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Abstract

Recent years have witnessed a large amount of decentralized
data in multiple (edge) devices of end-users, while the aggre-
gation of the decentralized data remains difficult for machine
learning jobs due to laws or regulations. Federated Learn-
ing (FL) emerges as an effective approach to handling de-
centralized data without sharing the sensitive raw data, while
collaboratively training global machine learning models. The
servers in FL need to select (and schedule) devices during the
training process. However, the scheduling of devices for mul-
tiple jobs with FL remains a critical and open problem. In this
paper, we propose a novel multi-job FL framework to enable
the parallel training process of multiple jobs. The framework
consists of a system model and two scheduling methods. In
the system model, we propose a parallel training process of
multiple jobs, and construct a cost model based on the train-
ing time and the data fairness of various devices during the
training process of diverse jobs. We propose a reinforcement
learning-based method and a Bayesian optimization-based
method to schedule devices for multiple jobs while minimiz-
ing the cost. We conduct extensive experimentation with mul-
tiple jobs and datasets. The experimental results show that
our proposed approaches significantly outperform baseline
approaches in terms of training time (up to 8.67 times faster)
and accuracy (up to 44.6% higher).

1 Introduction
Recent years have witnessed a large amount of decentral-
ized data over various Internet of Things (IoT) devices, mo-
bile devices, etc. (Liu et al. 2021), which can be exploited
to train machine learning models of high accuracy for di-
verse artificial intelligence applications. Since the data con-
tain sensitive information of end-users, a few stringent legal
restrictions (Official Journal of the European Union 2016;
CCL 2018; CCP 2018; Chik 2013) have been put into prac-
tice to protect data security and privacy. In this case, it is dif-
ficult or even impossible to aggregate the decentralized data
into a single server or a data center to train machine learn-
ing models. To enable collaborative training with distributed
data, federated learning (FL) (McMahan et al. 2017a), which
does not transfer raw data, emerges as an effective approach.
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FL was first introduced to collaboratively train a global
model with non-Independent and Identically Distributed
(non-IID) data distributed on mobile devices (McMahan
et al. 2017a). During the training process of FL, the raw
data is kept decentralized without being moved to a single
server or a single data center (Kairouz et al. 2019; Yang et al.
2019). FL only allows the intermediate data to be transferred
from the distributed devices, which can be the weights or
the gradients of a model. FL generally exploits a parame-
ter server architecture (Smola and Narayanamurthy 2010),
where a server (or a group of servers) coordinates the train-
ing process with numerous devices. To collaboratively train
a global model, the server selects (schedules) a number of
devices to perform local model updates based on their local
data, and then it aggregates the local models to obtain a new
global model. This process is repeated multiple times so as
to generate a global model of high accuracy.

While current FL solutions (McMahan et al. 2017a; Pilla
2021) focus on a single-task job or a multi-task job (Smith
et al. 2017), FL with multiple jobs (Han et al. 2020) remains
an open problem. The major difference between the multi-
task job and multiple jobs is that the tasks of the multi-task
job share some common parts of the model, while the multi-
ple jobs do not have interaction between each other in terms
of the model. The multi-job FL deals with the simultaneous
training process of multiple independent jobs. Each job cor-
responds to multiple updates during the training process of
a global model with the corresponding decentralized data.
While the FL with a single job generally chooses a portion
of devices to update the model, the other devices remain
idle, and the efficiency is low. The multi-job FL can well ex-
ploit diverse devices for multiple jobs simultaneously, which
brings high efficiency. The available devices are generally
heterogeneous (Li et al. 2020a, 2021), i.e., the computing
and communication capability of each device is different,
and the data in each device may also differ. During the train-
ing process of multiple jobs, the devices need to be sched-
uled to each job. At a given time, a device can be scheduled
to only one job. However, only a portion of the available
devices is scheduled to one job in order to reduce the influ-
ence of stragglers (McMahan et al. 2017a). Powerful devices
should be scheduled to jobs in order to accelerate the train-
ing process, while other eligible devices should also partici-
pate in the training process to increase the fairness of data so
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as to improve the accuracy of the final global models. The
fairness of data refers to the fair participation of the data in
the training process of FL, which can be indicated by the
standard deviation of the times to be scheduled to a job (Pi-
toura and Triantafillou 2007; Finkelstein et al. 2008).

While the scheduling problem of devices is typical NP-
hard (Du and Leung 1989; Liu et al. 2020a), some solu-
tions have already been proposed for the training process of
FL (McMahan et al. 2017b; Nishio and Yonetani 2019; Li
et al. 2021; Abdulrahman et al. 2021) or distributed systems
(Barika et al. 2019), which generally only focus on a single
job with FL. In addition, these methods either cannot ad-
dress the heterogeneity of devices (McMahan et al. 2017b),
or do not consider the data fairness during the training pro-
cess (Nishio and Yonetani 2019; Li et al. 2021; Abdulrah-
man et al. 2021), which may lead to low accuracy.

In this paper, we propose a Multi-Job Federated Learn-
ing (MJ-FL) framework to enable the efficient training of
multiple jobs with heterogeneous edge devices. The MJ-FL
framework consists of a system model and two schedul-
ing methods. The system model enables the parallel training
process of multiple jobs. With the consideration of both the
efficiency of the training process, i.e., the time to execute an
iteration, and the data fairness of each job for the accuracy of
final models, we propose a cost model based on the training
time and the data fairness within the system model. We pro-
pose two scheduling methods, i.e., reinforcement learning-
based and Bayesian optimization-based, to schedule the de-
vices for each job. To the best of our knowledge, we are
among the first to study FL with multiple jobs. We summa-
rize our contributions as follows:
• We propose MJ-FL, a multi-job FL framework consist-

ing of a parallel training process for multiple jobs and a
cost model for the scheduling methods. We propose com-
bining the capability and data fairness in the cost model
to improve the efficiency of the training process and the
accuracy of the global model.

• We propose two scheduling methods, i.e., Reinforcement
Learning (RL)-based and Bayesian Optimization (BO)-
based methods, to schedule the devices to diverse jobs.
Each method has advantages in a specific situation. The
BO-based method performs better for simple jobs, while
the RL-based method is more suitable for complex jobs.

• We carry out extensive experimentation to validate the
proposed approach. We exploit multiple jobs, com-
posed of Resnet18, CNN, AlexNet, VGG, and LeNet, to
demonstrate the advantages of our proposed approach us-
ing both IID and non-IID datasets.

The rest of the paper is organized as follows. We present
the related work in Section 2. Then, we explain the system
model and formulate the problem with a cost model in Sec-
tion 3. We present the scheduling methods in Section 4. The
experimental results with diverse models and datasets are
given in Section 5. Finally, Section 6 concludes the paper.

2 Related Work
In order to protect the security and privacy of decentral-
ized raw data, FL emerges as a promising approach, which

enables training a global model with decentralized data
(McMahan et al. 2017a; Yang et al. 2019; Li et al. 2020a;
Liu et al. 2021). Based on the data distribution, FL can
be classified into three types, i.e., horizontal, vertical, and
hybrid (Yang et al. 2019; Liu et al. 2021). The horizontal
FL addresses the decentralized data of the same features,
while the identifications are different. The vertical FL han-
dles the decentralized data of the same identifications with
different features. The hybrid FL deals with the data of dif-
ferent identifications and different features. In addition, FL
includes two variants: cross-device FL and cross-silo FL
(Kairouz et al. 2019). The cross-device FL trains global ma-
chine learning models with a huge number of mobile or IoT
devices, while the cross-silo FL handles the collaborative
training process with the decentralized data from multiple
organizations or geo-distributed datacenters. In this paper,
we focus on the horizontal and cross-device FL.

Current FL approaches (Bonawitz et al. 2019; Liu et al.
2020b; Yurochkin et al. 2019; Wang et al. 2020) generally
deal with a single job, i.e., with a single global model. While
some FL approaches have been proposed to handle multiple
tasks (Smith et al. 2017; Chen et al. 2021), the tasks share
some common parts of a global model and deal with the
same types of data. In addition, the devices are randomly
selected (scheduled) in these approaches.

A few scheduling approaches (McMahan et al. 2017b;
Nishio and Yonetani 2019; Li et al. 2021; Abdulrahman
et al. 2021; Barika et al. 2019; Nishio and Yonetani 2019; Li
et al. 2021; Abdulrahman et al. 2021; Sun et al. 2020) exist
for single-job scheduling while the device scheduling with
multi-job FL is rarely addressed. The scheduling methods in
the above works are mainly based on some heuristics. For in-
stance, the greedy method (Shi, Zhou, and Niu 2020) and the
random scheduling method (McMahan et al. 2017b) are pro-
posed for FL, while genetic algorithms (Barika et al. 2019)
are exploited for distributed systems. However, these meth-
ods do not consider the fairness of data, which may lead to
low accuracy for multi-job FL. The black-box optimization-
based methods, e.g., RL (Sun et al. 2020), BO (Kim, Kim,
and Park 2020), and deep neural network (Zang et al. 2019),
have been proposed to improve the efficiency, i.e., the reduc-
tion of execution time, in distributed systems. They do not
consider data fairness either, which may lead to low accu-
racy for multi-job FL.

Different from all existing works, we propose a system
model for the multi-job FL with the consideration of both ef-
ficiency and accuracy. In addition, we propose two schedul-
ing methods, one based on RL and the other based on BO,
for multi-job FL, which are suitable for diverse models and
for both IID and non-IID datasets.

3 System Model and Problem Formulation

In this section, we first explain the motivation for multi-job
FL. Then, we propose our multi-job FL framework , consist-
ing of multi-job FL process and a cost model. Afterward, we
formally define the problem to address in this paper.
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Figure 1: The training process within the Multi-job Federated Learning Framework.

Motivation for Multi-Job Federated Learning
Let us assume a scenario where there are multiple FL jobs
to be processed at the same time, e.g., image classification,
speech recognition, and text generation. These jobs can be
trained in parallel so as to efficiently exploit the available
devices. However, while each device can only update the
model of one job at a given time slot, it is critical to schedule
devices to different jobs during the training process. As the
devices are generally heterogeneous, some devices may pos-
sess high computation or communication capability while
others may not. In addition, the data fairness of multiple de-
vices may also impact the convergence speed of the train-
ing process. For instance, if only certain powerful devices
are scheduled to a job, the model can only learn the knowl-
edge from the data stored on these devices, while the knowl-
edge from the data stored on other devices may be missed.
In order to accelerate the training process of multiple jobs
with high accuracy, it is critical to consider how to schedule
devices while taking into consideration both the computing
and communication capability and the data fairness.

A straightforward approach is to train each job separately
using the mechanism explained in (McMahan et al. 2017b),
while exploiting the existing scheduling of single-job FL,
e.g., FedAvg (McMahan et al. 2017b). In this way, simple
parallelism is considered while the devices are not fully uti-
lized and the system is of low efficiency. In addition, a direct
adaptation of existing scheduling methods to multi-job FL
cannot address the efficiency and the accuracy at the same
time. Thus, it is critical to propose a reasonable and effec-
tive approach for the multi-job FL.

Multi-job Federated Learning Framework
In this paper, we focus on an FL environment composed
of a server module and multiple devices. The server mod-
ule (Server) may consist of a single parameter server or a

group of parameter servers (Li et al. 2014). In this section,
we present a multi-job FL framework, which is composed
of a process for the multi-job execution and a cost model to
estimate the cost of the execution.

Multi-job FL Process Within the multi-job FL process,
we assume that K devices, denoted by the set K, collabora-
tively train machine learning models for M jobs, denoted
by the set M. Each device k is assumed to have M lo-
cal datasets corresponding to the M jobs without loss of
generality, and the dataset of the m-th job on device k is
expressed as Dmk = {xmk,d ∈ Rnm , ymk,d ∈ R}D

m
k

d=1 with
Dm
k = |Dmk | as the number of data samples, xmk,d represent-

ing the d-th nm-dimentional input data vector of Job m at
Device k, and ymk,d denoting the labeled output of xmk,d. The
whole dataset of Jobm is denoted byDm =

⋃
k∈KDmk with

Dm =
∑
k∈KD

m
k . The objective of multi-job FL is to learn

respective model parameters {wm} based on the decentral-
ized datasets. The global learning problem of multi-job FL
can be expressed by the following formulation:

min
W

M∑
m=1

Lm, with Lm =

K∑
k=1

Dm
k

Dm
Fmk (wm), (1)

where Lm is the loss value of Job m, Fmk (wm) =
1
Dmk

∑
{xmk,d,y

m
k,d}∈D

m
k
fm(wm;xmk,d, y

m
k,d) is the loss value

of Job m at Device k, W :≡ {w1,w2, ...,wM} is the set
of weight vectors for all jobs, and fm(wm;xmk,d, y

m
k,d) cap-

tures the error of the model parameter wm on the data pair
{xmk,d, ymk,d}.

In order to solve the problem defined in Formula 1, the
Server needs to continuously schedule devices for different
jobs to update the global models iteratively until the train-
ing processes of the corresponding job converge or achieve a
target performance requirement (in terms of accuracy or loss
value). We design a multi-job FL process as shown in Fig.



1. The Server first initializes a global model for each job.
The initialization can be realized randomly or from the pre-
training process with public data. In order to know the cur-
rent status of devices, the Server sends requests to available
devices in Step 1©. Then, in Step 2©, the Server schedules
devices to the current job, according to a scheduling plan
generated from a scheduling method (see details in Section
4). The scheduling plan is a set of devices that are selected
to perform the local training process for the current job.
Please note that the scheduling process generates a schedul-
ing plan for each job during the training process of multiple
jobs, i.e., with an online strategy, while the scheduling pro-
cesses of multiple jobs are carried out in parallel. The Server
distributes the latest global model of the current job to the
scheduled devices in Step 3©, and then the model is updated
in each device based on the local data in Step 4©. Afterward,
each device uploads the updated model to the Server after
its local training in Step 5©. Finally, Server aggregates the
models of scheduled devices to generate a new global model
in Step 6©. The combination of Steps 1© - 6© is denoted by
a round, which is repeated for each job until the correspond-
ing global model reaches the expected performance (accu-
racy, loss value, or convergence). Please note that multiple
jobs are executed in parallel asynchronously, while a device
can only be scheduled to one job at a given time. In addition,
we assume that the importance of each job is the same.

Cost Model In order to measure the performance of each
round, we exploit a cost model defined in Formula 2, which
is composed of time cost and data fairness cost. The data
fairness has a significant impact on convergence speed.

Costrm(Vrm) = α ∗T r
m(Vrm) + β ∗F r

m(Vrm), (2)

where α and β are the weights of time cost and fairness
cost respectively, T r

m(·) represents the execution time of the
training process in Round r with the set of scheduled devices
Vrm, and F r

m(·) is the corresponding data fairness cost.
As defined in Formula 3, the execution time of a round de-

pends on the slowest device in the set of scheduled devices.
T r
m(Vrm) = max

k∈Vrm
{tkm}, (3)

where tkm is the execution time of Round r in Device k for
Job m. tkm is composed of the communication time and the
computation time, which is complicated to estimate and dif-
fers for different devices. In this study, we assume that the
execution time of each device follows the shift exponential
distribution as defined in Formula 4 (Shi et al. 2021; Lee
et al. 2018):

P [tkm<t] =

{
1− e−

µk
τmD

m
k

(t−τmakDmk )
, t ≥ τmakDm

k ,
0, otherwise,

(4)

where the parameters ak > 0 and µk > 0 are the maximum
and fluctuation of the computation and communication capa-
bility, which is combined into one quantity, of Device k, re-
spectively. Moreover, we assume that the calculation time of
model aggregation has little impact on the training process
because of the strong computation capability of the Server
and the low complexity of the model.

The data fairness of Round r corresponding to Job m is
indicated by the deviation of the frequency of each device to
be scheduled to Job m defined in Formula 5.

F r
m(Vrm) =

1

|K|
∑
k∈K

(srk,m −
1

|K|
∑
k∈K

srk,m)2, (5)

where srk,m is the frequency of Device k to be scheduled to
Job m, and K and |K| are the set of all devices and the size,
respectively. srk,m is calculated by counting the total number
of the appearance of Device k to be scheduled to Job m in
the set of scheduling plans for Job m, i.e., {V1

m, ...,Vrm}.

Problem Formulation
The problem we address is how to reduce the training time
when given a loss value for each job. While the execution
of each job is carried out in parallel, the problem can be
formulated as follows:

min
Vrm

{ M∑
m=1

R′
m∑

r=1

T r
m(Vrm)

}
(6)

s.t.
{
Lm(R′m) ≤ lm,
Vrm ⊂ K,∀m ∈ {1, 2, ...,M},∀r ∈ {1, 2, ..., R′m},

where lm is the given loss value of Jobm,R′m represents the
minimum number of rounds to achieve the given loss in the
real execution, and Lm(R′m) is the loss value of the trained
model at Round R′m, defined in Formula 1. As it requires
the global information of the whole training process, which
is hard to predict, to solve the problem, we transform the
problem to the following one, which can be solved with lim-
ited local information of each Round. In addition, in order
to achieve the given loss value of Job m within a short time
(the first constraint in Formula 6), we need to consider the
data fairness within the total cost in Formula 7, within which
the data fairness can help reduce R′m so as to minimize the
total training time.

min
Vrm

{
TotalCost(Vrm)

}
, (7)

TotalCost(Vrm) =

M∑
m′=1

Costrm′(Vrm′), (8)

s.t. Vrm′ ⊂ K,∀m′ ∈ {1, 2, ...,M},
where Costrm(Vrm) can be calculated based on Formula 2
with a set of scheduled devices Vrm to be generated using a
scheduling method for Job m. Since the scheduling results
of one job may have a potential influence on the schedul-
ing of other jobs, we consider the cost of other jobs when
scheduling devices to the current job in this problem. As
the search space is O(2|K|), this scheduling problem is still
a combinatorial optimization problem (Toth 2000) and NP-
hard (Du and Leung 1989; Liu et al. 2020a).

4 Device Scheduling for Multi-job FL
In this section, we propose two scheduling methods, i.e.,
BO-based and RL-based, to address the problem defined in
Formula 7. The scheduling plan generated by a scheduling
method is defined in Formula 9:



Algorithm 1: Bayesian Optimization-Based Scheduling
Input:

Vo : A set of occupied devices
Sm : A matrix of the frequency of each device sched-

uled to Job m
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
Vm = {V∗1m , ...,V∗Rmm } : a set of scheduling plans,
each with the size |K| × Cm

1: ΠL ← Randomly generate a set of observation points
and calculate the cost

2: for r ∈ {1, ...Rm} and lm is not achieved do
3: Π′← Randomly generate a set of observation points

with the devices within K\Vo
4: V∗rm ← argmax

V⊂Π′
αEI(V; Π′)

5: FL training of Job m with V∗rm and update Sm, Vo
6: Cr = TotalCost(V∗rm )
7: ΠL+r ← ΠL+r−1 ∪ (V∗rm ,Cr)
8: end for

V ′rm = argmin
Vrm⊂{K\Vro}

TotalCost(Vrm), (9)

where V ′rm is a scheduling plan, K\Vro represents the set of
available devices to schedule, TotalCost(Vrm) is defined in
Formula 8, and K and Vro are the set of all devices and the
set of occupied devices in Round r, respectively.

Bayesian Optimization-Based Scheduling
While the Gaussian Process (GP) (Srinivas et al. 2010) can
well represent linear and non-linear functions, BO-based
methods (Shahriari et al. 2016) can exploit a GP to find a
near-optimal solution for the problem defined in Formula 9.
In this section, we propose a Bayesian Optimization-based
Device Scheduling method (BODS).

We adjust a GP to fit the cost function TotalCost(·). The
GP is composed of a mean function µ defined in Formula 10
and a covariance function K defined in Formula 11 with a
Matern kernel (Williams and Rasmussen 2006).

µ(Vrm) = E
Vrm⊂{K\Vro}

[TotalCost(Vrm)] (10)

K(Vrm,V ′rm) = E
Vrm⊂{K\Vro},V′r

m⊂{K\Vro}

[(TotalCost(Vrm)− µ(Vrm))(TotalCost(V ′rm)− µ(V ′rm))]
(11)

The BODS is explained in Algorithm 1. First, we ran-
domly generate a set of observation points and calculate the
cost based on Formula 2 (Line 1). Each observation point
is a pair of scheduling plan and cost for the estimation of
mean function and the covariance function. Then, within
each round, we randomly sample a set of scheduling plans
(Line 3), within which we select the one with the biggest
reward using updated µ and K based on ΠL+r−1 (Line 4).
Afterward, we perform the FL training for Job m with the

Figure 2: The architecture of the RLDS.
generated scheduling plan (Line 5), and calculate the cost
corresponding to the real execution (Line 6) according to
Formula 8 and update the observation point set (Line 7).

Let (Vrl , Cl) denote an observation point l for Job m in
Round r, where Vrl = {Vrl,1, ...,Vrl,M} and Cl is the cost
value of TotalCost(Vrl,m) while the scheduling plans of
other jobs are updated with the ones in use in Round r.
At a given time, we have a set of observations ΠL−1 =
{(Vr1 ,C1), ..., (VrL−1,CL−1)} composed of L − 1 observa-
tion points. We denote the minimum cost value within the
L−1 observations by C+

L−1. Then, we exploit Expected Im-
provement(EI) (Jones, Schonlau, and Welch 1998) to choose
a new scheduling plan V∗rm in Round r that improves C+

L−1
the most, which is the utility function. Please note that this
is not an exhaustive search as we randomly select several
observation points (a subset of the whole search space) at
the beginning and add new observation points using the EI
method.

Reinforcement Learning-Based Scheduling
In order to learn more information about the near-optimal
scheduling patterns for complex jobs, we further propose a
Reinforcement Learning-based Device Scheduling (RLDS)
method as shown in Fig. 2, which is inspired by (Mao et al.
2019; Sun et al. 2020). The scheduler of RLDS consists of
a policy network and a policy converter. In the process of
device scheduling, RLDS collects the status information of
jobs as the input to the policy network. Then, the policy net-
work generates a list of probabilities on all devices as the
output. Finally, the policy converter converts the list into a
scheduling plan.

Policy Network The policy network is implemented us-
ing a Long Short-Term Memory (LSTM) network followed
by a fully connected layer, which can learn the sharing rela-
tionship of devices among diverse jobs. We take the compu-
tation and communication capability of available devices to
be used in Formula 4, and the data fairness of each job de-
fined in Formula 5 as the input. The network calculates the
probability of each available device to be scheduled to a job.

Policy Converter The Policy Converter generates a
scheduling plan based on the probability of each available
device calculated by the policy network with the ε-greedy
strategy (Xia and Zhao 2015).

Training In the training process of RLDS, we define
the reward as Rm = −1 ∗ TotalCost(Vrm). Inspired by
(Williams 1992; Zoph and Le 2017), we exploit Formula 12
to update the policy network:
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Figure 3: The accuracy of different jobs in Group A over time with the non-IID distribution.

Algorithm 2: Reinforcement Learning-Based Scheduling
Input:

Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
Vm = {V1

m, ...,VRmm } : a set of scheduling plans,
each with the size |K| × Cm

1: θ← pre-trained policy network, ∆θ ← 0, bm ← 0
2: for r ∈ {1, 2, ..., Rm} and lm is not achieved do
3: Vrm ← generate a scheduling plan using the policy

network
4: FL training of Job m and update Sm, Vo
5: Compute Rm

6: Update θ according to Formula 12
7: bm← (1 - γ) * bm + γ * Rm

n
8: end for

θ
′

= θ+
η

N

N∑
n=1

Vrn,m⊂K\V
r
o∑

k∈Vrn,m

∇θ logP (Sm
k |Sm

(k−1):1; θ)

(Rm
n − bm),

(12)
where θ′ and θ represent the updated parameters and the cur-
rent parameters of the policy network, respectively, η is the
learning rate, N is the number of scheduling plans to update
the model in Round r (N > 1 in the pre-training process and
N = 1 during the execution of multiple jobs), P represents
the probability calculated based on the RL model, Sm

k = 1
represents that Device k is scheduled to Job m, and bm is
the baseline value for reducing the variance of the gradient.

We exploit RLDS during the training process of multiple
jobs within the MJ-FL framework as shown in Algorithm
2. We pre-train the policy network with randomly generated
scheduling plans (see details in Appendix) (Line 1). When
generating a scheduling plan for Jobm, the latest policy net-
work is utilized (Line 3). We perform the FL training for Job
m with the generated scheduling plan and update the fre-
quency matrix Sm and the set of occupied devices Vo (Line
4). Afterward, we calculate the reward corresponding to the
real execution (Line 5). The parameters are updated based
on the Formula 12 (Line 6), while the baseline value bm is

updated while considering the historical value (Line 7).

5 Experiments
In this section, we present the experimental results to show
the efficiency of our proposed scheduling methods within
MJ-FL. We compared the performance of RLDS and BODS
with four baseline methods, i.e., Random (McMahan et al.
2017b), FedCS (Nishio and Yonetani 2019), Genetic (Barika
et al. 2019), and Greedy (Shi, Zhou, and Niu 2020).

Federated Learning Setups
In the experiment, we take three jobs as a group to be ex-
ecuted in parallel. We carry out the experiments with two
groups, i.e., Group A with VGG-16 (VGG) (Simonyan and
Zisserman 2015), CNN (CNN-A-IID and CNN-A-non-IID)
(LeCun et al. 1998), and LeNet-5 (LeNet) (LeCun et al.
1998), and Group B with Resnet-18 (ResNet) (He et al.
2016), CNN (CNN-B) (LeCun et al. 1998), and Alexnet
(Krizhevsky, Sutskever, and Hinton 2012), while each model
corresponds to one job. The complexity of the models is as
follows: AlexNet < CNN-B < ResNet and LeNet < CNN
(CNN-A-IID and CNN-A-non-IID) < VGG. We exploit
the datasets of CIFAR-10 (Krizhevsky, Hinton et al. 2009),
emnist-letters (Cohen et al. 2017), emnist-digital (Cohen
et al. 2017), Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017), and MNIST (LeCun et al. 1998) in the training pro-
cess. Please see details of the models and datasets in Ap-
pendix. For the non-IID setting of each dataset, the training
set is classified by category, and the samples of each cate-
gory are divided into 20 parts. Each device randomly selects
two categories and then selects one part from each category
to form its local training set. For the IID setting, each de-
vice randomly samples a specified number of images from
each training set. In addition, we use 12 Tesla V100 GPUs to
simulate an FL environment composed of a parameter server
and 100 devices. We use Formula 4 to simulate the capabil-
ities of devices in terms of training time with the uniform
sampling strategy, while the accuracy is the results from the
real training processes. In the experimentation, we use cor-
responding target accuracy (for ease of comparison) in the
place of target loss value.

Evaluation on the non-IID setting: When the decentral-
ized data is of non-IID, the data fairness defined in Formula
5 has a significant influence on the accuracy. As shown in
Fig. 3, the convergence speed of our proposed methods, i.e.,



Table 1: The convergence accuracy and the time required to achieve the target accuracy for different methods in Group A. The
numbers in parentheses represent the target accuracy, and ”/” represents that the target accuracy is not achieved.

Convergence Accuracy Time (min)
Random Genetic FedCS Greedy BODS RLDS Random Genetic FedCS Greedy BODS RLDS

Non-IID

VGG 0.55 0.54 0.55 0.43 0.57 0.57 VGG(0.55) 2486 1164.3 1498.5 / 455.1 406.8
CNN 0.90 0.80 0.80 0.83 0.90 0.88 CNN(0.80) 44.25 95.85 27.39 43.04 15.88 12.75
LeNet 0.990 0.988 0.990 0.986 0.991 0.990 LeNet(0.984) 43.81 30.15 33.37 43.76 28.93 34.08

IID
VGG 0.614 0.558 0.603 0.522 0.603 0.614 VGG(0.60) 529.9 / 322.5 / 293.6 249.2
CNN 0.943 0.928 0.943 0.928 0.943 0.937 CNN(0.930) 52.05 176.85 27.45 26.48 19.25 18.29
LeNet 0.9945 0.9928 0.9934 0.99 0.9946 0.9933 LeNet(0.993) 43.15 57.53 27.31 / 16.73 23.31

Table 2: The convergence accuracy and the time required to achieve the target accuracy for different methods in Group B. The
numbers in parentheses represent the target accuracy, and ”/” represents that the target accuracy is not achieved.

Convergence Accuracy Time (min)
Random Genetic FedCS Greedy BODS RLDS Random Genetic FedCS Greedy BODS RLDS

Non-IID

ResNet 0.546 0.489 0.523 0.403 0.583 0.537 ResNet(0.45) 571.0 307.2 279.5 174.2 157.5 137.6
CNN 0.821 0.767 0.821 0.764 0.836 0.823 CNN(0.73) 47.1 22.0 18.5 70.8 13.8 4.8

AlexNet 0.989 0.986 0.987 0.871 0.990 0.989 AlexNet(0.978) 141.85 77.74 84.8 / 61.91 57.97
IID

ResNet 0.787 0.754 0.782 0.743 0.791 0.771 ResNet(0.740) 65.93 32.51 31.4 52.93 15.9 11.96
CNN 0.867 0.867 0.868 0.868 0.869 0.869 CNN(0.865) 88.81 23.89 26.06 21.42 23.99 9.3

AlexNet 0.9938 0.9938 0.9939 0.9935 0.9939 0.9943 AlexNet(0.9933) 35.08 19.44 20.97 / 21.65 12.58

RLDS and BODS, is significantly faster than other methods.
RLDS has a significant advantage for complex jobs (VGG
in Fig. 3(a)), while BODS can lead to good performance
for relatively simple jobs in Groups A and B (please see
details of Group B in Fig. 6 in Appendix). In addition, as
shown in Tables 1 and 2, the final accuracy of RLDS and
BODS outperforms other methods (up to 44.6% for BODS
and 33.3% for RLDS), as well. Given a target accuracy, our
proposed methods can achieve the accuracy within a shorter
time, compared with baseline methods, in terms of the time
for a single job, i.e., the training time of each job (up to 5.04
times shorter for BODS and 5.11 times shorter for RLDS),
and the time for the whole training process, i.e., the total
time calculated based on Formula 6 (up to 4.15 times for
BODS and 4.67 times for RLDS), for Groups A and B. We
have similar observations with IID, while the advantage of
RLDS is much more significant (up to 8.67 times shorter
in terms of the time for a single job) than that of non-IID
as shown in Tables 1 and 2. We also find that MJ-FL outper-
forms (up to 5.36 faster and 12.5% higher accuracy) sequen-
tial execution of single-job FL (see details in Appendix).

As RLDS can learn more information with a complex
neural network, RLDS outperforms BODS for complex
jobs. BODS can lead to high convergence accuracy and fast
convergence speed thanks to the emphasis on the combina-
tion of the data fairness and the capability of the device,
i.e., computation and communication capability. Both RLDS
and BODS significantly outperform the baseline methods,

while there are also differences among the four methods.
The Greedy method is more inclined to schedule the devices
with high capability, which leads to a significant decrease in
the final convergence accuracy. The Genetic method can ex-
ploit randomness to achieve data fairness while generating
scheduling plans, and the convergence performance is better
than the Greedy method. The FedCS method optimizes the
scheduling plan with random selection, which improves the
fairness of the device to a certain extent, and the convergence
speed is faster than the Random method.

6 Conclusion
In this work, we proposed a new Multi-Job Federated Learn-
ing framework, i.e., MJ-FL. The framework is composed of
a system model and two device scheduling methods. The
system model is composed of a process for the parallel exe-
cution of multiple jobs and a cost model based on the capa-
bility of devices and data fairness. We proposed two device
scheduling methods, i.e., RLDS for complex jobs and BODS
for simple jobs, to efficiently select proper devices for each
job based on the cost model. We carried out extensive exper-
imentation with six real-life models and four datasets with
IID and non-IID distribution. The experimental results show
that MJ-FL outperforms the single-job FL, and that our pro-
posed scheduling methods significantly outperform baseline
methods (up to 44.6% in terms of accuracy, 8.67 times faster
for a single job, and 4.67 times faster for the total time).



References
2018. California Consumer Privacy Act Home Page. https:
//www.caprivacy.org/. Online; accessed 14/02/2021.
2018. Cybersecurity Law of the People’s Republic
of China. https://www.newamerica.org/cybersecurity-
initiative/digichina/blog/translation-cybersecurity-law-
peoples-republic-china/. Online; accessed 22/02/2021.
Abdulrahman, S.; Tout, H.; Mourad, A.; and Talhi, C. 2021.
FedMCCS: Multicriteria Client Selection Model for Opti-
mal IoT Federated Learning. IEEE Internet of Things Jour-
nal, 8(6): 4723–4735.
Barika, M.; Garg, S.; Chan, A.; and Calheiros, R. 2019.
Scheduling algorithms for efficient execution of stream
workflow applications in multicloud environments. IEEE
trans. on Services Computing.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konecný, J.; Mazzocchi, S.;
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Appendix

Algorithm 3: Reinforcement Learning Based Pre-Training
Input:

Vo : A set of occupied devices
Sm : A vector of the frequency of each device sched-

uled to Job m
N : The number of scheduling plans used to train the

network for each round
Rm : The maximum round of the current Job m
lm : The desired loss value for Job m.

Output:
θ : Parameters of the pre-trained policy network

1: θ← randomly initialize the policy network, bm ← 0
2: for r ∈ {1, 2, ..., Rm} and lm is not achieved do
3: Vrm ← generate a set of N scheduling plans
4: for Vrn,m ∈ Vrm do
5: Rdmn ← TotalCost(Vrn,m)
6: end for
7: Update θ according to Formula 12
8: bm← (1 - γ) * bm + γ

N *
∑N
n=1 Rm

n
9: V∗rm ← argminVrn,m∈VrmTotalCost(Vrn,m)

10: Update Sm, Vo with V∗rm
11: end for

Loss Estimation
We assume exploiting stochastic gradient descent (SGD) to
train models, which converges at a rate ofO(r) with r repre-
senting the number of rounds (Peng et al. 2018). Inspired by
(Li et al. 2019), we exploit Formula 13 to roughly estimate
the loss value of the global model for Job m at Round r.

Lossm(r) =
1

β0
mr + β1

m

+ β2
m, (13)

where β0
m, β1

m and β2
m represent non-negative coefficients

of the convergence curve of Job m. β0
m, β1

m and β2
m can

be calculated based on previous execution. In addition, we
assume that the real number of rounds corresponding to the
same loss value has 30% error compared with r (from the
observation of multiple execution). Given a loss value of a
model, we use this loss estimation method to calculate the
maximum rounds for each job. Given a loss value of a model,
we use this loss estimation method to calculate the number
of rounds as Rcm and use (1 + 0.3) ∗ Rcm as Rm defined in
Table 6. Please note that this estimation is different from the
loss value during the real execution; i.e.,R′m can be different
from Rm.

Details for Bayesian Optimization-Based
Scheduling
The utility function is defined in Formula 14.

u(V∗rm ) = max(0,C+
L−1 − TotalCost(V

∗r
m )), (14)

where we receive a reward C+
L−1 − TotalCost(V∗rm ) if

TotalCost(V∗rm ) turns out to be less than C+
L−1, and no re-

ward otherwise. Then, we use the following formula, which

Table 3: Experimental Setup of Group A. Size represents
the size of training samples and test samples (number of
training samples/number of test samples). “Emnist-L” repre-
sents “Emnist-Letters” and “Emnist-D” represents “Emnist-
Digitals”.

datasets Cifar10 Emnist-L Emnist-D

Features 32x32 28x28 28x28
Network model VGG16 CNN LeNet5

Parameters 26,233K 3,785K 62K
Size 50k/10k 124.8k/20.8k 240k/40k

Local epochs 5 5 5
Mini-batch size 30 10 64

Table 4: Experimental Setup of Group B. Size represents the
size of training samples and test samples (number of training
samples/number of test samples).

datasets Fashion mnist Cifar10 Mnist

Features 28x28 32x32 28x28
Network model CNN ResNet18 AlexNet

Parameters 225K 598K 3,275K
Size 60K/10K 50K/10K 60K/10K

Local epochs 5 5 5
Mini-batch size 10 30 64

is also denoted an acquisition function, to calculate the ex-
pected reward of a given scheduling plan V .

αEI(V; ΠL−1) =E[u(V)|V,ΠL−1]

=(C+
L−1 − µ(V))Φ(C+

L−1;µ(V),K(V,V))

+ K(V,V)N (C+
L−1;µ(V),K(V,V)),

(15)
where Φ is the Cumulative Distribution Function (CDF) of
the standard Gaussian distribution. Finally, we can choose
the scheduling plan with the largest reward as the next ob-
servation point, i.e., V∗rL,m.

Training Process of Reinforcement Learning-Based
Device Scheduling
We pre-train the policy network using Algorithm 3. First,
we randomly initialize the policy network (Line 1). We use
the latest policy network and the ε-Greedy method to gener-
ateN scheduling plans (Line 5). The parameters are updated
based on the Formula 12 (Line 7), and the baseline value bm
is also updated with the consideration of the historical value
(Line 8). Afterward, we choose the best scheduling plan that
corresponds to the minimum total cost, i.e., the maximum
reward (Line 9). Finally, we update the frequency matrix Sm
and the set of occupied devices Vo, while assuming that the
best scheduling plan is used for the multi-job FL (Line 10).

Details of Experimental Setup
CNN-A-IID is composed of two 3 × 3 convolution layers,
one with 32 channels and the other with 64 channels. Each



Table 5: The time required to achieve the target accuracy for jobs executed sequentially with FedAvg. ”*” indicates that it fails
to achieve the target accuracy.

NIID/IID NIID/IID
Job VGG CNN LeNet ResNet CNN AlexNet

Target Accuracy 0.55/0.60 0.80/0.93 0.984/0.993 0.45/0.74 0.73/0.865 0.978/0.9933

Time (min) 2483.4/414.6 53.1/45.5 50.5/52.1 594.3/* 36.1/172.9 127.3/65.16

Table 6: Summary of Main Notations

Notation Definition
K; |K| Set of all devices; size of K
M ; m; T The total number of jobs; index of jobs; total training time
Dmk ; Dm

k ; dmk Local dataset of Job m on Device k; size of Dmk ; batch size of the local update of Device k
Dm; Dm Global dataset of Job m; size of Dm

Fmk (w); Fm(w) Local loss function of Job m in Device k; global loss function of job m
wm
k,r(j) Local model of Device k in the j-th local update of Round r
Rm The maximum rounds for job m during the execution
R′m The maximum rounds for job m to achieve the required performance (loss value or accuracy)
lm The desired loss value for job m

τm; Cm Number of local epochs of Job m; the ratio between the number of devices scheduled to Job m and |K|
Sm, s

r
k,m The frequency vector for Job m; the frequency of Device k scheduled to Job m at Round r

Vrm A set of devices scheduled to Job m at Round r
Vo;Vro A set of occupied devices; the set of occupied devices in Round r

layer is followed by one batch normalization layer and 2×2
max pooling. Then, after the two convolution layers, there
are one flatten layer and three fully-connected layers (1568,
784, and 26 units). Since the convergence behavior of CNN
on non-IID in Group A is not good, we make a simple mod-
ification of CNN-A-IID to CNN-A-non-IID. CNN-A-non-
IID consists of three 3 × 3 convolution layers (32, 64, 64
channels, each of them exploits ReLU activations, and each
of the first two convolution layers is followed by 2 × 2
max pooling), followed by one flatten layer and two fully-
connected layers (64, 26 units). CNN-B consists of two 2×2
convolution layers (64, 32 channels, each of them exploits
ReLU activations) followed by a flatten layer and a fully-
connected layer, and each convolution layer is followed by
a dropout layer with 0.05. In addition, the other parameters
are shown in Tables 3 and 4.

Explanation of Notations

The meanings of the major notations in this paper are sum-
marized in Table 6. In particular, Sm = {s1,m, ..., s|K|,m}
represents the frequency vector of Job m. At the beginning,
i.e., Round 0, each sk,m ∈ Sm is 0. Let srk,m represent the
frequency of Device k scheduled to Jobm at Round r. Then,
we can calculate sr+1

k,m using the following formula:

sr+1
k,m =

{
srk,m + 1, if Device k ∈ Vrm
srk,m, otherwise

(16)

Comparison With Single-Job Federated Learning
In order to prove the effectiveness of our proposed frame-
work, i.e., MJ-FL, over the Single-Job FL (SJ-FL) approach,
we executed each group of jobs sequentially with FedAvg,
which is denoted the Random method when adapted to
multi-job FL. As shown in Table 5, RLDS with MJ-FL out-
performs the FedAvg with SJ-FL, which executes jobs se-
quentially, up to 5.36 times faster in terms of the training
time while achieving the same accuracy. Similarly, the ad-
vantage of BODS can be up to 4.68 times faster. In addition,
Random within MJ-FL also outperforms SJ-FL up to 0.25
times faster.

Comparison With Multiple Targets and Other
Methods
Figures 6 and 7 show the obvious fast convergence speed
of RLDS and BODS. We conducted the experiment with
different target accuracy, and the advantage is up to 7.63
times faster for Target 1 (0.845), 9.89 times faster for Tar-
get 2 (0.856), and 6.98 times faster for Target 3 (0.865),
compared with the baselines. We conduct an ablation ex-
periment and find that the data fairness improves both the
convergence speed (up to 9.35 times faster) and the accuracy
(up to 15.3%). In addition, other scheduling methods, e.g.,
simulated annealing (Van Laarhoven and Aarts 1987), corre-
sponds to worse performance (up to 91.4% slower and 3.5%
lower accuracy), according to our experiments. We carry out
experiments to compare other black-box optimization meth-
ods (deep neural networks (Zang et al. 2019)), of which the



performance is worse (up to 90.5% slower and 26.3% lower
accuracy) than our methods. Furthermore, we tested other
combinations of the two costs, which correspond to worse
performance (up to 37.1% slower and 3.5% lower accuracy
for the sum of squared costs, and 64.4% slower and 3.3%
lower accuracy for multiplication) compared to the linear
one (Formula 2).

Design Details
As an FL environment may contain GPUs or other high-
performance chips, it is beneficial to train multiple jobs si-
multaneously to reduce training time while achieving the
same accuracy. Within each round, Step 6© exploits FedAvg
(McMahan et al. 2017b) to aggregate multiple models within
each job, which can ensure the optimal convergence (Li et al.
2020b; Zhou and Cong 2018). Within our framework, the
sensitive raw data is kept within each device, while only the
models are allowed to be transferred. Other methods, e.g.,
homomorphic encryption (Paillier 1999) and differential pri-
vacy (Dwork 2008), can be exploited to protect the privacy
of sensitive data.

We choose the linear combination because of its conve-
nience and good performance. In practice, we empirically
set α and β based on the information from previous execu-
tion and adjust them using small epochs. We increase α for
fast convergence and increase β mainly for high accuracy.

Please note that the “data fairness” is different from the
“fairness” (the bias of the machine learning models con-
cerning certain features) in machine learning (Mehrabi et al.
2021). Formula 5 is based on (Petrangeli et al. 2014), and
we are among the first to extend this idea from distributed or
network systems to FL. When the devices are non-uniformly
sampled with low data fairness, the convergence is slowed
down (Li et al. 2020b; Zhou and Cong 2018). In addition,
data fairness is important due to the underlying data hetero-
geneity across the devices. Data fairness can help arbitrarily
select devices without harming the learning performance.

The BO-based and RL-based methods are designed for
different model complexities, and we choose the better one
based on known profiling information with small tests (a few
epochs) to avoid possible limitations. RLDS favors complex
jobs, as it can learn the influence among diverse devices. The
influence refers to the concurrent, complementary, and la-
tent impacts of the data in multiple devices for diverse jobs.
However, BODS favors simple jobs, while it relies on simple
statistical knowledge. The complexity of jobs is determined
by the number of parameters of models and the size of the
training dataset.

In fact, we consider the probability to release the devices
in Vo in BODS and RLDS, and possible concurrent occupa-
tion of other devices for other jobs, which is not explained
in the paper to simplify the explanation.

During the execution, we only sample 10% devices of all
the devices for each job. Thus, we do not assume that all the
devices are available all the time during the training process.
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Figure 4: The time required for each job of Group A to achieve the target convergence accuracy with the non-IID distribution.
As Greedy and Genetic fail to achieve the target accuracy on some jobs, the time is not shown.
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Figure 5: The convergence accuracy of different jobs in Group A changes over time with the IID distribution. (d) to (f) show
the time required for scheduling methods to achieve the target accuracy with non-IID, where Greedy and Genetic fail to achieve
the target accuracy on some jobs.
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Figure 6: The convergence accuracy of different jobs in Group B changes over time with the non-IID distribution. (d) to (f)
show the time required for scheduling methods to achieve the target accuracy with non-IID, where Greedy and Genetic fail to
achieved the target accuracy on some jobs.

0 20 40 60 80 100 120 140
Elapsed Time (min)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Te
st

 A
cc

ur
ac

y

Resnet with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS

(a)

0 20 40 60 80 100
Elapsed Time (min)

0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

Te
st

 A
cc

ur
ac

y

Cnn with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS

(b)

0 5 10 15 20 25 30 35 40 45 50
Elapsed Time (min)

0.980
0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.991
0.992
0.993
0.994
0.995

Te
st

 A
cc

ur
ac

y

Alexnet with IID

Random
Genetic
FedCS
Greedy
BODS
RLDS

(c)

acc at 0.76 acc at 0.74
0

20

40

60

80

100

Ti
m

e(
m

in
)

Resnet with IID
Random
Genetic
FedCS
Greedy
BODS
RLDS

(d)

acc at 0.865 acc at 0.856
0

20

40

60

80

Ti
m

e(
m

in
)

Cnn with IID
Random
Genetic
FedCS
Greedy
BODS
RLDS

(e)

acc at 0.9933 acc at 0.992
0

5

10

15

20

25

30

35

Ti
m

e(
m

in
)

Alexnet with IID
Random
Genetic
FedCS
Greedy
BODS
RLDS

(f)

Figure 7: The convergence accuracy of different jobs in Group B changes over time with the IID distribution. (d) to (f) show
the time required for scheduling methods to achieve the target accuracy with IID, where Greedy and Genetic fail to achieve the
target accuracy on some jobs.
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