studies. First of
all, the scarcity of labeled UVs can severely undermine the
recognition capacity of DL models. UVs take only a very mi-
nor part of the urban regions, and the number of labeled UVs
in a city is even much smaller. Whereas, existing DL models
usually require sufficient labeled data to obtain satisfactory
generalization abilities [13]. Second, there is diversity in the
urban area with different characteristics and data distribution
(e.g. downtown vs suburb). It is hard to train a single model
for UV detection that works well across all urban areas with
diverse patterns. This problem becomes even more serious
considering the scarcity of labeled UVs.

To this end, we propose a Contextual Master-Slave Frame-
work, named as CMSF, tailored for the UV detection problem.
CMSF is running on an Urban Region Graph (URG) carefully
built for modeling the urban area. The general idea of the
CMSF is to pre-train a basis (or master) model first on the
URG, and then derive a specific (i.e. slave) model for each
region given the contextual information learned from the URG.

The URG takes fine-grained regions as nodes, and builds
region relations in the urban area as edges according to
regions’ spatial context and road network connectivity, which
uncover the geographical and functional correlations among
regions. Moreover, a set of region features are extracted from
Point of Interest (POI) data and satellite image data to reflect
the infrastructure distribution and visual region appearance,
respectively. Modeling such socioeconomic conditions of re-
gions plays a critical role in urban village detection.
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To be specific, based on the URG, CMSF is trained in two
stages: 1) taking full knowledge of limited labeled UVs to pre-
train a basis (or master) model over the URG, and also to learn
region representation; and 2) learning to derive specific (or
slave) models for different regions by leveraging the context
information to moderate the pre-trained master model.

In the first stage, we pre-train a specially designed hierar-
chical graph neural network as the master model and learn
the region representation during the training process. At first,
in view of the complementarity between different modal data
(POIs and images) of the URG, we design a Mutual-Attentive
Graph Aggregation layer (MAGA) to leverage the inter-modal
context for region representation enhancement. Second, we
design a global semantic clustering method (GSCM) to cluster
semantically similar regions together based on their represen-
tation learned from region features and organize the urban area
as a hierarchical structure. This structure enables clusters to
capture the global semantic context from distant but similar
regions inside, through performing message collection from
similar regions in regions → clusters direction, and then
propagate this shared knowledge back in clusters→ regions
direction. In this way, the region representation can also extract
the region’s contextual information from the URG.

In the second stage, we devise a novel contextual master-
slave gating mechanism (MS-Gate) to learn a gate function that
can help to adaptively derive a slave model given each region’s
contextual information. Considering the diverse patterns of
UVs in different urban areas (for example, the UV in down-
town might be different from the one in suburb), it is better to
train a specific model for a certain cluster of regions. However,
due to the scarcity of known UVs in a city, many clusters will
have too few UVs to effectively train their individual models.
To balance the generality and specificity, during the second
training stage, we optimize a gate function which can encode
contextual information of each region and moderate the master
model to adaptively derive a region-wise slave model. The
master model is also jointly fine-tuned in this stage. After this
two-stage training, we can derive a specific predictor for each
region to achieve more accurate UV detection.

We conducted extensive evaluations for UV detection in
three cities in China. Experimental results show that our
framework can achieve significant improvement over other
state-of-the-art methods on several metrics, including Area
Under Curve (AUC), Precision, Recall, and F1-score. Our
contributions can be summarized as follows:

• We propose CMSF, a novel contextual master-slave frame-
work to handle the unique challenges in the UV detection
problem. Instead of training a single model over the city,
CMSF aims to utilize the region’s contextual information to
adaptively derive a specific predictor for each region.

• To the best of our knowledge, we are the first to study the
UV detection problem from a graph perspective. We con-
struct an URG based on multiple sources of urban data, to
model the dependencies among regions. Upon the URG, we
design a hierarchical graph neural network which can make

full use of limited labeled UVs through global semantic
clustering, to effectively learn the region representation and
extract rich context information for deriving slave models.

• We conducted extensive experiments in three cities in China
to demonstrate the superior detecting ability of CMSF.

II. RELATED WORK
Urban village detection has attracted a lot of research at-

tention from the data mining and geoscience community. With
the increasing availability of high-resolution satellite images,
some index-based approaches [2], [3] are devised to use classic
machine learning models for classification upon hand-crafted
metrics from images, such as the mean of RGB and MBI
index [14]. In recent years, several studies try to handle the
UV detection problem by building different deep learning
models over satellite images [6]–[8], [15]. Considering the
limitation of the single image perspective, there are also a few
recent studies to integrate additional data (like taxi trajectories
and POIs) with satellite image data to benefit UV detection
[10], [12]. However, existing studies ignore two important
challenges for UV detection: 1) the limited number of labeled
UVs; and 2) the diverse urban pattern in a city. Our framework
CMSF is specially designed to tackle the above challenges,
leading to much better performance than existing solutions.

Note that a similar concept named master-slave regularized
model is investigated by [16]. But their objective is to use a
master model to directly predict model parameters of logistic
regression models for company revenue prediction, whose
methodology and application domain are different from ours.
Another close concept is the semi-lazy learning method [17]–
[19] which tries to build an individual model for each instance
upon nearest (or similar) neighbors. This method usually has
a high cost to build the model online after retrieving data.
Therefore, usually it is not suitable to adopt this methodology
with the deep learning method. Other works like [20] adopt-
ing meta-optimization for cross-city urban applications seems
similar with the idea of master-slave model. An important
difference is that such a meta-optimization method first fine-
tunes a pre-trained initial model to different datasets (from
different cities), then it is fixed for all input instances in one
dataset. However, CMSF is designed to be capable of deriving
the slave model for each prediction instance given a region-
specific context, making our model different from it.

Our study is also related to the GNN for urban applications.
Much attention has been devoted to applying GNNs (e.g.
GCN [21] and GAT [22]) for many urban applications, such
as region embedding [23], [24], regional economy prediction
[25], crowd flow forecasting [26], traffic demand forecasting
[27], and real estate appraisal [28]. There are also a few studies
to model the city in a hierarchical graph structure for transport-
related applications, such as HRNR [29] which models the
hierarchical road networks for road segment classification and
route planning, and STRN [30] which partitions the fine-
grained urban grid map into a coarse-grained level for urban
flow prediction. However, these methods cannot be directly
adopted to model the region dependency for UV detection.



III. PRELIMINARIES

In this section, we first introduce the basic concepts and
notations used throughout this paper, and then we formally
formulate the problem of urban village detection.

Given an urban area of interest (typically it can be the main
urban area of a city), we can divide it into N = H × W
non-overlapping region grids with a fixed size. Hereafter, if
without specification, we use region to refer to the region grid
for convenience. We use V = {v1, ..., vN} to denote a set of
regions. A Point of Interest (POI) is a specific point location
on the map that can provide some useful services. Each region
vi ∈ V in the urban area usually contains a set of various POIs
and is covered by a satellite image showing the appearance
of this region. Upon the POI and satellite image data, we can
extract discriminative features xi ∈ Rd for each region, which
are useful for urban village detection. We use xP

i and xI
i to

denote the constructed POI and image features of region vi
respectively, i.e. xi = xP

i ∪ xI
i . How to extract such features

will be introduced in Section IV-B.
Definition 1: Urban Village Detection. Given the parti-

tioned region grids, the urban village detection problem can
be defined as a region-wise binary classification task based on
the region features: f(xi) → yi, where yi is the binary label
indicating that region vi is contained by or overlapped with
an urban village (yi = 1) or not (yi = 0).

In our experimental evaluation, the significant overlap is
defined as the region and the urban village having an overlap
larger than 20% of the region’s area. Note that only a few
regions in the city are known to be urban villages. The
challenge of this problem is how to associate each unla-
beled region with a binary label upon the limited labeled
data. Formally, the region set V of size N consists of two
parts: the labeled region set VL = {v1, ..., vl} with feature
matrix XL ∈ Rl×d and label matrix Y L ∈ Rl, and the
unlabeled region set VU = {vl+1, ..., vN} with feature matrix
XU ∈ R(N−l)×d. Our goal is to learn a predictive function
f : (XU |XL,Y L)→ Y U .

IV. URBAN REGION GRAPH

The URG is defined as G(V, E ,A,X), where V = VL∪VU

denotes the node set containing all the regions. X ∈ RN×d

is the corresponding region feature matrix obtained from POI
and image data, where N is the number of regions and d is
the feature dimension. E is the edge set modeling the relation
among different regions built from regions’ spatial context and
the road network of the city. A denotes the adjacency matrix
of URG depending on E , where Aij = 1 if there exists an
edge between vi and vj , otherwise Aij = 0.

A. Region Relation Construction

To model the relation among regions, we collectively build
the edge set E and adjacency matrix A of URG from two per-
spectives, which are spatial proximity and road connectivity.

Spatial Proximity. Following the principle of spatial de-
pendence that “everything is related to everything else, but
near things are more related than distant things” [31], we
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Fig. 2. Illustration of Feature Construction

consider each region spatially correlated with its neighbors
in the grid map, and assume they should have more similar
semantics (and thus similar representations in latent space).
This assumption is also supported by recent studies modeling
the urban area as a grid map [27], [32], [33]. Therefore, we
connect region vi and vj if they are mutually one of the eight
neighbors to each other in the 3× 3 region grids, and set the
corresponding Aij = 1. As illustrated in Figure 1(a), region
v5 will be connected with surrounding regions v1−4 and v6−9.

Road Connectivity. In addition to the plain dependency
reflected by the adjacent location, road networks can reveal
more complex correlations among regions in an urban area.
As the core component of the urban transportation system,
existing studies have demonstrated that road networks take
an indispensable role in discovering the functionality across
regions [29]. Intuitively, a function area can be formulated
across regions connected by roads although these regions are
not geographically close. Additionally capturing this function-
aware correlation is conducive to complex urban structure
modeling. Therefore, we incorporate the road network data
provided by [34] to set Aij = 1 if regions vi and vj are
mutually connected by roads. The road connectivity between
two regions is determined by whether they can be reached
within a limited number of hops in the road networks (in our
experiment, we set regions to be connected within 5 hops).

Figure 1(b) provides an explanatory example of road con-
nectivity between regions to better clarify the detailed rule of
building such a relation. The road network data can be treated
as a graph, where the nodes represent intersections on the
road networks and the edges are road segments that connect
the nodes. As shown in Figure 1(b), we use triangle and dash
line in blue to denote the nodes (I1 ∼ I5) and edges on road
networks, respectively. Each node has a unique geographic
coordinate (i.e. longitude and latitude), based on which we
associate the node to the region grid that it locates in. For
example, region v10 and v11 have node I5 and I2 inside,
respectively. Then, we define that region vi and region vj are
mutually connected by roads if there exists a path containing
no more than 5 edges (road segments) between any node in



vi and the one in vj . For example, the region v10 and v11 are
connected by road since they can reach each other with 3 road
segments (I2 − I3 − I4 − I5). Based on this rule, we link v10
and v11 on URG and set A10,11 = A11,10 = 1.

B. Feature Construction

In our method, we mainly use two groups of features
to characterize a region, which are POI features and image
features. We first briefly introduce the data source and then
explain how to extract these features.

The region features are constructed based on the POI basic
property data and the satellite image data from Baidu Maps.
POI basic property data provide the name, location, multi-level
categories (e.g. transportation facility and bus stop), and other
basic information of a POI [35], [36]. With this POI data, we
can describe the human activities and distribution of functional
facilities in an urban region [37]. The satellite image data used
in our paper are 3-channel RGB images with 256×256 pixels,
depicting the appearance of each 128m × 128m region grid
in the top view. Their spatial resolution is 0.5 meters. We
introduce how to extract POI and image features based on
these data as follows.

POI Features. The motivation of extracting features from
POI data is that UVs are usually residential areas with sub-
standard living conditions and insufficient basic facilities (e.g.
cultural, sports and leisure facilities), which can be justly
reflected by POIs in these regions. Hence, we design the
following three types of POI features which are:
• Category Distribution. We make statistics of POIs belonging

to different categories (e.g. catering and life service) in
a given region. Then, a distribution histogram vector can
be calculated in which the value of each element equals
the ratio of the corresponding category. Besides, the total
number of POIs in the region is also directly recorded in
the feature vector. Note that we additionally calculate the
category distribution in the 3×3 grids centered by the given
region to include more surrounding information.

• POI Radius. For roughly measuring how convenient to
access various basic living facilities from a region, we
compute a number of different radius features, each of which
is defined as the shortest distance between the current region
and one type of POIs (e.g. radius to hospital). Note that
we categorize the distance into different buckets (< 0.5km,
0.5 ∼ 1.5km, 1.5 ∼ 3km and > 3km) for discretization.

• Index of Basic Living Facility. To measure the perfect
degree of basic living facilities (e.g. bus stop, hospital,
and restaurant), we further define a binary index which is
assigned one if a set of living facilities are all within 1km
of the region, otherwise it is assigned zero.

Finally, the comprehensive POI features are obtained through
the concatenation of the three types of features. An illustration
of POI features construction for better understanding is shown
in Figure 2, and all the specific POI types considered in our
work are listed in Appendix I-B.

Image Features. We incorporate the satellite imagery infor-
mation to represent the appearance characteristics of regions.

There are also a few studies [7], [10] capturing visual features
from satellite images to locate UVs, since UVs are usually
presented with overcrowded and irregularly arranged buildings
as well as narrow alleys in appearance.

Considering that directly inputting high dimensional pixel-
level image data to train the detection model with limited
labels will lead to overfitting, we use the VGG16 [38] model
pre-trained on ImageNet as a feature extractor to obtain the
semantic representation of the satellite image. Specifically,
the raw image data of each region is fed into the pre-
trained VGG16 model with the top two fully connected layers
removed, then the model outputs the 4096-dimensional vector
as image features of each region.

V. MODEL FRAMEWORK

CMSF has two training stages which are 1) the master
training stage; and 2) the slave adaptive training stage. An
overview of CMSF is shown in Figure 3(a). During the master
training stage, we build a hierarchical graph neural network
to learn the region representation. To be specific, we design a
mutual-attentive graph aggregation layer (MAGA, see Figure
3(b)), and a global semantic clustering module (GSCM, see
Figure 3(c)) to learn the region representation jointly with
local structure context and global semantic context in the
urban area. First, MAGA learns enhanced multi-modal region
representation from POI and image features upon URG. Then,
GSCM is built to globally cluster the semantically similar
regions based on the aggregated features from MAGA and
form a hierarchical structure of the urban area. Through this
structure, clusters collect the representation of regions inside as
the global semantic context and propagate it back to update the
region representation. In this stage, we treat the hierarchical
GNN as the master model and pre-train it on the whole city
to recognize UVs and learn the region representation.

In the slave adaptive training stage, we propose a contextual
master-slave gating mechanism (MS-Gate, see Figure 3(d))
to tackle the challenge of region diversity in the urban area.
Specifically, we optimize a gate function that adaptively mod-
erates the master model with region-specific context to derive
slave models for more accurate detection. The details of each
component are introduced as follows.

A. Stage One: Master Training Stage on the URG

In our framework, we comprehensively use multi-modal
region features and complex regions’ relations to learn region
representation for UV detection. First, MAGA performs local
feature aggregation on URG with encoding both intra-modal
and inter-modal context, to collectively enhance the region
representation learning from both POI and satellite image
modality. Then, GSCM clusters the semantically similar re-
gions in the urban area based on the aggregated features from
MAGA, and forms a hierarchical structure of the urban area.
This structure enables message propagation between regions
and clusters, to capture the long-range correlation among
similar regions and share the global semantic context, which
alleviates the label scarcity problem in UV detection. Finally,
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we train a master model based on MAGA and GSCM for
UV detection, and associate each cluster with a pseudo label
indicating whether the cluster contains known UVs, which can
further enrich the inside regions’ contextual information.

1) Mutual-Attentive Graph Aggregation: Given that multi-
modal features can more comprehensively describe regions
from different perspectives, the basic idea of MAGA is to take
advantage of mutual enhanced information across modalities
for multi-modal fusion. Thus, in addition to the intra-modal
features aggregation from the neighborhood that typical GNNs
perform, our MAGA updates the features of each modality
with encoding the inter-modal context on URG to fuse and
enhance the multi-modal region representation.

First of all, we generate the intra-modal context for each
modality from neighboring regions through a self-attention
mechanism, since the influence made by different regions
around varies non-linearly. Specifically, taking the POI fea-
tures xP

i as an example, the attention score between regions
is computed as:

cP←P
ij = σ(aT

P←P [WP xP
i ⊕WP xP

j ] ), (1)

where xP
j denotes the POI features of region vj adjacent

to region vi (i.e. j ∈ Ni where Ni is the neighborhood of
region vi on G), WP is a trainable transformation matrix, ⊕
denotes the concatenate operation, aP←P is a trainable weight
vector and σ denotes a non-linear activation function (here
it is LeakyReLu). Then the representation of POI features
with intra-modal context can be obtained through aggregating
POI features from its neighbors, according to the contextual
coefficient αP←P

ij normalized by Softmax function:

x̂P←P
i = σ(

∑
j∈Ni

αP←P
ij WPx

P
j ), (2)

αP←P
ij =

exp(cP←P
ij )∑

k∈Ni
exp(cP←P

ik )
. (3)

Similarly, we generate the representation vector x̂I←I
i of

image features with the intra-modal context in the same way:

x̂I←I
i = σ(

∑
j∈Ni

αI←I
ij WIx

I
j ), (4)

where xI
j denotes the image features of regions adjacent

to region vi, and we have the same parameters WI and
aI←I corresponding to WP and aP←P . Thus, the local
dependencies are captured for each modality.

To achieve the multi-modal fusion, we further adopt a
cross-modal graph attention layer to summarize the contextual
information from another modality and update the current
representation vector. Formally, taking the POI features of
region vi as an example, we compute another attention score
across modalities by:

cP←I
ij = σ(aT

P←I [W
′

P xP
i ⊕W

′

I x
I
j ] ). (5)

In this procedure, MAGA gathers visual context from adjacent
regions to the POI representation of the current region, where
W

′

P and W
′

I denote another set of parametrized transforma-
tion matrices for POI features and image features, respectively.
And as before, aP←I is the weight vector used for generating
the cross-modal attention score, which implies how important
is the context extracted from image features of vj to the POI
representation learning of region vi. Based on the score, the
inter-modal context for POI representation is represented as:

x̂P←I
i = σ(

∑
j∈Ni

αP←I
ij W

′

Ix
I
j ), (6)

αP←I
ij =

exp(cP←I
ij )∑

k∈Ni
exp(cP←I

ik )
. (7)

Then we incorporate the inter-modal context and update the
POI representation through an aggregation function, (which
can be concatenation, summation and attention mechanism):

x̂P
i = AGG (x̂P←P

i , x̂P←I
i ). (8)



𝒓𝒆𝒈𝒊𝒐𝒏𝒔 → 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔

𝑴𝒆𝒔𝒔𝒂𝒈𝒆 𝒄𝒐𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 → 𝒓𝒆𝒈𝒊𝒐𝒏𝒔
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𝒍𝒂𝒕𝒆𝒏𝒕 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔

Fig. 4. Illustration of the hierarchical structure over the URG. The region
grids in the same color belong to the same latent cluster.

The updated local representation of image features is com-
puted in the same way: x̂I

i = AGG (x̂I←I
i , x̂I←P

i ). To
summarize, MAGA integrates the inter-modal contextual in-
formation into feature aggregation process and enhances the
representation of each modality. Note that only one layer
aggregation procedure is presented above for simplicity, but in
practice we can stack more layers to exploit richer contextual
information cross modalities on URG for modal fusion. Sub-
sequently, the enriched multi-modal representation of regions
can be obtained by x̂i = x̂P

i ⊕ x̂I
i .

2) Global Semantic Clustering: After the local represen-
tation learning through MAGA, GSCM organizes the urban
area as a hierarchical structure to cluster the semantically
similar regions according to the multi-modal representation,
and enables distant UVs to interact with each other through
this structure. In this way, CMSF not only models the complex
dependency among regions on the URG, but also utilizes such
region correlation to form the global semantic context and
alleviate the label scarcity problem for UV detection.

In general, we assume that there are K latent nodes standing
for K clusters of regions showing different characteristics in
the urban area. GSCM assigns regions into K latent clusters
and learns the cluster representation by performing regions→
clusters message collection based on the local representation
of regions derived by MAGA. Subsequently, the learned clus-
ter representation is propagated back in clusters → regions
direction, which provides sharing global context among distant
but similar regions. An illustration is shown in Figure 4.

Formally, we define an assignment matrix B ∈ RN×K to
model the regions’ membership to the K clusters, where Bij

represents the probability of region-i belonging to cluster-
j ∈ {1, ...,K} and

∑
1≤j≤K Bij = 1. For region-i, after

generating a local representation vector by MAGA layers
x̃i = MAGA(xP

i ,x
I
i ), we then apply a linear transforma-

tion followed by row-wise Softmax function to compute the
assignment matrix:

B = Softmax(WB x̃i), (9)

where WB denotes the trainable weight of linear transfor-
mation. This assignment matrix serves as an information
transmission channel between regions and clusters. We further
derive a binarized assignment matrix B̃ whose row is a one-

hot vector with one at the position of maximal probability in
the corresponding row of B, i.e. B̃ij = 1, j = argmaxkBik.
Then, the representation vectors of latent clusters are initial-
ized by the weighted summation of regions’ local representa-
tions according to this assignment matrix:

hj =
∑

1≤i≤N

B̃ijx̃i, (10)

where hj denotes the representation of cluster-j. This bi-
narization of the assignment matrix restricts each region to
only one most likely cluster and avoids cluster representation
being dominated by a large number of regions with very low
membership probabilities.

After the above regions → clusters projection, the latent
clusters segment the region set into K groups, and their
representation globally summarizes the similar semantic infor-
mation of regions inside. Then, to capture the relation among
clusters, we treat them as nodes in a complete graph with
learnable edge weights, and reason their relevancy by adopting
graph convolution [21]:

h
′

i = σ(
∑

1≤j≤K

eij Wh hj), (11)

where h
′

i denotes the updated representation of cluster-i,
Wh denotes the shared transformation matrix and eij is the
edge weight corresponding to the influence of cluster-j to
cluster-i, which is trained together with Wh. Once h

′

i is
obtained, we reuse the assignment matrix and perform a
clusters → regions reverse knowledge sharing to enhance
region representation with this global context. Rather than
the binary assignment matrix B̃, we use the original soft
assignment matrix B in this procedure since less-correlated
clusters can still auxiliarily enrich the region representation.
The reverse knowledge sharing is expressed as:

x̃g
i = σ(

∑
1≤j≤K

Bij Wr h
′

j), (12)

where x̃g
i denotes the global-aware region representation re-

versed from latent clusters, Wr denotes the weights to be
learned. The enhanced region representation is then derived
by combining the local and global representation through an
aggregation function:

x̃
′

i = AGG(x̂i, x̃
g
i ). (13)

In this way, global semantic information can be effectively
shared across regions. More importantly, the undiscovered
UVs are more likely to interact and exchange information
with the limited known UVs through the global-aware part x̃g

i ,
which alleviates the label scarcity problem in UV detection.

3) Training the Master Model: There are two goals in
the master training stage. First, we can optimize MAGA
and GSCM by training the master model for UV detection
across all the regions in an end-to-end manner. After that, the
region representation and hierarchical graph structure (i.e. the
membership of regions to the latent clusters) can be learned.
Second, we associate each cluster with a pseudo label by



performing a regions → clusters label collection based on
the labels of regions inside this cluster. This pseudo label
indicates whether the cluster contains known UVs.

Formally, with the learned region representation x̃
′

i de-
scribed in (13), the master model is defined as the hierarchical
graph neural network and a following classifier taking x̃

′

i as
input to identify whether region-i is an UV:

M(x̃
′

i,Φm)→ yi, yi ∈ {0, 1}, (14)

where M(·,Φm) denotes the classifier in the master model
with parameters Φm, which is a 2-layer Multi-Layer Percep-
tron (MLP) in this paper. We use binary cross entropy (BCE)
to define the detection loss in this binary classification task:

Lc =
∑

vi∈V L

−yilogM(x̃
′
i,Φm)−(1−yi)log(1−M(x̃

′
i,Φm)), (15)

where V L denotes the labeled region set.
After the training process, the membership of regions

formed by assignment matrix B̃ is fixed. We initiatively
transmit the region labels through B̃ in the direction of
regions → clusters, and derive pseudo labels for latent
clusters. Specifically, using yhj to denote the binary pseudo
label of cluster j, we set yhj = 1 if there exists at least one
known UV inside, otherwise yhj = 0. The rule of pseudo label
generation can be expressed as:

yhj =

{
1,

∑
1≤i≤N B̃ij yi > 0,

0,
∑

1≤i≤N B̃ij yi = 0.
(16)

This pseudo label directly provides contextual information that
the inside regions are closely correlated to known UVs, and
the predictor should pay special attention to them. The detailed
process of the master training stage is in Algorithm 1.

Algorithm 1: Master Training Stage of CMSF
Input: URG G(V, E ,A,X), number of latent clusters K
Output: Trained master model with parameter set:

θ1 = {W{P,I,B,h,r}, W
′

{P,I}, a
{P,I}←{P,I}, Φm}

1 Randomly initialize the parameter set θ1;
2 for iteration = 1,2,3, ... do
3 Get multi-modal region representation by (1)-(8);
4 Get assignment matrix B by (9);
5 Get cluster representation h

′
i by (10)-(11);

6 Get region representation x̃
′
i by (12)-(13);

7 Get UV prediction M(x̃
′
i) with master model by (14);

8 Get the UV detection loss Lc by (15);
9 Update parameters θ1 according to the gradient of Lc;

10 end
11 Derive pseudo label of latent clusters yhj by (16);
12 return θ1,B, yhj

B. Stage Two: Slave Adaptive Training Stage

In the second stage, the main objective is to train a gate
function (see Figure 3(d)) which can encode the contextual
information to derive region-wise slave models. The classifier
in the master model is also fine-tuned in this stage. Here

we propose a contextual master-slave gating mechanism (MS-
Gate), which uses the gate function to moderate the master
model to derive slave models conditioned on regions’ context
vector. Note that there is a previous study applying a gating
mechanism [39] for urban applications, but it is used to control
the weight of information propagated between regions when
using CNNs to capture local spatial dependency for traffic
prediction. Thus, our MS-Gate designed to derive slave models
is different from it. After the master training stage, we can
build a context vector for each region. For each latent cluster,
we first estimate its possibility to include UVs, and then form
the context vector for each region using this UV inclusion
possibility (according to the soft assignment matrix for regions
and clusters). The basic idea of building such a context vector
is that if an unlabeled region is clustered together with known
UVs, it should have a higher probability to be an UV. Thus,
in the slave adaptive training stage, we first estimate the UV
inclusion probability for each cluster based on the pseudo
label, and then generate the context vector for each region
through a clusters→ regions probability transmission.

In general, the context vector for each region is formed by
predicting the pseudo label for each cluster. In an urban area,
only a limited number of UVs are known. Thus, there may
be only a few clusters associated pseudo label as 1 while the
majority as 0. However, it probably misguides the model if we
simply assume the majority of clusters have no UVs, because
in fact these clusters possibly contain some undiscovered
UVs just need to be detected. Therefore, rather than directly
use the pseudo label, we additionally exert a pseudo label
predictor to estimate the inclusion probability that a latent
cluster contains UVs. Specifically, we useMp(·,Φp) to denote
the pseudo label predictor parametrized by Φp, which takes
cluster representation as input and predicts pseudo labels by:

ŷhj =Mp(h
′

j ,Φp)→ yhj , y
h
j ∈ {0, 1}, (17)

where ŷhj ∈ (0, 1) denotes the output inclusion probability,
which ought to be higher for clusters with known UVs inside
(yhj = 1) than that for the others. Note that the inclusion
probability estimation is actually a positive-unlabeled (PU)
learning problem where the clusters with no labeled UVs are
actually with unknown labels. Thus, following the previous
PU learning method [40], we define a rank loss function to
optimize the pseudo label predictor:

Lp =
∑
ci∈C1

∑
cj∈C0

(1− (ŷhi − ŷhj ))2, (18)

where C1 and C0 denote the clusters with and without known
UVs, respectively. Guided by Lp, the pseudo label predictor
Mp learns to estimate how likely a cluster contains UVs.
Given this inclusion probability, the gate function learns to
form the region-specific context vector and moderate the mas-
ter model to derive the slave model. First, the context vector
for each region is formed through performing a clusters →
regions inclusion probability transmission depending on the
region’s membership to every cluster by:

qi = σ(Wq(Bi,∗ ◦ Ŷ h)), Ŷ h = [ŷh1 , ŷ
h
2 , ..., ŷ

h
K ], (19)



where qi denotes the region-specific context vector, Wq is
the trainable weights, Ŷ h denotes the inclusion probability
vector of all latent clusters, Bi,∗ denotes the row-i of the
assignment matrix and ◦ denotes the Hadamard product. This
context reflects that the region-i is correlated to some known
or potential UVs with different probabilities.

Subsequently, we adaptively derive the slave model from the
master model for each region by imposing this region-specific
contextual information on its parameters with a gating mecha-
nism. Specifically, the gate function first generates an adaptive
region-specific parameter filter from the context vector by:

F i = σ(Wf qi), (20)

where F i denotes the parameter filter of region-i, which has
the same number of parameters with the classifier in the master
model Φm, Wf denotes the weight matrix linearly mapping
context vector to the parameter space, and σ here denotes the
Sigmoid activation function restricting the elements in filter
into range (0, 1). Then, a region-specific slave model with
adaptive predictor Mi( · ,Φi

m) can be derived by leveraging
the filter to tailor the parameters of M( · ,Φm) through the
MS-Gate mechanism, which can be formulated as:

Φi
m = Fi ◦ Φm, (21)

where Φi
m denotes the modified parameters of the new model

customized for region-i. With this region-specific slave model,
the final region-wise UV detection in this slave training stage
is performed by:

Mi(x̃
′

i,Φ
i
m)→ yi, yi ∈ {0, 1}. (22)

Correspondingly, the detection loss function is redefined as:

L
′

c =
∑

vi∈V L

−yilogMi(x̃
′

i,Φ
i
m)−(1−yi)log(1−Mi(x̃

′

i,Φ
i
m)).

(23)
The optimization objective in the slave adaptive stage can
be expressed by the weighted summation of pseudo label
predicting loss and final UVs detecting loss controlled by a
balancing hyper-parameter λ:

L = L
′

c + λLp. (24)

The detailed training procedure of the slave adaptive stage
is presented in Algorithm 2.

C. Urban Village Detection

After the two-stage training, our CMSF can make urban
village detection across the city as follows. Given an unlabeled
region on the URG, we first compute its membership to dif-
ferent clusters and produce the region-specific context vector
based on this membership and clusters’ inclusion probability.
Then, the parameter filter can be further generated to gate the
master model and derive the corresponding slave model. At
last, we feed the raw features of this region into the slave
model to output the probability of being UV.

Algorithm 2: Slave Adaptive Training Stage of CMSF
Input: URG G(V, E ,A,X), number of latent clusters K,

balancing hyper-parameter λ, trained master model
with parameter set θ1, assignment matrix B, pseudo
label of latent clusters yhj , gate function with W{q,f}

Output: Trained CMSF with parameter set:
θ2 =θ1∪{W{q,f},Φp}

1 Initialize the parameter set θ1 with trained master model;
2 Randomly initialize other parameters of θ2 \ θ1;
3 for iteration = 1,2,3, ... do
4 Get multi-modal region representation by (1)-(8);
5 Get cluster representation h

′
i by (10)-(11);

6 Get region representation x̃
′
i by (12)-(13);

7 Estimate inclusion probability ŷhj by (17);
8 Get pseudo label prediction loss Lp by (18);
9 Get region-specific parameter filter Fi by (19)-(20);

10 Get adaptive slave model with M( · ,Φm) by (21);
11 Get final UV prediction Mi(x̃

′
i) by (22);

12 Get the updated UV detection loss L
′
c by (23);

13 Update parameters θ2 according to the gradient of L;
14 end
15 return θ2

D. Complexity Analysis

Finally, we analyze the time complexity of our CMSF.
Note that the processing steps in the master training stage
are included in the slave adaptive stage, thus we analyze the
computational time cost of each component (MAGA, GSCM
and MS-Gate) per iteration in the slave stage as the overall
complexity of CMSF. Specifically, feeding the URG as input,
the complexity of MAGA is:

TMAGA = O(|V|d2 + |E|d), (25)

where |V| and |E| denote the size of the node set and edge set
of URG, d denotes the dimension of region features. O(|V|d2)
is the cost of feature transformation, and O(|E|d) corresponds
to the complexity of attention score computation and feature
aggregation. The complexity of GSCM is:

TGSCM = O(|V|Kd+Kd2 +K2d), (26)

where K is the number of latent semantic clusters. O(|V|Kd)
represents the complexity of assigning all regions into K
clusters to get cluster representation, as well as obtaining
global-aware region representation through reverse knowledge
sharing from clusters. And O(Kd2 + K2d) denotes the cost
of graph convolution operation among latent clusters. As for
the MS-Gate mechanism, we compute its complexity as:

TMS−Gate = O(Kd+ |V|K + |V|Kd+ |V|d|Fi|), (27)

where O(Kd) is to estimate the UV inclusion probability of
each cluster, and the region-wise context is formed by this
inclusion probability vector with complexity of O(|V|K +
|V|Kd). Then, denoting the parameter size of final region-
specific predictor as |Fi|, the computational cost of generating
parameter filter and deriving slave model is O(|V|d|Fi| +
|V||Fi|) = O(|V|d|Fi|) (since d ≥ 1). In our work, the param-
eter size of the predictor can be represented as |Fi| = O(d2).



TABLE I
STATISTICS OF THREE REAL-WORLD DATASETS.

# Regions # Edges # UVs # Non-UVs

Shenzhen 93,600 3,624,676 295 6,867

Fuzhou 59,872 1,589,198 276 3,685

Beijing 354,316 19,086,524 204 10,861

Overall, the total complexity of CMSF is the combination of
TMAGA, TGSCM and TMS−Gate:

TCMSF = O(|V|d3 + |V|Kd+ |E|d+Kd2 +K2d). (28)

VI. EXPERIMENTS
In this section, we conduct experiments in three cities in

China to demonstrate the effectiveness of our framework.

A. Experimental Setup

Data collection. We evaluate the performance of the pro-
posed framework CMSF on three real-world datasets with POI
data, satellite image data, road network data, and ground-
truth binary label data in Shenzhen, Fuzhou, and Beijing. For
each city, the POI basic property data and satellite image
data used for region features construction are also collected
by Baidu Maps in June 2020, while the road network data
is collected by [34]. Besides, the ground-truth UV and non-
UV regions for the three real-world datasets in our work are
collected through exhaustive manual crowdsourcing in June
2020. More information about how to collect the ground-truth
data is introduced in Appendix I-C.

Datasets construction. Upon these collected data, the three
real-world datasets are constructed as follows. We divide the
city into 128m× 128m region grids, and our datasets include
the regions in the main urban area. In this experiment, the main
urban area is defined as region grids selected by a centered
rectangle frame covering 90% POIs in the city. After data
cleaning and coordinate alignment, we obtained the three real-
world datasets whose statistical information are summarized
in Table I, including the total number of region grids, edges,
as well as the labeled samples of UVs and non-UVs.

To achieve stable experiment results, we selected the opti-
mal hyper-parameters for each model based on 3-fold nested
cross-validation. Specifically, we first equally split the dataset
into three folds, where each fold will serve as test data in turn
for performance evaluation, then the rest two folds are used
for model training and parameters selection with another 2-
fold cross-validation. We report the average results of three
rounds in each experiment.

Moreover, to avoid potential information leakage in real-
life applications, we use a coarse-grained partition strategy to
split the dataset for cross-validation. Notably, in practice, the
unlabeled region grids are usually distributed in patches (e.g. a
residential area composed of a cluster of grids), and should not
be mixed with labeled grids. Following the previous splitting
method [33], we simulate this practical scenario by treating
every 10× 10 grids as a block and then performing data split
on this coarse-grained block level. In this way, the labeled and
unlabeled grids will not be mixed together.

Implementations. For all comparing approaches in our
experiments, we construct a 64-dimension POI features vector
and generate a 4096-dimension image semantic features vector
from the satellite image for each region as model inputs. If
without specification, we use Adam optimizer with an initial
learning rate of 0.0001, and the hidden size is set to 64.

For our CMSF, we adopt an exponential decay strategy
whose decay rate is set to 0.1% per epoch in the optimization
process. For MAGA, the head number of multi-head attention
is set to 2 for Shenzhen and Fuzhou, and 1 for Beijing. We first
apply a linear transformation to reduce the dimension of image
features to 128, and stack two MAGA layers to learn the multi-
modal representation of regions with the aggregation function
instantiated by the attention mechanism. For GSCM, we set
the number of latent clusters to 50, 500, 500 for Shenzhen,
Fuzhou and Beijing. Note that when applying the softmax
function to compute the assignment matrix, we introduce a
temperature parameter τ [41] for constraining the membership
probability to different clusters, where we set τ to 0.1, 0.01
and 0.1 for Shenzhen, Fuzhou and Beijing. We use one graph
convolution layer to reason the correlation among clusters. The
learned global-aware representation and local representation
from MAGA are aggregated by summation in Shenzhen,
Fuzhou and concatenation in Beijing. For MS-Gate, the pseudo
label predictor is a simple LR classifier and the balancing
weight λ in the slave adaptive stage is set to 0.01, 1.0 and
0.001 for Shenzhen, Fuzhou and Beijing.

B. Baselines

To evaluate the performance of CMSF, we compare it with
several comparative methods: Multi-layer Perceptron (MLP),
GNN models (GCN [21] and GAT [22]), and state-of-the-
art methods for UV detection (UVLens [10] and MUVFCN
[8]), urban region recognition (MMRE [23]), and imbalance
graph embedding (ImGAGN [42]). The detailed description
and implementation of baselines are listed in Appendix I-A.

C. Evaluation Metrics

To quantitatively measure the urban village detecting per-
formance of CMSF and the comparing methods, we use Area
Under Curve (AUC), Recall, Precision, and F1− score as
evaluation metrics. Note that in the real-life application, the
UV detection model is expected to screen out a small portion
of potential UV candidates for facilitating the city manager to
further investigate these regions with acceptable labor costs.
Thus, we define Recall and Precision of UV detection in a
practical application setting, where the top-p% regions with the
highest probability ranked by the detection model are treated
as the predicted UVs in the urban area of interest. Then, we
compare these predicted UVs with ground truth to calculate
Recall and Precision. In our experiments, we set p = 3 and
p = 5 to evaluate the performance of all methods.

D. Performance Comparison

We first evaluate the performance of CMSF and baseline
approaches in urban village detection on the three real-world
datasets. As shown in Table II, our framework achieves the



TABLE II
DETECTION PERFORMANCE COMPARISON IN TERMS OF PRECISION, RECALL, AND F1-SCORE IN THREE CITIES. THE AVERAGE AND STANDARD

DEVIATION (SHOWN IN BRACKETS) RESULTS ARE REPORTED ACROSS FIVE RANDOM RUNS.

AUC
p = 3 p = 5

Recall Precision F1-score Recall Precision F1-score

Fuzhou

MLP 0.837 (.001) 0.145 (.007) 0.376 (.013) 0.208 (.009) 0.250 (.010) 0.371 (.011) 0.295 (.010)
GCN 0.831 (.003) 0.149 (.006) 0.365 (.016) 0.209 (.009) 0.220 (.010) 0.325 (.013) 0.259 (.011)
GAT 0.850 (.010) 0.160 (.017) 0.391 (.043) 0.224 (.024) 0.244 (.010) 0.352 (.017) 0.284 (.012)

MMRE 0.836 (.005) 0.160 (.005) 0.398 (.014) 0.226 (.007) 0.254 (.008) 0.371 (.013) 0.298 (.010)
UVLens 0.854 (.004) 0.161 (.011) 0.389 (.025) 0.225 (.015) 0.256 (.009) 0.368 (.012) 0.298 (.010)

MUVFCN 0.846 (.004) 0.173 (.008) 0.421 (.015) 0.242 (.010) 0.273 (.003) 0.390 (.006) 0.317 (.004)
ImGAGN 0.865 (.001) 0.120 (.003) 0.297 (.007) 0.169 (.004) 0.210 (.003) 0.311 (.004) 0.248 (.003)

CMSF 0.870 (.001) 0.181 (.003) 0.437 (.007) 0.253 (.004) 0.276 (.000) 0.391 (.001) 0.319 (.001)

Shenzhen

MLP 0.691 (.001) 0.090 (.003) 0.123 (.004) 0.103 (.003) 0.149 (.002) 0.122 (.002) 0.134 (.002)
GCN 0.598 (.019) 0.040 (.008) 0.059 (.011) 0.048 (.009) 0.069 (.006) 0.061 (.005) 0.064 (.005)
GAT 0.669 (.023) 0.075 (.008) 0.098 (.011) 0.085 (.009) 0.115 (.016) 0.093 (.013) 0.102 (.014)

MMRE 0.690 (.007) 0.087 (.003) 0.119 (.004) 0.100 (.003) 0.136 (.004) 0.113 (.003) 0.123 (.003)
UVLens 0.713 (.015) 0.105 (.016) 0.140 (.020) 0.119 (.017) 0.170 (.020) 0.135 (.015) 0.150 (.017)

MUVFCN 0.719 (.010) 0.107 (.009) 0.141 (.010) 0.121 (.009) 0.162 (.012) 0.128 (.008) 0.142 (.010)
ImGAGN 0.636 (.028) 0.063 (.005) 0.087 (.008) 0.073 (.007) 0.103 (.010) 0.085 (.008) 0.093 (.009)

CMSF 0.762 (.000) 0.110 (.001) 0.148 (.002) 0.126 (.002) 0.172 (.003) 0.139 (.002) 0.153 (.002)

Beijing

MLP 0.699 (.003) 0.208 (.002) 0.135 (.001) 0.155 (.001) 0.277 (.004) 0.107 (.001) 0.148 (.002)
GCN 0.715 (.006) 0.136 (.009) 0.092 (.004) 0.102 (.005) 0.226 (.015) 0.085 (.004) 0.116 (.005)
GAT 0.782 (.008) 0.254 (.014) 0.160 (.009) 0.185 (.009) 0.383 (.020) 0.140 (.008) 0.194 (.011)

MMRE 0.691 (.011) 0.198 (.007) 0.130 (.003) 0.149 (.004) 0.263 (.010) 0.102 (.004) 0.141 (.006)
UVLens 0.772 (.007) 0.289 (.018) 0.176 (.007) 0.206 (.009) 0.375 (.015) 0.136 (.002) 0.190 (.004)

MUVFCN 0.750 (.015) 0.258 (.021) 0.159 (.006) 0.186 (.008) 0.336 (.031) 0.125 (.005) 0.174 (.008)
ImGAGN 0.698 (.011) 0.145 (.010) 0.068 (.009) 0.086 (.009) 0.189 (.016) 0.058 (.009) 0.084 (.011)

CMSF 0.821 (.000) 0.299 (.001) 0.191 (.001) 0.221 (.001) 0.400 (.002) 0.149 (.000) 0.207 (.000)

best performance. Compared with the best baselines, CMSF
improves the AUC by 6.8%, 0.6% and 5.0% in Shenzhen,
Fuzhou and Beijing respectively, which indicates that our
method can more effectively detect the potential UVs.

Moreover, we further have the following observations.
Though without outstanding detection performance, MLP can
positively discover UVs, which verifies the effectiveness of
our constructed POI features and image features. Compared
to MLP, GAT achieves great improvements in most cases,
which demonstrates that instead of investigating every region
independently, taking into account their correlations certainly
benefits UV detection. However, also belonging to GNNs,
GCN shows relatively poor performance in our problem.
A possible reason is that GCN treats all the neighboring
regions equally without capturing their relations to the cur-
rent region and considering their different importance, which
should provide useful information for UV detection. Since
the region embedding method MMRE tries to fuse the POI
and image features while leaning the region representation,
it broadly outperforms GCN, suggesting that it’s reasonable
to further consider inter-modal contexts for enhancing multi-
modal region representation.

The state-of-the-art UV detection approaches UVLens and
MUVFCN are the two most competitive solutions, but they
still perform worse than our framework, which can be partially
attributed to two major reasons: (1) Treating each region indi-

vidually, they cannot capture the complex correlations among
regions in an urban area, which plays a critical role in UV
detection; (2) These two approaches train a deep convolutional
neural network without considering the scarcity of labeled
UVs, which may significantly impact their performance. For
the imbalanced network embedding method ImGAGN, despite
considering the scarcity of known UVs and applying data
augmentation to generate fake nodes and edges, it still cannot
perform well because the augmented data lose the original
relation and structure among regions in the urban context.

Compared with these solutions, our CMSF framework con-
sistently performs the best in terms of all metrics in three
cities, thanks to its following advantages: (1) we construct
an URG to comprehensively characterize region features and
model complex dependencies among regions; (2) it gives full
play to complementary advantages of inter-modal contexts to
enhance the multi-modal region representation; (3) it enables
the interactions among distant but similar regions through a hi-
erarchical structure, to make exhaustive use of the knowledge
from limited known UVs and alleviate the labeled UV scarcity
problem; (4) the contextual master-slave gating mechanism
improves the adaptability to diverse urban regions without the
sacrifice of the generality. Therefore, our framework can much
more effectively solve the UV detection problem. Table II also
shows the standard deviation (SD) of all metrics for error
analysis. As we can see, the SD of AUC for all baselines
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Fig. 5. Ablation studies of different factors in CMSF.

is relative small, while the SD of other metrics like Recall,
Precision and F1-score are slightly larger. But overall, the
performance of CMSF is better than all competitors.

E. Ablation Study

To verify the effectiveness of different factors in our pro-
posed framework, we conduct the following two groups of
ablation studies by comparing CMSF with its variants on
three datasets: (1) ablation of the designed components and
(2) ablation of multi-modal urban data.

1) Effect of model components: We first investigate the
contributions of three components in our framework to UV
detection by comparing CMSF with its following variants:

• CMSF-M. This variant uses vanilla GAT layers to replace
MAGA for learning region representation without taking
into account the inter-modal context.

• CMSF-G. This variant removes the MS-Gate and omits the
slave adaptive training stage, which directly uses the master
model shared across all regions for the final prediction.

• CMSF-H. This variant removes the hierarchical structure
including GSCM and MS-Gate. As a result, distant but
similar regions are unable to interact with each other.

As shown in Figure 5(a), CMSF outperforms all its variants,
proving the significance of our special designs of contextual
master-slave gating mechanism and the hierarchical graph
neural network. To be specific, CMSF-M performs worse than
CMSF and other variants, since it independently aggregates the
features of each modality, which indicates that the inter-modal
context certainly benefits region representation learning and
UV detection. Besides, if we remove the contextual master-
slave gating mechanism (CMSF-G), the detection performance
has a notable decline, suggesting the effectiveness of such a
novel mechanism that balances the generality and specificity.
While the hierarchical structure is further removed (CMSF-
H), the performance gets worse. It indicates the necessity of
interactions among distant but similar regions to share the
global contextual information and alleviate the labeled UV
scarcity problem in UV detection.

2) Effect of multi-modal urban data: In addition to the
methodology, we further analyze the contributions of multiple
sources of urban data used to construct URG in our framework.
In this experiment, we run CMSF on the following changed
URGs with different types of urban data removed.

• noImage. It removes the visual features from the satellite
images, and regions are only characterized by POI features.
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Fig. 6. Parameter sensitivity of CMSF. In (a), the bottom horizontal axis is
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• noCate. Category distribution is not included. POI features
only contain POI radius and index of basic living facility.

• noRad. POI radius is not included. POI features only con-
tain category distribution and index of basic living facility.

• noIndex. Index of basic living facility is not included. POI
features only contain category distribution and POI radius.

• noRoad. The edge set of urban region graph for this variant
is only built by the spatial proximity defined by location.

• noProx. The edge set of urban region graph for this variant
is only built by the connectivity on the road network.

Figure 5(b) presents the comparison results. We can have
the following observations. Firstly, our CMSF beats the four
variants which remove visual features (noImage) or one of the
three types of POI features (noCate, noRad and noIndex). It
proves the important role of satellite image features and our
carefully designed POI features in profiling the region for UV
detection. Secondly, another two variants that only consider the
single region relation of spatial proximity (noRoad) or road
connectivity (noProx) cannot perform well as CMSF, which
indicates that modeling complex dependencies among regions
from both spatial distance and road connectivity perspectives
benefits more accurate UV detection.

F. Parameters Analysis

We also investigate the hyper-parameter sensitivity, by eval-
uating the performance variation along with the change of each
parameter while keeping other parameters fixed.

Number of latent semantic clusters K. We first analyze
the influence of the number of latent semantic clusters K. As
depicted in Figure 6(a), with increasing K, CMSF can model
more complex and diverse latent semantic information in the
urban context, leading to the rise of performance. However, if
K gets too large, there are not so many corresponding latent
semantic groups in the urban area supporting the cluster rep-
resentation learning, some superfluous clusters may result in
more noise and undermine the performance instead. Moreover,
we observe that datasets in different cities prefer different K.
A probable explanation is that the number of latent semantic
groups is related to city area size, and the larger city (the
area size of Beijing and Fuzhou is several times of the one of
Shenzhen) may need a larger K for complete modeling.

Balancing weight λ. We next evaluate the sensitivity of
the balancing weight λ. It can be observed in Figure 6(b) that
the performance arises first and then declines when increasing
λ, which indicates that applying the pseudo label prediction
to regularize the region context with an appropriate weight
to derive contextual slave models can improve the detection



TABLE III
EFFICIENCY COMPARISON IN SHENZHEN AND FUZHOU.

Training time(s) Inference time(s) Model Size
Shenzhen Fuzhou Shenzhen Fuzhou (MBytes)

MLP 0.075 0.032 0.037 0.012 1.048
GCN 0.022 0.021 0.010 0.009 2.159
GAT 0.053 0.040 0.026 0.022 2.369

MMRE 240.4 116.7 0.002 0.002 3.981
UVLens 0.369 0.443 0.194 0.189 450.1

MUVFCN 0.607 0.645 0.271 0.264 91.37
ImGAGN 0.042 0.026 0.016 0.008 133.5

CMSF 0.187 0.342 0.112 0.062 7.433

performance. Whereas, excessive focus on this objective (i.e.
when λ is relatively large) can interfere the training process.

Ratio of labeled data. To verify the advantage of CMSF
to alleviate the scarcity problem of labeled UVs, we compare
the performance of CMSF and the most competitive baseline
UVLens, with a different number of available labeled data for
model training. To be specific, we create four random masks
that operate on the training set, to control the ratio of available
labeled data to be 10%, 25%, 50% and 75%, and present
the performance variation of these two methods trained on
the four masked training sets. In Figure 6(c), we can observe
that under different ratios of labeled data, CMSF consistently
outperforms the UVLens baseline. Moreover, with the change
of labeling ratio, CMSF presents a more stable performance
variation and less degradation than UVLens when the labeled
data becomes further scarce. These results further demonstrate
the effectiveness of CMSF to alleviate the scarcity of labeled
UVs for real-world UV detection.

G. Efficiency Comparison

To comprehensively evaluate the efficiency, we compare
all the baselines and our framework in terms of the training
time and inference time, which stand for the offline training
efficiency and deployed UV detection efficiency, as well as
the parameter size that indicates the required space to apply
the model. Specifically, we compute the average time of one
epoch as the training time, while the inference time refers to
the processing time for models obtaining the output probability
from raw input. Here only the results in Shenzhen and Fuzhou
are presented in Table III due to the limited space. For the
parameter size, we only report the one in Fuzhou since the
models for the three datasets have almost the same size.

We can observe that MLP, GCN, and GAT are most efficient
in both time consumption and space requirement due to their
simple structures, but it comes at the cost of unsatisfactory
detection accuracy. Rather, though UVLens and MUVFCN
achieve better performance than MLP, their operations on
high-dimensional image inputs inevitably result in a large
parameter size and need much more time for intensive com-
putation. MMRE takes a lot of time in the training stage
because its embedding model is partially optimized by an
auxiliary task with time-costly negative sampling for each
node on the graph. ImGAGN has a large model size, mainly
due to the module that generates numerous links between the
synthetic and minority nodes. As for our CMSF framework,

(a) Ground truth UVs (b) UVs detected by CMSF (c) UVs detected by UVLens

(e) Ground truth UVs (f) UVs detected by CMSF (g) UVs detected by UVLens

Fig. 7. Case studies in Fuzhou (top row) and Shenzhen (bottom row).

we report the average time in the master training stage as
training time, since it accounts for the most part of the whole
training process, while the slave adaptive stage only needs
very few iterations. Compared with UVLens and MUVFCN
model, CMSF not only achieves better performance, but also
is much more efficient in both computational cost and model
size. Therefore, our method has good efficiency in both time
and space to achieve the best UV detection accuracy.

H. Case Study

Finally, we show cases in Fuzhou and Shenzhen in Figure 7,
to further demonstrate the advantage of CMSF. Specifically,
we apply the trained CMSF and the state-of-the-art method
UVLens to rank the regions in the labeled data based on their
output probability, and then select the top 3% (p = 3) regions
with the highest probability as detected UVs to compare with
the ground truth labels. From the comparison shown in Figure
7, we can observe that the regions detected by our CMSF
method (in red) evidently match better than those detected
by UVLens (in blue) with the ground truth (in yellow),
especially the surrounding UV areas of an apparent UV region.
This is mainly because CMSF can consider and utilize the
dependencies among regions, which helps to effectively detect
those highly correlated UVs together.

VII. CONCLUSION

In this paper, we investigate the urban village (UV) detec-
tion problem from the graph perspective. First, we construct
an urban region graph (URG) incorporating multi-modal urban
data. Then, we propose a Contextual Master-Slave Framework
(CMSF) over the URG to improve the performance of UV
detection, which is trained in two stages. In the master training
stage, we pre-train a hierarchical graph neural network as the
master model to learn region representation and extract rich
contextual information from the URG. In the slave adaptive
stage, we devise a novel MS-Gate mechanism to adaptively de-
rive slave models for each region with region-specific contexts,
which effectively balances the generality and specificity of
our framework. Extensive experimental results in three cities
demonstrate the advantages of CMSF to detect potential UVs.
In our future work, we plan to further investigate how to apply
our framework to other urban applications.
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APPENDIX

A. Baseline Descriptions and implementations

Here we introduce the description and implementation of
all the comparing baselines in details.
• MLP. The multi-layer perceptron (MLP) is a most classic

artificial neural network (ANN), which stacks several fully
connected layers to transform the input features. Specifi-
cally, we apply two fully connected layers for POI and
image representation learning, respectively. Then the two
representation vectors are fused by concatenation and fed
into a LR classifier for urban village detection.

• GCN [21]. Graph convolution network (GCN) is a classic
message passing graph neural network, which aggregates
features from neighboring nodes based on the adjacency
matrix. In our urban village detection problem, we first
apply the dimension reduction for image features. And then,
considering the gap between different modalities, we adopt
two 2-layer graph convolution layers for modality-wise rep-
resentation learning, and fuse the multi-modal representation
with an additional linear transformation before feeding them
into the predictor.

• GAT [22]. Graph attention network (GAT) is also a popular
graph neural network using attention mechanism to learn
proper weights for neighboring nodes in features aggrega-
tion. The implementation of GAT model is similar to that
of GCN, with the only change of aggregation function.

• ImGAGN [42]. This model is a state-of-the-art method for
imbalanced network embedding, which is consistent with
the class distribution of urban village detection (UV regions
are in the minority class while non-UV regions are in the
majority class). ImGAGN adopts adversarial learning to
generate a set of synthetic minority nodes and balance the
different classes. In our experiments, we adopt 3-layer MLP
as synthetic minority nodes generator with the hidden size
recommended in [42]. As for the two important predefined
parameters of this model (i.e. the training minority nodes
ratio λ1 and discriminator training steps λ2), we respectively
set them as λ1 = 1.0 and λ2 = 100, which has been proved
to achieve the best performance in [42].

• MMRE [23]. Multi-modal Region Encoder (MMRE) is a
state-of-the-art graph convolution based approach to address
the Learning an Embedding Space for Regions (LESR)
problem with multi-modal data. It defines a discriminator
function to unify the POI features and satellite image
features for region embedding. For the implementation of
MMRE, we adopt three fully connected layers with hidden
size 120, 84, 64 as encoder and a symmetry structure as
decoder to constitute the denoising autoencoder for image
representation learning. Meanwhile, a 2-layer GCN with 128
and 64 hidden units are used to learn POI representation.
The SkipGram loss used for learning how to distinguish
true contextual regions are calculated by 4 positive samples
and 10 negative samples. The trade-off hyper-parameters in
final training objective are set to λI = 0.5 and λs = 0.1
for autoencoder reconstruction loss and SkipGram loss,

respectively. We remove the transition reconstruction loss
since we do not use taxi mobility flow data in this work.

• MUVFCN [8]. This is a state-of-the-art method for urban
village detection. It adopts the fully convolutional neural
network (FCN) with the pre-trained VGG19 [38] model as
the backbone. In our experiments, we implement it with
FCN-8s architecture [43], and the average pooling is applied
on output maps to obtain a 32-dimensional feature vector for
final prediction.

• UVLens [10]. This is a state-of-the-art method for urban
village detection. It uses taxi trajectories to segment the
city-wide satellite image into patches. Then, it integrates
bike-sharing drop-off data into image patches and adopts
Mask-RCNN [44] model to detect UVs. In our experiments,
due to the unavailability of bike-sharing drop-off data, we
use satellite images for UV detection. We first exploit a
histogram equalization as recommended in [10] and adopt
CNN backbone to extract feature maps for regions. Since we
have divided the urban area into grids of fixed size, these
grids can be treated as positive candidate object bounding
boxes. Thus, we omit Region Proposal Network (RPN) as
well as ROIPooling [44], and directly extract high-level
semantic features from feature maps with stacked fully
connected layers of 4096, 4096, 128 and 64 hidden units
for final prediction.

B. POI Feature Construction

As mentioned in section IV-B, we construct three groups of
POI features to describe the basic living facilities of regions,
which are category distribution, POI radius and the index of
basic living facility. Here we list all the POI types considered
in our work in Table IV. Note that the types of POIs used to
define the index of basic living facility are mainly selected
according to an official document released by Ministry of
Housing and Urban-Rural Development of China 1.

C. Ground-truth Collection

In our work, we exploit crowdsourcing to collect ground-
truth UV and non-UV regions for the three real-world datasets
with the following steps. We first make great efforts to collect
the news reports and official documents related to urban village
(such as urban village renovation and demolition plans) on
the Internet, based on which we obtain a set of potential
UVs to be verified. Then, we recruit a group of professional
participants to pick out the region grids that they think are
certainly contained by or significantly overlapped with UVs
on an online crowdsourcing platform. The platform provides
the geographical coordinates of each candidate region with
embedded online maps. The participants investigate these
regions through satellite images and street views with map
service for determining whether they are UV regions or not.
To obtain more reliable labeled data, we assign each region
to 3 participants, and the region will be labeled as UV only if
all three participants reach consistency. As for non-UVs, we

1http://www.mohurd.gov.cn/wjfb/201811/W02018113004480.pdf



TABLE IV
TYPES OF POI RELATED TO POI FEATURES CONSTRUCTION.

Category Distribution

The category distribution features are calculated by the POI proportion of the following 23 categories:
Food Service, Hotel, Shopping Place, Life Service, Beauty Industry, Scenic Spot, Leisure and Entertainment, Sports
and Fitness, Education, Cultural Media, Medicine, Auto Service, Transportation Facility, Financial Service, Real Estate,
Company, Government Apparatus, Entrance and Exit, Topographical Object, Road, Railway, Greenland, Bus Route.

POI Radius
We consider 15 radius features defined by the shortest distance from the region to the following types of POI:
Hospital, Clinic, College, School, Bus Stop, Subway Station, Airport, Train Station, Coach Station, Shopping Mall,
Supermarket, Market, Shop, Police Station, Scenic Spot.

Index of
Basic Living Facility

This binary feature will be assigned one if there are all the following types of living facilities within 1km:
Medical Service, Shopping Place, Sports Venue, Education Service, Food Service, Financial Service, Communication
Service, Public Security Organ and Transportation Facility

randomly sample a number of residential areas and ask the
participants to check these regions in the same way.
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