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Abstract—Trip planning, which targets at planning a trip
consisting of several ordered Points of Interest (POIs) under
user-provided constraints, has long been treated as an important
application for location-based services. The goal of trip planning
is to maximize the chance that the users will follow the planned
trip while it is difficult to directly quantify and optimize the
chance. Conventional methods either leverage statistical analysis
to rank POIs to form a trip or generate trips following pre-
defined objectives based on constraint programming to bypass
such a problem. However, these methods may fail to reflect the
complex latent patterns hidden in the human mobility data. On
the other hand, though there are a few deep learning-based trip
recommendation methods, these methods still cannot handle the
time budget constraint so far. To this end, we propose a TIme-
aware Neural Trip Planning (TINT) framework to tackle the
above challenges. First of all, we devise a novel attention-based
encoder-decoder trip generator that can learn the correlations
among POIs and generate trips under given constraints. Then,
we propose a specially-designed reinforcement learning (RL)
paradigm to directly optimize the objective to obtain an optimal
trip generator. For this purpose, we introduce a discriminator,
which distinguishes the generated trips from real-life trips taken
by users, to provide reward signals to optimize the generator.
Subsequently, to ensure the feedback from the discriminator is
always instructive, we integrate an adversarial learning strategy
into the RL paradigm to update the trip generator and the
discriminator alternately. Moreover, we devise a novel pre-
training schema to speed up the convergence for an efficient train-
ing process. Extensive experiments on four real-world datasets
validate the effectiveness and efficiency of our framework, which
shows that TINT could remarkably outperform the state-of-the-
art baselines within short response time.

I. INTRODUCTION

Trip planning aims to plan a trip consisting of several
ordered Points of Interest (POIs) for a user to maximize
the user experience under user-provided constraints (e.g. time
budget, start POI). In some scenarios, this problem is also
named as trip recommendation. Thanks to the widespread
usage of mobile devices, it is convenient for users to share
their footprints. The availability of such geo-tagged data
substantially facilitates the research study for the trip planning
problem, which has attracted considerable attention over the
past decades [1]–[7].

The ultimate objective of trip planning is to maximize
the chance that the user will follow the planned trip under
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given constraints while the objective is difficult to quantify
and optimize. Thus, most of existing studies turn to pre-
define the objective functions to bypass the problem. Some
studies majorly exploit POI popularity, user preference, or
POI co-occurrence to score POIs and design various objective
functions respectively [2], [4], [8]. Then, they model the trip
planning problem as a combinatorial problem: Orienteering
problem [1], [9], and generate trips by maximizing the pre-
defined objective with the help of constraint programming
(CP). However, except the high computation cost for these CP-
based methods, the recommended trips by such methods are
optimized by the pre-defined objective function, which may
not follow the latent transitional regularities hidden in the hu-
man mobility data. In addition, some works focus on modeling
the transitional relationship based on the historical trips and
recommend trips by maximizing the transition likelihood [3].
These methods usually predict the next POI based on the cur-
rent POI and transition matrices until constructing a complete
trip. Nevertheless, only considering the first-order transition
relationship may fail to capture the long-term dependencies
between POIs, leading to recommend a suboptimal trip.

With the progressive development of deep learning (DL),
some studies [10], [11] utilize deep learning models like Re-
current Neural Networks (RNN) to model the POI sequences
and probe into the POI dependencies and visiting patterns to
recommend trips. However, to the best of our knowledge,
existing DL-based models cannot take the important time
budget constraints into account when planning trips. A few
studies such as [11] try to bypass this limitation by assuming
the length (i.e. number of POIs) of a queried trip to be known
but ignoring the important time budget factor. Such loose
constraints may result in planning unreasonable trips, e.g. two
successive POIs in the trip are rather distant so that it is
unrealistic to visit both of them in a single trip.

To this end, we propose a TIme-aware Neural Trip Planning
(TINT) framework to tackle the challenges mentioned above.
At first, we propose an encoder-decoder based trip generator
that can generate trips under given time budget constraints in
an end-to-end fashion. Concretely, the encoder takes advantage
of multi-head self-attention to capture correlations among
POIs. Afterwards, the decoder subsequently selects POI into
a trip with mask mechanism to meet the given constraints
while maintaining a novel context embedding to represent the
contextual environment when choosing POIs.



Second, we devise an adversarial learning strategy into the
specially designed reinforcement learning (RL) paradigm to
train the generator by human mobility data. Instead of pre-
defining how to evaluate a trip by a hand-crafted objective
function, we adopt to measure the quality of the trip in a
learning manner from the historical human mobility data.
Meanwhile, the trip generator can be optimized by rein-
forcement learning techniques after considering such mobility
data driven evaluation. Specifically, we introduce a mobility
discriminator to distinguish the real-life trips taken by users
from the trips generated by the trip generator for better learn-
ing the latent human mobility patterns. During the training
process, once trips are produced by the trip generator, they
will be evaluated by the discriminator while the feedback
from the discriminator can be regarded as reward signals to
optimize the generator. By considering the evaluation from
the discriminator as rewards, we can directly optimize the
objective via RL techniques. Moreover, we devise a novel
pre-training schema with behavior cloning to speed up the
convergence to achieve an efficient training process.

Finally, a significant distinction of our framework from
existing trip planning methods is that we do not adopt the
traditional constraint programming methodology to meet the
given constraints. Considering the excellent performance for
inference (prediction) of the deep learning based models, both
the efficiency and effectiveness of our method are much better
than such CP-based methods. To sum up, the contributions of
this paper can be summarized as follows:

• We propose a deep learning framework to study the
trip planning problem given time budget constraints, and
explore to solve the problem in an end-to-end manner.

• We devise a novel encoder-decoder model to generate
trips and meet the given time budget constraints in
the meantime. Furthermore, we propose an adversarial
learning strategy integrating with reinforcement learning
to guide the trip generator to produce trips that follow
the latent human mobility patterns.

• We conduct extensive experiments on four real-world
datasets. The results demonstrate that TINT remarkably
outperforms the state-of-the-art baselines from both ef-
fectiveness and efficiency perspectives.

II. RELATED WORK

Trip planning aims to plan a sequence of POIs (i.e. trip)
to maximize user experience under user-provided constraints.
Classical methods modeled the trip planning problem as the
Orienteering problem whose main goal is to design reasonable
objectives and plan trips to maximize the pre-defined objec-
tives [1]. PERSTOUR [2] focused on user interest based on
visit duration and personalized the POI duration for different
users. C-ILP [4] modeled POIs and users in a unified latent
space by integrating the co-occurrences of POIs, user prefer-
ences and POI popularity. A similar problem related with trip
planning is the geodemographic influence maximization which
aims to select a set of locations to maximize the expected
influence in an urban space with a budget constraint [12].

However, such pre-defined objectives may fail to generate trips
that follow the latent human mobility patterns among POIs.
Moreover, the expensive computational costs make it difficult
for these methods to respond in real time.

Another line of studies aimed to model the transitional
relationship in the trips. MARKOV [3] leveraged the POI-POI
transition probabilities and recommended trips by maximising
the transition likelihood. Zhou et al. proposed a semi-lazy
learning approach to generating future trips on the fly based the
historical trajectories in a dynamic scenario [13], [14]. Yet, the
absence of modeling long-term dependencies between POIs
may plan a suboptimal trip. Different from these methods,
TRAR [15] focused on the attractiveness of the routes between
POIs to recommend trips and generate trips by using greedy
algorithm. However, only modeling users and POIs in the
category space may not be capable of learning the complex
human mobility patterns. The prediction performance based
on greedy strategy is also not satisfied enough.

Over the recent years, some deep learning based methods
have been extended to investigate the trip planning problem.
TRED [10] proposed to utilize a sequence-to-sequence model
with attention mechanism to capture the characteristics of
individual POIs and the transition patterns among POIs. Deep-
Trip [11] leveraged an adversarial Variational Auto-Encoder
(VAE) to understand the various context and the POI transition
distribution when planning a trip. SelfTrip [16] proposed
to improve the representation of human mobility via self-
supervised learning. However, these methods cannot handle
the time budget constraints and they tried to bypass this
limitation by assuming the number of POIs of the trip is
known before generation whose required travelling time may
exceed users’ time budget, resulting in unreasonable trips.
What’s more, TRED [10] and DeepTrip [11] neglected the user
preference and didn’t model the interaction betweeen users and
trips. As a consequence, the planned trips from such methods
may be not personalized enough.

III. PRELIMINARIES

A. Settings and Concepts

Definition 1 (POI): A POI l is a unique location with
geographical coordinates (α, β) and a category c, i.e. l =<
(α, β), c >.
We denote all the POIs as POI set L. The terms POI and
location are used interchangeably in this paper.

Definition 2 (Check-in): A check-in is a record that indicates
a user u arrives in a POI l at timestamp ta and leaves at
timestamp td, which can be represented as r = (u, l, ta, td).
We denote all the check-ins as R and the check-ins on a
specific location l as Rl.

Definition 3 (Trip): A trip is an ordered sequence of POIs
S = lS0 → lS1 → · · · → lSn .

Definition 4 (Trip Query): Given a query user u, a query
time budget Tq and a start POI lS0 , we aim to plan a trip
S = lS0 → lS1 → · · · → lSn for the user. We form the query
user, the start POI and the query time budget as a trip query,
denoted as a triple q = (u, lS0 , Tq).
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Fig. 1. An overview of the proposed framework.

Since we have the check-ins generated by users, we can
estimate the user duration time on POIs. Given a POI l and
corresponding check-in data Rl, the expected duration time of
a user spends on the POI is denoted by Td(l), which is the
average duration time of all check-ins on location l:

Td(l) =

∑
(u,l,ta,td)∈Rl

td − ta

|Rl|
(1)

We denote the transit time from a POI li to another POI lj
as Te(li, lj). The time cost along one trip can be calculated
by summing all the duration time of each POI and all the
time cost on the transit between POIs. In our experiment, the
transit time is estimated by the distance between POIs and the
walking speed of the user (e.g. 2m/s).

B. Trip Planning

Now we define the trip planning problem formally. Given a
trip query q = (u, lS0 , Tq), we aim to plan a well-designed trip,
which maximizes the likelihood that the user will follow the
planned trip but does not exceed the query time budget. For
convenience, we denote the sum of transit time from current
POI to the next POI and duration time on the next POI as
Ta(l

S
i , l

S
i+1) = Td(l

S
i+1)+Te(l

S
i , l

S
i+1), l

S
i is the i-th POI in trip

S. So the time cost on the planned trip denoted as T (S) can

be calculated by T (S) = Td(l
S
0 ) +

|S|−1∑
i=0

Ta(l
S
i , l

S
i+1). Overall,

the problem can be formulated as follows:

max
T (S)≤Tq

P (S | q) (2)

IV. APPROACH

The overall framework of TINT is shown in Fig. 1. In
general, we use a novel time-aware trip generator G to
generate the trips for users with incorporating the query time
budget and the POI correlation. Moreover, we construct a
mobility discriminator D to provide feedback compared with
the real-life trips taken by users. Therefore, the generator can
be trained through reinforcement learning by policy gradient
[17] to draw the generated trips and the real-life trips closer.
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Fig. 2. Illustration of time-aware trip generator.

A. Time-aware Trip Generator

Here we introduce a novel encoder-decoder framework to
incorporate the POI correlation and time factor for our trip
planning problem. As shown in Fig. 2, the generator consists of
two main components: 1) a POI correlation encoding module
(i.e., the encoder), which outputs the representations of all
the POIs; 2) a trip generation module (i.e., the decoder),
which selects location sequentially by maintaining a special
context embedding, and keeps the query time budget constraint
satisfied by mask mechanism.

1) POI Correlation Encoding: Given the trip query
(u, lS0 , Tq), we are supposed to integrate the heterogeneous
information to produce meaningful representation of POIs
under the specific trip query. For the discrete attribute user
u, POI l, category c, we adopt the embedding method to
encode them as dense low-dimensional vectors respectively.
As the duration time of a POI Td(l) is a continuous value, we
take 15 minutes as an interval to divide the duration time into
discrete integer values. In our experiment, the 0-15 (excluding
15) minutes will be represented as 1, 15-30 (excluding 30)
minutes will be represented as 2 and so on. Finally, we use a
linear transform to combine the user u and the POI li with its
category c and duration time Td(li) for joint embedding:

h
(0)
i = [xli ;xc;xu;xti ]WI + bI (3)

where xli , xc, xu and xti are POI embedding, category
embedding, user embedding and time embedding (which are
all trainable embeddings), [a; b; c; d] means concatenation of
vectors a, b, c, d, and WI, bI are trainable parameters. Thus,
we get the matrix presentation of the POIs H(0) ∈ RN×d, N
is the number of POIs in the POI set and each row of H(0) is
the representation of a POI, which contains abundant semantic
information about the POI.



What’s more, a reasonable generated trip is supposed to
consider the relationship between POIs [18], [19]. For in-
stance, after staying at a restaurant for a while a person is
more interested in POIs of other categories but not another
restaurant. So it is helpful to produce a POI representation with
considering the POI correlations through attention mechanism.
Thus, we further improve the POI representation with attention
to other POIs based on H(0) via a self-attention encoder.

Our encoder is similar to the one used in the Transformer
architecture [20]. We stack multiple attention layers and each
layer has the same sublayers: a multi-head attention (MHA),
and a point-wise feed-forward network (FFN). The initial input
of the first attention layer is H(0), and then we apply the scaled
dot-product attention for each head in layer l as:

head
(l)
i = Attn(H(l−1)WQ,H

(l−1)WK ,H(l−1)WV ) (4)

where 1 ≤ i ≤ M,WQ,WK ,WV ∈ Rd×dh , dh = d/M , M
is the number of heads and dh is the dimension for each head.
The scaled dot-product attention is calculated as:

Attn(Q,K,V) = softmax(
QKT

√
dh

)V (5)

where the softmax is row-wise. M attention heads are able
to capture different aspects of attention information and the
results from each head are concatenated followed by a linear
projection to get the final output of the MHA. We compute
the output of MHA sublayer as:

Ĥ(l) = [head
(l)
1 ; · · · ;head(l)M ]WO (6)

where WO ∈ Rd×d. We empower the encoder with nonlin-
earity by adding interactions between dimensions by using the
FFN sublayer. The FFN we apply is a two-layer feed-forward
network, whose output is computed as:

H(l) = ReLu(Ĥ(l)Wf1 + bf1)Wf2 + bf2 (7)

where Wf1 ∈ Rd×df ,Wf ∈ Rdf×d. Note that all the param-
eters for each attention layer are independent (not shared).

Besides, to stabilize and speed up converging, the multi-
head attention and feed-forward network are both followed
by skip connection and batch normalization [20]. To sum up,
by considering the interactions and inner relationship among
POIs, the encoder transforms all the important information of
POIs into dense vector representations.

2) Trip Generation: After obtaining the representations of
POIs from the encoder, the decoder constructs a trip given the
contextual information. Here contextual information includes
all the information affecting the decision for selecting POIs
into trips like the global POI information, available time
and selected POIs. Formally, during the process of decoding,
the decoder selects a POI from the POI set once at a time
based on selected POIs and the available time left. Thus,
we first design a context embedding, integrating global POI
information, query time budget and selected POIs, to represent
the contextual information when choosing POIs into trips.
Then we use a decoding process to generate a trip that meets
the time budget constraints.

Self-Attention Context Embedding. By aggregating the
location embeddings, we apply a mean pooling of final loca-

tion embedding h̄(L) = 1
N

N∑
i=1

h
(L)
i as global POI embedding.

Based on selected POIs S0:t−1 = lS0 → lS1 → · · · → lSt−1, we
keep track of the remaining available time Tt at time step t.
Initially T1 = Tq − Td(l

S
0 ), and Tt is updated as:

Tt+1 = Tt − Ta(l
S
t−1, l

S
t ), t ≥ 1 (8)

Following existing methods to represent the contextual infor-
mation in the procedure of decoding [21]–[23], we employ a
novel context embedding hc conditioned on the POI set, last
selected POI and remaining time, which will change along the
decoding proceeds. We concatenate the global POI embedding,
last selected location embedding and the embedding for the
remaining time as the context embedding hc:

hc = [h̄(L);xTt
;h

(L)

lSt−1

], t ≥ 1 (9)

where xTt is the embedding for the remaining time, hc ∈
R1×(2d+dt), dt is the dimension of time embedding.

Before deciding which POI to add into the trip at time
step t, it is important to look back the information about the
POI set and remind ourselves which POIs are optional and
which POIs should not be considered because they break the
given constraints. Therefore, we first glimpse the POIs that
are optional, i.e. are never selected before and do not exceed
the query time budget, and then integrate the information with
attention to the output from the encoder:

qc = hcW
c
Q ki = h

(L)
i Wc

K vi = h
(L)
i Wc

V (10)

αtj =
Θ(Tt − Ta(l

S
t−1, lj))exp(

qck
T
j√
d
)∑

lm∈L\S0:t−1

Θ(Tt − Ta(lSt−1, lm))exp(
qckT

m√
d
)

(11)

Wc
K ,Wc

V ∈ Rd×d,Wc
Q ∈ R(2d+dt)×d, h(L)

i is the i-th row of
the location embedding matrix H(L), and Θ(·) is a Heaviside
step function, which plays a crucial role as the time-aware
mask operator. Thus, after integrating the information with
attention to optional POIs, the refined context embedding h̄c

is computed as:
h̄c =

∑
lj∈L

αtj · vj (12)

We omit the multi-head due to the page limit.
Self-Attention Prediction. After getting the refined context

embedding h̄c, we apply a final attention layer with a single
attention head with mask mechanism.

ucj =

{
h̄ck

T
j√
d

otherwise.

−∞ if lj ∈ S0:t−1 or Tt < Ta(l
S
t−1, lj).

(13)

Finally, softmax is applied to get the probability distribution:

p(lSt = lj |h̄c) =
eucj∑

lm∈L e
ucm

(14)

The decoding proceeds until there is no enough time left
and then we get the entire trip generated by the decoder S0:t.



B. Reinforcement Learning from Human Mobility

We model the trip generation process as a Markov Decision
Process (MDP) [24]. That is to say, at each step there is a
smart agent to select the best POI which can finally form
an optimal trip. We regard selecting POI at each time step
as action, contextual information (e.g. available time, selected
POIs) when selecting POIs as state s. The policy π(l | s)
defines a probability distribution over actions for each state,
in other words, the policy defines the probability distribution
on the POIs to be selected in a particular state. Therefore, our
goal is to learn an optimal policy, which guarantees that the
agent can always take the best action, i.e. the POI with the
highest probability is the most promising option.

The next problem is how to train the encoder-decoder
framework for trip generation. In order to learn a well-formed
policy to construct an optimal trip given a trip query, a direct
method to optimize the framework is to leverage the explicit
signals: using the real-life trips as ground truth and applying
supervised learning to optimize the policy, which can be seen
as behavior cloning in the filed of imitation learning. However,
learning from the real-life trips by supervised learning is not
directly aimed at the objective of trip generation, which may
make the policy fall into local-minimal. Thus, we introduce
reinforcement learning (RL) techniques to directly optimize
the objective by regarding it as reward signals. What’s more,
we devise an adversarial learning strategy into the reinforce-
ment learning paradigm to further optimize the trip generator,
using a discriminator to force the generated trip be intrinsically
the same with the real-life trips. On the other hand, we also
adopt supervised learning as a pre-training stage to overcome
the sample-inefficient and unstable issues in reinforcement
learning, which can combine the advantages from both fields.

To sum up, we first pre-train the trip generator by behavior
cloning. Afterwards, we alternately update the discriminator
and the generator with the respective objective by reinforce-
ment learning. During updating the generator, we also feed
real-life trips to the generator, regulating the generator from
deviation from the real-life trip data. Here we summarize the
training process of TINT in pseudo-code in Algorithm 1.

Algorithm 1: Training Procedure for TINT
Input: Traing set D
Output: Trained model parameters θ of the generator

1 Initialize Gθ , Dϕ with random parameters θ, ϕ;
2 Generate trips using Gθ for pre-training Dϕ;
3 Pre-train Dϕ via binary cross entropy loss by Eq. (16);
4 Pre-train Gθ via behavior cloning by Eq. (15) ;
5 for n epoches do
6 for m batches do
7 Generate trips by using Gθ;
8 Update Dϕ via BCE loss by Eq. (16) ;
9 Update Gθ via policy gradient by Eq. (18) ;

10 Update Gθ via supervised loss by Eq. (15);
11 end
12 end

1) Pre-training by Behavior Cloning: Learning directly
from rewards from scratch by RL for sequence generation
is usually sample-inefficient and not easy to achieve the
promising performance [25]–[27], which is also our reason
to introduce the pre-train schema. In order to accelerate the
training process and further improve the performance, we
propose a novel pre-training schema based on behavior cloning
[28]. In a nutshell, the objective of behavior cloning is to use
a pre-training strategy to initialize the trip generator utilizing
the data of real-life trips before optimizing it by RL. Behavior
cloning applies supervised learning to train the policy and
focuses on the mapping relationships from states to actions.
During pre-training, we use real-life trips as ground-truth,
regard choosing POI at each time step as a multi-classification
problem and optimize by softmax loss function. Nevertheless,
during inference, the trip generator needs the preceding POI
to select the next POI while we have no access to the true
preceding POI in training, which may lead to cumulative poor
decisions [29]. To bridge such a gap between training and
inference, during training, we select POIs by sampling with the
probability distribution, which is defined in Eq. (14). Finally,
the loss can be computed as:

Lc = −
∑

Ŝ∈Pdata

|Ŝ|∑
t=1

log p(lŜt |S0:t−1; θ) (15)

where S is the actual generated trip during training and Ŝ is
the corresponding real-life trip.

2) Learning from Rewards: The target of the trip generator
is to construct a well-planned trip to maximize the chance that
the user will follow the planned trip. We can directly optimize
the objective by regarding it as rewards. Thus, we devise a
mobility discriminator to distinguish real-life trips taken by
users between generated trips, which provides reward signals
to guide the optimization of the trip generator.

The task for the discriminator essentially is to conduct
binary classification. Here we apply a simple but effective one-
layer Gated Recurrent Unit (GRU) [30], followed by a two-
layer feed-forward neural network to accomplish this task. The
reason to design such a simple and computing efficiently dis-
criminator is to guarantee the training efficiency of the whole
framework. Besides, if the discriminator is too complicated, it
is also difficult for the generator to learn from the discriminator
[31]. We denote the mobility discriminator as Dϕ and the trip
generator as Gθ, where θ and ϕ represent the parameters of
the generator and the discriminator respectively. We denote all
the real-life trips as Pdata. We train the discriminator Dϕ via
binary cross entropy (BCE) loss as follows:

max
ϕ

EŜ∼Pdata
[logDϕ(Ŝ)] + ES∼Gθ

[log(1−Dϕ(S))] (16)

After the generated trips have been evaluated by the mobil-
ity discriminator, we regard the score from the discriminator
as rewards to directly optimize the trip generator. Thus, we
define the loss as:

L(S) = Epθ(S|q)[Dϕ(S)] (17)



TABLE I
DATASET STATISTICS.

Dataset Edinburgh Toronto Budapest Vienna

# users 1454 1395 935 1155
# check-ins 33944 39419 18513 34515

# trips 5028 6057 2361 3193

which represents the expected score for the generated trip S
given the trip query q. Following REINFORCE [32] algorithm,
we optimize the loss by gradient ascent:

∇L(θ | q) = Epθ(S|q)[Dϕ(S)∇ log pθ(S | q)] (18)

During the training process, the generator and the discrimi-
nator will be updated alternatively, which will push both of
them to become stronger. As a consequence, after the training
process, the trip generator should be able to plan reasonable
trips and the discriminator cannot tell the difference between
the planned trips and real-life trips taken by users.

Teacher Forcing. However, the training process is usually
unstable by optimizing the generator with Eq. (18) [33]. The
reason behind this is that once the generator deteriorates in
some training batches and the discriminator will recognize
the unreasonable trips soon, then the generator cannot be
effectively optimized. In other words, the generator knows the
generated trips are not good enough based on the received
rewards from the discriminator, but it does not know what
trips are good and how to improve the quality of generated
trips (the chance of producing high-quality trips from random
sampling based on the policy is seldom due to the large amount
of the possible trips). These insufficient positive reward signals
may hinder the generator to learn continuously and stably. To
alleviate this issue and give the generator more access to real-
life trips, after we update the generator with policy gradient,
we also feed the generator real-life trips and update it with
supervised loss, i.e. Eq. (15) again.

V. EXPERIMENTS

In this section, we conduct experiments on four real-world
datasets to investigate the following research questions:

• RQ1. How does our proposed TINT perform compared
with the state-of-the-art baselines?

• RQ2. Can TINT response in real time given a trip query?
• RQ3. Does each component of the TINT make contribu-

tions to the prediction performance?
• RQ4. How does our proposed TINT conditioned on

different query time budgets?

A. Experimental Setups

1) Dataset: For our experiments, we use four real-world
datasets extracted from YFCC100M dataset [34]: Edinburgh,
Toronto, Budapest and Vienna. The statistics of the four
datasets are summarized in Tab. I. These four real-world
datasets are widely used in the trip planning problem in the
previous studies. For these four datasets, we remove the trips
of which length is less than 3. We split the datasets in the

chronological order, where the former 80% for training, the
medium 10% for validation, and the last 10% for testing. For
a trip, we take the first POI of the trip as the start POI and
the time cost of the trip as the query time budget.

2) Baselines: We compare the performance of our proposed
method with four state-of-the-art baselines that are designed
for trip planning:

• MARKOV [3] leverages the POI-POI transition probabil-
ities and recommends trips by maximizing the transition
likelihood.

• C-ILP [4] learns a context-aware POI embedding by
integrating POI co-occurrences, user preferences and POI
popularity, and transforms the problem into an integer
linear programming problem.

• TRAR [15] proposes the concept of attractive routes,
utilize the attraction of routes to recommend trips for
different types of users.

• DeepTrip [11] proposes to leverage adversarial varia-
tional auto-encoder to understand the various context and
POI transition distribution when planning a trip.

For C-ILP, we utilize lpsolve [35], a linear programming pack-
age to generate trips under given constraints, which follows
their implementation. As for DeepTrip and MARKOV, in the
original setting the methods need to know the the POI number
of a generated trip in advance. However, in our problem, we
only know the query time budget not the POI number of the
queried trip. So we first set the length of the queried trip as
a large number (here we set it as 15), and then generate trips
among these POIs, i.e. we continue adding POIs into the trip
until the query time budget exhausts.

3) Evaluation Metrics: There are two aspects about a trip:
POIs and the order of POIs. We evaluate these two aspects
by F1 and Pairs-F1 [3] respectively. These two metrics are
popularly used for trip planning (and recommendation) in
previous studies.

F1 score. We follow the previous work [2], [11] in using
F1 score to evaluate the planned trip, which is the harmonic
mean of Precision and Recall.

Pairs-F1 [3] score. Pairs-F1 considers both the correctness
of POIs and sequential orders about the planned trip. It
measures the F1 score of each pair of POIs, whether they
are adjacent or not in the trip.

Pairs-F1 =
2 ∗ Pairs-P ∗ Pairs-R

Pairs-P + Pairs-R
(19)

where Pairs-P and Pairs-R represents the precision and recall
of the pairs of POIs respectively. Note that the calculation of
the F1 score doesn’t include the start POI because the planned
trip is certain to contain the start POI and the Pairs-F1 score
includes the start POI.

4) Implementation: We set embedding dimensions of user,
POI, category and time as 64, 8, 4 and 8 respectively. For the
encoder, the dimension of multi-head self-attention is 256, the
number of attention heads is 8, the inner-layer dimension of the
feed-forward sublayer is 256, and we stack 6 attention layers in
the encoder. For the decoder, we set the number of attention



TABLE II
COMPARISON WITH BASELINES.

Method Edinburgh Toronto Budapest Vienna

F1 Pairs-F1 F1 Pairs-F1 F1 Pairs-F1 F1 Pairs-F1

MARKOV 0.1856** 0.1021** 0.1386* 0.0874* 0.1859* 0.0901* 0.1904* 0.0910*
C-ILP 0.1997** 0.1022** 0.1527** 0.0720** 0.1651** 0.0669** 0.1021** 0.0736**
TRAR 0.1801** 0.0953** 0.1178** 0.0820* 0.1039** 0.0679** 0.0915** 0.0423**
DeepTrip 0.2222** 0.1519** 0.2033** 0.1438** 0.1601** 0.0834** 0.2184* 0.1122*
TINT 0.3445 0.2536 0.2727 0.1714 0.2657 0.1437 0.2902 0.1460

* indicates p-value ≤ 0.05 (statistically significant) and ** indicates p-value ≤ 0.01 (statistically extreme
significant) with paired t-test of TINT vs. baselines.

heads as 8 and the dimension of attention is 256. For the
discriminator, we set the dimension of the hidden state of GRU
as 256, the dimensions of inner layers in the feed-forward
network are 32 and 2. As for training, we set batch size as
512. We use Adam optimizer to train our whole framework
with a learning rate of 0.001 in the pre-training stage and
0.0001 in the reinforcement learning stage.1

B. Experimental Results

1) Effectiveness (RQ1): Tab. II shows the performance
under F1 and Pairs-F1 metrics on the four datasets with
respect to different methods. It can be observed that our
proposed method consistently outperforms all the baselines
with a significant margin on all the four datasets, which
demonstrates that our method can plan high-quality trips. We
also conducted a significance test – paired t-test – between
TINT and baselines with regard to both F1 and Pairs-F1
metrics. The significant levels are shown in Tab. II. Among
the baselines, deep-learning based method DeepTrip performs
the best. DeepTrip leverages an adversarial variational auto-
encoder to understand the various context and POI transition
distribution when planning trips while it ignores the essential
query time budget factor, which hinders it to plan a reasonable
trip. As for transition-based method, MARKOV focuses on the
transitional patterns among POIs, which ignores the high-order
information in the trip and fails to recommend high-quality
trips. C-ILP is based on integer linear programming, which
restricts it to respond in real time and affect its performance.
TRAR is ill-behaved because modeling users and POIs only
in the category space are not enough to extract informative
features to recommend high-quality trips.

2) Efficiency (RQ2): Besides the high prediction accuracy,
another advantage of our framework is its good efficiency that
is investigated in this section. We compare the running time
of TINT with all the baselines and the results are showed in
Fig. 3. Even though TINT and DeepTrip can be parallelized,
for fair comparison we make TINT and DeepTrip generate
trips serially and we run all the methods on the same CPU
device (Intel 6258R). The average running time of C-ILP
exceeds one minute while the average running time of TINT
is less than 10 ms, which demonstrates the superiority of our
model in efficiency compared to traditional CP-based models.

1The code is avaibale at https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/research/TINT.
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Fig. 4. Ablation study of each component.

MARKOV relies on the analysis of the historical data to
recommend trips, which is a burden on its efficiency. Even
though TRAR is faster than TINT with the help of the greedy
algorithm, TRAR’s performance is much worse than TINT,
even worse than MARKOV and C-ILP. Meanwhile, TINT has
the best prediction performance with enough short time period
(within 10 ms) to respond a query in real time.

3) Ablation Study (RQ3): To analyze the effect of each
component of the TINT framework, we conduct an experi-
mental evaluation on four variants of TINT:

• TINT-E removes self-attention for POI correlation.
• TINT-D replaces the trip generation module with Pointer

Networks [36].
• TINT-A means that we train the whole framework only

using pre-training by behavior cloning.
• TINT-P means that we train the whole framework with-

out pre-training but only using reinforcement learning by
learning from rewards.

As can be observed in Fig. 4, each component makes
contributions to the final performance. Removing the self-
attention module leads to huge performance degradation, in-
dicating the necessity of multi-head self-attention to capture
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the POI correlation. And compared to Pointer Networks,
the well-designed context embedding for trip planning also
shows its superiority. Reinforcement learning by learning from
rewards makes the model further improved based on pre-
training. Training our model without pre-training by behavior
cloning has a notable decline in both F1 and pairs-F1 metrics
indicating the effectiveness of pre-training on stabilizing and
facilitating the training process.

4) Impact of Query Time Budget on Edinburgh Dataset
(RQ4): We also investigate the impact of the query time
budget. The query time budget distribution and the perfor-
mance on different time budgets on Edinburgh are showed in
Fig. 5. We omit the results on the other datasets due to the
page limit and they have the similar trends. We define the
trips whose query time budgets are less than 1.5 hours are
short, longer than 3 hours as long and the others are medium.
The results demonstrate that our proposed TINT consistently
outperforms all the baselines on short, medium and long trips,
which indicates that TINT is capable of handling trip queries
with different time budgets.

VI. CONCLUSION

In this paper, we investigated the trip planning problem
by an end-to-end deep learning framework. Along this line,
we devised an encoder-decoder based trip generator to learn
a well-formed policy to select the optimal POI at each time
step by integrating POI correlation and contextual information.
Especially, we proposed a novel adversarial learning strategy
integrating with reinforcement learning to train the trip gen-
erator based on human mobility data. The extensive results
on four real-world datasets demonstrate our framework could
remarkably outperform the state-of-the-art baselines both on
effectiveness and efficiency.
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