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Abstract

The task of multi-turn text-to-SQL semantic parsing aims
to translate natural language utterances in an interaction
into SQL queries in order to answer them using a database
which normally contains multiple table schemas. Previous
studies on this task usually utilized contextual information to
enrich utterance representations and to further influence the
decoding process. While they ignored to describe and track
the interaction states which are determined by history SQL
queries and are related with the intent of current utterance. In
this paper, two kinds of interaction states are defined based
on schema items and SQL keywords separately. A relational
graph neural network and a non-linear layer are designed to
update the representations of these two states respectively.
The dynamic schema-state and SQL-state representations are
then utilized to decode the SQL query corresponding to
current utterance. Experimental results on the challenging
CoSQL dataset demonstrate the effectiveness of our proposed
method, which achieves better performance than other pub-
lished methods on the task leaderboard.

Instruction
Querying relational databases and acquiring information
from it have been studied extensively when designing natu-
ral language interfaces to databases(Zelle and Mooney 1996;
Zhang et al. 2020). As such, a large body of research has
focused on the task of translating natural language user
utterances into SQL queries that existing database software
can execute (Zhong, Xiong, and Socher 2017; Xu, Liu,
and Song 2017; Yu et al. 2018a). While most of these
works focus on precisely mapping stand-alone utterances
to SQL queries (Krishnamurthy, Dasigi, and Gardner 2017;
Dong and Lapata 2018), users often access information by
multi-turn interactions in real-word applications. Therefor,
designing a text-to-SQL system for multi-turn scenario has
attracted more and more attention recently (Guo et al. 2019;
Bogin, Gardner, and Berant 2019b; Yu et al. 2019c, 2018c).

The multi-turn text-to-SQl task is more complex and
more challenging than traditional stand-alone text-to-SQL
task. The main challenge is how to utilize the contextual
information in history utterances to help system better parse
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U1: What are the names of all the dorms?
Q1: SELECT dorm_name FROM dorm

U2: Which of those dorms have a TV lounge?
Q2: SELECT T1.dorm_name FROM dorm AS T1 JOIN 

has_amenity AS T2 ON T1.dormid = T2.dormid JOIN 
dorm_amenity AS T3 ON T2.amenid = T3.amenid 
WHERE T3.amenity_name =  TV Lounge 

U3: What dorms have no study rooms as amenities? | 
Do you mean among those with TV Lounges? | Yes.

Q3: SELECT T1.dorm_name FROM dorm AS T1 JOIN 
has_amenity AS T2 ON T1.dormid = T2.dormid JOIN 
dorm_amenity AS T3 ON T2.amenid = T3.amenid 
WHERE T3.amenity_name =  TV Lounge  EXCEPT 
SELECT T1.dorm_name FROM dorm AS T1 JOIN 
has_amenity AS T2 ON T1.dormid = T2.dormid JOIN 
dorm_amenity AS T3 ON T2.amenid = T3.amenid 
WHERE T3.amenity_name =  Study Room 

       

Figure 1: An interaction example from CoSQL dataset.
Ui is the user utterance at the i-th turn while Qi is
its corresponding SQL query. The blue words are SQL
keywords. Because this paper only focuses on the text-to-
SQL task of CoSQL, we concatenate those utterances that
cannot be translated into SQL queries with their responds
offered in the original CoSQL dataset using “|”, such as U3.

current utterance. Figure 1 is an interaction example ex-
tracted from CoSQL dataset (Yu et al. 2019a). We can see
from this figure that the phrase “those dorms” in U2 refers
to the phrase “all the dorms” in U1. And the phrases “what
dorms” and “those” in U3 also refer to the same things
as above. Besides, each predicted SQL query has obvious
overlaps with history ones. Furthermore, each interaction
corresponds to a database, called “schema”, with several
tables in it. The usage of table information in history queries
also contributes to decode current query. For example, the
SQL query Q2 mentions the “dorm”, “has amenity” and
“dorm amenity” tables in the schema. Thus, the new clause
“EXCEPT” in the SQL query Q3 is more likely to select its
contents from these tables.
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Previous studies on multi-turn text-to-SQL usually
adopted encoder-decoder architectures. The encoder aims
to represent user utterances and table schemas of databases
as vectors, while the decoder is designed to generate
corresponding SQL queries based on the representations
given by the encoder. Suhr, Iyer, and Artzi (2018) designed
a context-dependent model for ATIS (Airline Travel
Information System) (Hemphill, Godfrey, and Doddington
1990; Dahl et al. 1994), which is a single-domain multi-turn
text-to-SQL task. They utilized an LSTM-based discourse
state to integrate sentence-level representations of history
user utterances at the encoding stage. Zhang et al. (2019)
improved this method on SParC (Yu et al. 2019c) and
CoSQL (Yu et al. 2019a) datasets. They concatenated all
history utterance tokens behind current utterance tokens and
fed them into a BERT-based encoder together with schema
items in order to generate user utterance and table schema
representations. At the decoding stage, both of these two
methods employed a copy mechanism to make use of the
tokens or segments in previous predicted queries.

This paper studies the multi-turn text-to-SQL task by
comparing it to another popular NLP task, task-oriented
dialogue system. Both tasks aims at accomplish specific
goals, i.e., querying databases or solving problems. The
user utterances in multi-turn text-to-SQL are similar to the
user inputs in dialog systems, and SQL queries correspond
to dialogue responses. Besides, both tasks strongly rely on
history information when making predictions. An essential
component in task-oriented dialogue systems is dialog state
tracking (DST) (Wen et al. 2017; Budzianowski et al. 2018;
Mrksic et al. 2017), which keeps track of user requests
or intentions throughout a dialogue in the form of a set
of slot-value pairs, i.e. dialogue states. However, for the
multi-turn text-to-SQL task, how to define, track and utilize
user intentions throughout an interaction has not yet been
investigated in previous work.

Therefore, we propose a method of tracking interaction
states for multi-turn text-to-SQL semantic parsing in this
paper. Considering the goal of text-to-SQL is to generate
SQL queries for executing on table-based databases, two
types of interaction states (i.e., name-value pairs) are defined
based on schema tables and SQL keywords respectively.
For schema-states, their names are the column names of all
tables in the schema. Their values come from SQL keywords
and are extracted from the last predicted SQL query. For
example, after generating Q2 in Figure 1, the value of the
schema-state “dorm.dorm name” is set as {“SELECT”}.
After generating Q3, its value is updated into a set of
keywords {“SELECT”, “=”, “EXCEPT”, “SELECT”}. For
SQL-states, their names are all the SQL keywords. Their
values are column names and are also determined by the
last predicted SQL query. For example, after generating
Q2 in Figure 1, the value of the SQL-state “SELECT” is
“dorm.dorm name”. This value is not changed after generat-
ingQ3 because the “SELECT” keyword in the nested clause
is also followed with “dorm.dorm name” in Q3.

In order to encode and utilize these designed interaction
states, a model of text-to-SQL parsing with interaction state
tracking (IST-SQL) is designed. In this model, each state

is updated by a state updater based on last predicted query.
A relational graph neural network (RGNN) is employed to
encode the schema-state representations. A schema-column-
graph is built based on the foreign keys in the database
for implementing the RGNN. Besides, an one-layer non-
linear layer is adopted to encode SQL-states. The BERT
model is used at the beginning of IST-SQL to generate
the embedding vectors of current utterance and all schema
column names. The utterance embedding is further fed
into an utterance encoder to integrate the information of
all history utterances. Finally, the utterance representations,
schema-state representations and SQL-state representations
are fed into a decoder with copy mechanism to predict the
SQL query tokens in order.

We evaluate our model on the CoSQL dataset, which is
the largest and the most difficult dataset for conversational
and multi-turn text-to-SQL semantic parsing. Experimental
results show that our model improves the question-matching
accuracy (QM) of the previous best model (Zhang et al.
2019) from 40.8% to 41.8% and the interaction matching
accuracy (IM) from 13.7% to 15.2%, respectively.

The main contributions of this paper are twofolds. First,
we propose to track interaction states for multi-turn text-to-
SQL. Two types of interaction states are defined and are
updated, encoded and utilized in our proposed IST-SQL
model. Second, our proposed model performs better than the
advanced benchmarks on the CoSQL dataset.

Related Work
Text-to-SQL Datasets and Methods
Text-to-SQL generation task is one of the most impor-
tant tasks in semantic parsing, which aims to map natural
language utterances into formal representations, such as
logical forms (Zelle and Mooney 1996; Clarke et al. 2010),
lambda calculus (Zettlemoyer and Collins 2005; Artzi and
Zettlemoyer 2011) and executable programming languages
(Miller et al. 1996; Yin and Neubig 2017).

At the earliest time, researchers focused on the converting
single utterances while their corresponding SQL queries
were simple and always produced in one domain, such as
GeoQuery (Zelle and Mooney 1996) and Overnight (Wang,
Berant, and Liang 2015). Recently, some large-scale datasets
with open domains database have been released to attract
attentions to the unseen-domain problem (Bogin, Gardner,
and Berant 2019a; Dong and Lapata 2016, 2018; Bogin,
Gardner, and Berant 2019b; Finegan-Dollak et al. 2018).
WikiSQL (Zhong, Xiong, and Socher 2017) is a popular
open domain text-to-SQL task but the SQL queries in it
are still simple, just contains “SELECT”, “WHERE” and
“FROM” clauses. To study the complex SQL queries, Yu
et al. (2018c) released a complex cross-domain text-to-SQL
dataset names Spider, which contains most of the SQL
clauses.

There are also some dataset that can support the studies
on multi-turn text-to-SQL semantic parsing, such as ATIS
(Hemphill, Godfrey, and Doddington 1990), SequentialQA
(Iyyer, Yih, and Chang 2017), CoSQL (Yu et al. 2019a)
and SParC (Yu et al. 2019b). SParC (Yu et al. 2019b) was



built based on Spider by dividing its single utterance into
multiple ones and writing their corresponding SQL queries
by annotators. CoSQL (Yu et al. 2019a) was released in
2019, which is the main evaluation dataset of this paper.
Its user utterances were all collected from Wizard-of-Oz
(WOZ) conversations and the corresponding SQL queries
were written by annotators.

Previous methods on text-to-SQL semantic parsing al-
ways adopted encoder-decoder architectures. LSTM and
BERT were popularly employed to obtain the represen-
tations of user utterances and database items (Xu, Liu,
and Song 2017; Dong and Lapata 2018; Guo et al. 2019).
Classification-based (Yu et al. 2018a; Xu, Liu, and Song
2017; Yu et al. 2018b), sequence-based (Zhang et al. 2019),
and abstract-syntax-tree-based (Dong and Lapata 2018; Guo
et al. 2019; Bogin, Gardner, and Berant 2019b) decoders
have been developed for this task. In order to deal with the
multi-turn scenario, previous studies usually integrated his-
tory utterance information into the representation of current
utterance and introduced copy mechanism into the decoder
for utilizing previous predicted SQL queries (Hemphill,
Godfrey, and Doddington 1990; Zhang et al. 2019). In
contrast, we propose to track interaction states for multi-
turn text-to-SQL and define two type of interaction states
to record history information in this paper.

Dialog State Tracking Task

Our proposed method is inspired by the dialog state
tracking (DST) component in task-oriented dialogue
systems(Henderson, Thomson, and Williams 2014; Gu et al.
2019; Gu, Ling, and Liu 2019). The goal of task-oriented
dialogue systems is to help users accomplish a specific
task such as hotel reservation, flight booking or travel
information searching. (Wen et al. 2017; Budzianowski
et al. 2018; Mrksic et al. 2017). Dialog state tracking is to
records the dialog process and the user intention at each turn
(Wang et al. 2020) in task-oriented dialogue systems. Here,
dialogue states, i.e., a set of slot-value pairs, are usually
pre-defined manually. Various methods have been proposed
for dialog state tracking. For example, Ouyang et al. (2020)
used a connection model to connect current states with
previous states and copy previous values. Hu et al. (2020)
designed an slot attention module and slot information
sharing module for better utilizing the slot information.

In this paper, we bring the idea of dialog state track-
ing to the multi-turn text-to-SQL task. This task always
studies open-domain datasets, which means that interac-
tion states (similar to dialog states) should be grounded
to different domains and can not be set universally for all
interactions. In this paper, we define two types of inter-
action states, schema-states and SQL-states. Schema-states
record domain-specific information and are changed with
the grounded database. SQL-states are used to record the
SQL information at each turn for better understanding the
interaction process.

Preliminary
Dataset
We evaluated our model on CoSQL (Yu et al. 2019a), which
is a large-scale conversational and multi-turn text-to-SQL
semantic parsing dataset. An interaction example in CoSQL
is shown in Figure 1. CoSQL consists of 30k+ turns plus
10k+ annotated SQL queries, obtained from a Wizard-of-
Oz(WOZ) collection of 3k conversations querying 200 com-
plex databases spanning 138 domain. It has been separated
into 2164 interactions with 140 databases for training, 292
interactions with 20 databases for development and 551
interactions with 40 databases for testing.

We also evaluate our model on SParC (Yu et al. 2019b),
which is another multi-turn text-to-SQL task. SParC consists
of 3034 interactions with 140 databases for training, 422
interactions with 20 databases for development and 841
interactions with 40 databases for testing.

In both datasets, several interactions may be grounded to
the same database, but each database can only appear in
one of the training, development and testing sets for cross-
domain evaluation.

Task Formulation
Let U denote a natural language user utterance andQ denote
its corresponding SQL query. A multi-turn text-to-SQL task
considers an interaction I , which consists of a sequence of
(Ut, Qt) pairs. Each interaction I is grounded to a database
S, which consists of several tables T and each table T
consists of several column names C. In our experiments, we
concatenated each column name with its corresponding table
name, thus the set of table names T can be omitted.

The goal of multi-turn text-to-SQL task is to generate
{Qt}N(I)

t=1 in order given {Ut}N(I)
t=1 and S as follows,

{{Ut}N(I)
t=1 , S}

map−→ {Qt}N(I)
t=1 . (1)

The function N(∗) in this paper stands for the element
number of ∗. In this paper, as we utilize the last predicted
SQL query for extracting interaction states and for copying
tokens when decoding, the goal at the t-th turn of this task
is to generate the t-th SQL query Qt given the current
utterance Ut, all the history utterance {U1, · · · , Ut−1}, the
table schema S and the last predicted query Qt−1, i.e.,

{Ut, S, {U1, · · · , Ut−1}, Qt−1}
map−→ Qt. (2)

Proposed Method
As shown in Figure 2, our IST-SQL model is built based on
the sequence-to-sequence encoder-decoder architecture. It
consists of (1) a BERT embedder to embed current utterance
tokens and schema column names into embedding vectors,
(2) an utterance encoder to integrate history utterances into
the representations of current utterance, (3) an interaction
states tracking module with state updaters and state en-
coders, and (4) a decoder with copy mechanism to predicted
SQL query tokens in order.

In our model, the BERT embedder is the same as one used
in (Zhang et al. 2019) and more details can be found in that
paper.



SELECT dorm.dorm_name WHERE 

dorm_amenity.amenity_name   

[CLS] What dorms have   [SEP] dorm . dorm _  

SELECT dorm.dorm_name WHERE

dorm_amenity.amenity_name   EXCEPT
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Interaction State Tracking
Schema-States

SQL-States
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Figure 2: The architecture of proposed IST-SQL model. “FK” and “FKT” stand for Foreign-Key and Foreign-Key-Table
relations between schema-states respectively.

Interaction State Tracking
State Updaters As introduced in the Introduction section,
two kinds of interaction states are designed in this paper.
For SQL-states, their names are SQL keywords and their
values come from the schema column names corresponding
to the interaction. For schema-states, their names are column
names in the schema and their values are SQL keywords. As
shown in Figure 2, the SQL-state updater and the schema-
state updater extracted state values from the last previous
predicted SQL query at each turn.

To extract the SQL-state values at each turn, we separate
the last predicted SQL query with all the column names
in it. Qt and Qt−1 in Figure 2 correspond to Q3 and
Q2 in Figure 1 respectively. The SQL-state updater first
separates Qt−1 into a set of pieces {“SELECT dorm.dorm”,
“WHERE dorm amenity.amenity name”}1. If an SQL-state
appears in one of these pieces, the column name appears
at the end of this piece is added to the SQL-state as
its value. As shown in Figure 2, the value of SQL-state
“SELECT” is “dorm.dorm” and the value of “WHERE”
state is “dorm amenity.amenity name”. It should be noticed
that an SQL-state can have multiple non-repetitive values.

1Following previous methods, “FROM”, “JOIN” and “ON”
clauses are removed when model predicting because they can be
easily filled with some simple rules after all the other clauses are
predicted.

The values of those SQL-states that do not appear in the last
predicted SQL query are set as a fixed token “NONE K” .

In a dual way, if the name of a schema-state appears in
one of the SQL-state values, the schema-state updater adds
the name of this SQL-state to the schema-state as its value.
In order to describe the nesting structure of SQL queries, the
SQL keywords that occur more than once in the last query
are all kept as schema-state values. In Figure 2, the value
of schema-state “dorm.dorm” is “SELECT” while the value
of “dorm amenity.amenity name” state is “WHERE”. The
values of those schema-states that do not appear in the last
predicted SQL query are set as a fixed token “NONE S” .

State Encoders The function of the schema-state encoder
and the SQL-state encoder in Figure 2 is to convert the
values of both states into embedding vectors at each turn.

Considering that the names of schema-states are column
names in a relational table-based database and different
column names are related to each other, a relational graph
neural network (RGNN) is designed to represent such rela-
tions and to propagate node information to nearby nodes.
Here, the RGNN model uses schema-states as nodes and
builds edges according to their relations. Based on foreign
keys 2, two kinds of relations between two schema-states

2Foreign key is a pre-defined relation between column names



are considered as follows.
• Foreign-Key (FK) If two column names are a foreign

key pair in the database, we build an edge with “IN” and
“OUT” directions between them, as shown by the yellow
line and arrows between schema-states in Figure 2.

• Foreign-Key-Table (FKT) If two column names are in
different tables and the two tables have one or more
foreign key pairs in their columns, we build an edge
with “IN” and “OUT” directions between them, as shown
by the green lines and arrows between schema-states in
Figure 2.
The representation of each node, i.e., schema-state, is

initialed with the representations of its name and values.
Because the schema-state names are all the schema column
names, we directly use the column name representations
{hi

c}
N(c)
i=1 generated by the BERT embedder in Figure 2,

where N(c) is the total number of schema columns. The
value embedding vectors {hj

k}
N(k)
j=1 are initialed randomly,

where N(k) is the total number of SQL keywords. The
initial representation of each schema-state is calculated as

hi
s = tanh(W1(h

i
c +

∑
j∈V i

s

hj
k)), (3)

where V i
s is the value index set of the i-th schema-state,

W1 ∈ Rd×d is a trainable matrix and d is the hidden state
dimension.

Then, {hi
s}

N(c)
i=1 are fed into the RGNN and the final

representations are calculated as

hi
out =

∑
e∈{FK,FKT}

∑
j∈εiout(e)

Wout(z
e
out ∗ hj

s), (4)

hi
in =

∑
e∈{FK,FKT}

∑
j∈εiin(e)

Win(z
e
in ∗ hj

s), (5)

h̃i
s = hi

s + 0.5 ∗ hi
out + 0.5 ∗ hi

in, (6)
where Wout and Win are trainable matrices for “IN” and
“OUT” directions, ze

out and ze
in stand for the “IN” and

“OUT” embedding vectors of edge e, which are randomly
initialized and are updated during training. ∗ stands for
element-wise product. εiin,out(e) denotes the set of schema-
state indices that have edge e connecting with state i. h̃i

s
is the final schema-state representation for the i-th schema-
state which is further used by schema linking and decoding.

Considering that the names of SQL-states are all SQL
keywords without explicit relations, we simply build a
network with one non-linear layer to derive their representa-
tions as

h̃j
k = tanh(W2(h

j
k +

∑
i∈V j

k

hi
s)), (7)

where hj
k is the representation of the j-th SQL-state name,

V j
k is the value index set of the j-th SQL-state, W2 ∈ Rd×d

is a trainable matrix. The final SQL-state representation h̃i
k

is further fed into the decoder as Figure 2 shows.

and stands for that these two columns has the same meanings and
values but are in different tables. More details can be found in (Yu
et al. 2018c).

Utterance Encoder
Integrating history utterance information into the represen-
tation of current utterance is important for multi-turn text-
to-SQL. Unlike previous methods that utilized history utter-
ances at sentence-level, we construct a token-level utterance
encoder based on multi-head attention mechanism to enrich
utterance representations. Let hn

Ut
stand for the embedding

vector given by the BERT embedder for the n-th token in
utterance Ut. We collect the history information as

hn
{1,··· ,t−1}→t =

1

t− 1

t−1∑
m=1

hn
m→t, (8)

where

hn
m→t =

K∑
k=1

N(Um)∑
l=1

αnkl
m hl

Um
, (9)

αnkl
m = softmax(snklm ), (10)

snklm = (hn
Ut
∗ ak

u) · hl
Um
. (11)

Here, ∗ stands for element-wise product and · stands for dot
product, the softmax function is executed over the index
of l, ak

u is a trainable vector and K is the head number.
The embedding vectors of current utterance tokens after
utterance encoder are calculated as

h̃n
Ut

= BiLSTM([hn
Ut
;hn
{1···t−1}→t]), (12)

and are further fed into the schema linking module.

Schema Linking
Similar to previous studies (Guo et al. 2019; Bogin, Gardner,
and Berant 2019b), we also build an schema linking module,
which integrates database information into utterance repre-
sentations to deal with unseen-domain problem. Previous
methods usually treated schema linking as a pre-processing
step to generate some features linking utterance tokens and
schema items. In our IST-SQL model, the schema linking
module is similar to the utterance encoder. There are two
main differences. First, {hl

Um
}t−1m=1 in Eq. (9) and (11) are

replaced with schema-state representation h̃i
s for calculating

its relevance with utterance representation h̃n
Ut

, and the
averaging operation in Eq. (8) is not conducted. Second,
considering h̃n

Ut
and h̃i

s are embedded in different spaces,
a transform vector bks is applied to Eq. (9) for the k-th head
as

hn
S→Ut

=

K∑
k=1

N(S)∑
l=1

bks ∗ αnkl
t h̃n

s . (13)

Following Eq. (12), a BiLSTM is built upon hn
S→Ut

to
obtain the final utterance representations ĥn

Ut
which is sent

into the decoder.

Decoder with Copy Mechanism
Our decoder is similar with that proposed by Zhang et al.
(2019). The representations of current utterance, schema-
states, SQL-states and last predicted SQL query are used
as the inputs of the decoder. It should be noticed that all



representations of schema column names and SQL key-
words used in (Zhang et al. 2019) are replaced by the
schema-state representations and SQL-state representations
in our model. Moreover, when calculating the scores of SQL
keywords, we measure the similarity between the decoder
hidden states and SQL-states directly without introducing
additional module like the MLP used by Zhang et al. (2019).

Experiments
Implementation Details
All hidden states in our proposed IST-SQL model had 300
dimensions except the BERT embedder with 768 hidden
dimensions. The head number K was set as 3 heuristically.
When training model parameters, in addition to the average
token level cross-entropy loss for all the SQL tokens in an in-
teraction, regularization terms were added to encourage the
diversity of the multi-head attentions used in the utterance
encoder and schema linking modules.

The model was implemented using PyTorch (Paszke et al.
2017). We used ADAM optimizer (Kingma and Ba 2014)
to minimize the loss function. The BERT embedder was
initialized with a pre-trained small uncased BERT model3.
All the other parameters were randomly initialized from a
uniform distribution between [-0.1, 0.1]. The BERT embed-
der was fine-tuned with learning rate of 1e − 5 while the
other parameters was trained with learning rate of 1e−3. An
early stop mechanism was used with patient number 10 on
the development set. The best model was selected based on
the token-level string matching accuracy on the development
set. The golden last SQL query was fed into our interaction
states tracking module at the training stage. The final IST-
SQL model has 448M parameters while the baseline model
Edit-Net (Zhang et al. 2019) has 468M parameters. All code
is published to help replicate our results4.

Metrics
Two metrics, question match accuracy (QM) and interac-
tion match accuracy (IM) (Yu et al. 2019b), were used
in our evaluation. QM is the percentage of the queries
corresponding to all evaluated questions that are correctly
predicted. While IM is the percentage of interactions with
all queries correctly predicted. In order to avoid ordering
issues, instead of using simple string matching on each
predicted query, we followed the method proposed by Yu
et al. (2018c) which decomposed predicted queries into
different SQL components such as SELECT , WHERE,
GROUPBY , and ORDERBY , and computed accuracy
for each component using set match separately.

Overall Results
We compared our IST-SQL model with three baseline mod-
els, SyntxtSQL-con (Yu et al. 2019c), CD-Seq2Seq (Yu et al.
2019c) and Edit-Net (Zhang et al. 2019). Because the test set
of CoSQL is not publicly available and there are limitations
on the times of online submissions, we only evaluated our

3https://github.com/google-research/bert
4https://github.com/runzewang/IST-SQL

Model QM (%) IM (%)
Dev Test Dev Test

SyntxtSQL-con (Yu et al. 2019c) 15.1 14.1 2.7 2.2
CD-Seq2Seq (Yu et al. 2019c) 13.8 13.9 2.1 2.6
Edit-Net (Zhang et al. 2019) 39.9 40.8 12.3 13.7
IST-SQL (Ours) 44.4 41.8 14.7 15.2

Table 1: Results of different models on CoSQL. Due to
submission limitations, we only report the results of our
model which achieved the best QM performance on the
development set. The results of other models are copied
from (Yu et al. 2019a) and (Zhang et al. 2019).

Model QM (%) IM (%)
Edit-Net (Zhang et al. 2019) 45.35 ± 0.62 26.60 ± 0.70
IST-SQL (Ours) 47.55 ± 0.80 29.93 ± 0.93

Table 2: Results of different models on SParC development
set. Each model was trained four times. The mean and
standard deviation of each metric are reported.

model which achieved the best QM performance on the
development set. The results are shown in Table 1. We can
see that our IST-SQL model achieved the best development
and test performance among all the models on both QM and
IM. Comparing with the state-of-the-art method Edit-Net,
our model improved its QM from 39.9% to 44.4% and IM
from 13.7% to 15.2%. Furthermore, our methods achieves
the second place on the leaderboard of CoSQL5, while the
first place method has not been published yet.

We also compared our model with Edit-Net on the SParC
dataset. Due to time limitation, we haven’t received the
online test set results till paper submission. Thus, we only
report the QM and IM results on the development set. Each
model was trained four times, and the mean and standard
deviation are shown in Figure 2. We can find that our model
improved the Edit-Net performance from 45.35% to 47.55%
on QM and from 26.6% to 29.93% on IM, while both of the
improvements were larger than their standard deviations.

Ablation Study
We further investigated the effects of proposed schema-
states and SQL-states in our model. Two ablation experi-
ments were performed by removing each type of interac-
tion states from the full model. When removing schema-
states, all schema-state representations used in downstream
modules were replaced with the representations of schema
column names generated by the BERT embedder. When
removing SQL-states, all SQL-state representations used in
downstream modules were replaced with the embedding
vectors estimated for all SQL keywords. For better model
comparison, we trained each model four times and calcu-
lated the mean and standard deviation of its QM and IM.

The results are shown in Table 4. When removing
schema-states from the model, the performance of QM
dropped from 43.05% to 40.88% while the IM dropped
from 15.33% to 12.6%. When removing SQL-states, the

5https://yale-lily.github.io/cosql



SELECT WHERE GROUP ORDER AND/OR IUEN
Clause Number 1004 573 128 165 20 19

F1(%) Edit-Net 73.6 57.6 40.7 64.5 96.7 14.8
IST-SQL 73.7 60.7 51.2 66.0 97.2 15.6

Table 3: The development set F1 (%) results of two models on different SQL clauses.

Model QM (%) IM (%)
Ours 43.05 ± 0.85 15.33 ± 0.51
w/o schema-states 40.88 ± 0.83 12.60 ± 0.79
w/o SQL-states 41.73 ± 0.89 13.70 ± 1.20

Table 4: Results of ablation studies on the two types of
interaction states in our model. Each model was trained four
times and was evaluated on the development set.

Easy Medium Hard Extra-Hard
Utterance Number 415 320 162 107

QM(%) Edit-Net 62.9 33.1 22.2 10.3
IST-SQL 66.0 36.2 27.8 10.3

Table 5: The development set QM (%) results of two models
on utterances with different difficulty levels.

performance on OM dropped from 43.5% to 41.73% while
the IM dropped from 15.33% to 13.7%. Furthermore,
all performance degradations were larger than their
corresponding standard deviations. These results indicate
that both schema-states and SQL-states contributed to
achieve the overall performance of our IST-SQL model.

Analysis
In order to better understand the advantages of our IST-SQL
model, three analysis experiments were further conducted to
compare IST-SQL model with the baseline Edit-Net model.
We re-trained the Edit-Net model four times and chose the
best one with 41.2% QM and 13.7% IM on the development
set, which was better than the model shared by its authors.

Difficulty Level We first evaluated the two models, IST-
SQL and Edit-Net, on the utterances with different difficulty
levels. Here, the difficulty levels were determined based on
the components of target SQL queries, and the decision rules
followed previous work (Yu et al. 2018c). The results are
shown in Table 5. We can see that our IST-SQL model
outperformed Edit-Net on “Easy”, “Medium” and “Hard”
levels, while obtained the same QM results on “Extra-
Hard” level whose target SQL queries are most complex and
usually contain nesting structures.

Turn Index Then, we evaluated the two models on the
utterances with different turn indices. We split all the inter-
actions in the development set and regrouped them based on
their turn indices in interactions for evaluation. The results
are shown in Table 6. We can find that our model achieved
better performance than Edit-Net on utterances with all turn
indices. For our IST-SQL model, the QM of the utterances at

1 2 3 4 >4
Utterance Number 292 283 244 114 71

QM(%) Edit-Net 52.1 39.6 37.3 36.0 25.4
IST-SQL 56.2 41.0 41.0 41.2 26.8

Table 6: The development set QM (%) results of two models
on utterances with different turn indices.

the fourth turn was comparable with that of the utterances at
the second turn. These results demonstrate the ability of our
model on dealing with deep turns by tracking the interaction
process with schema-states and SQL-states.

SQL Clause As last, we evaluated the development set
performance of these two models on different SQL clauses.
The true SQL queries and predicted SQL queries were
separated into several clauses with SQL keywords. Each
clause had a value set that was organized following previous
study (Yu et al. 2018c). For each clause, we calculated
its F1 score of predicted SQL queries according to true
SQL queries. The results are shown in Table 3. We can
find that our model outperformed Edit-Net on all SQL
keyword clauses. The “AND/OR” and “SELECT” clauses
were the two easiest ones and the advantages of IST-SQL
over Edit-Net were slight on these two clauses. “GROUP”
and “WHERE” were the two clauses that achieved the
largest improvements. One reason is that these two clauses
usually contain more schema column names than other
clauses such as “ORDER” and “AND/OR”. Another reason
is that these two clauses usually appear at later turns than the
clauses such as “SELECT”. Therefore, these two clauses can
benefit most from tracking interaction states in the IST-SQL.

Conclusion
In this paper, we have proposed an IST-SQL model to
deal with the multi-turn text-to-SQL task. Inspired by the
dialogue state tracking component in task-oriented dialogue
systems, this model defines two types of interaction states,
schema-states and SQL-states, and their values are updated
according to last predicted SQL query at each turn. Further-
more, a relational graph neural network is employed to cal-
culate schema-state representations while a non-linear layer
is adopted to obtain SQL-state representations. These state
representations are combined with utterance representations
for decoding the SQL query at current turn. Our evaluation
results on CoSQL and SParC datasets have demonstrated
the effectiveness of the IST-SQL model. To improve current
definitions and tracking modules of interaction states for
conversational text-to-SQL with response generation will be
a task of our future work.
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Mrksic, N.; Séaghdha, D. Ó.; Wen, T.; Thomson, B.;
and Young, S. J. 2017. Neural Belief Tracker: Data-
Driven Dialogue State Tracking. In Barzilay, R.; and
Kan, M., eds., Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, 1777–1788. Association for Computational
Linguistics.

Ouyang, Y.; Chen, M.; Dai, X.; Zhao, Y.; Huang, S.; and
Chen, J. 2020. Dialogue State Tracking with Explicit Slot
Connection Modeling. In Jurafsky, D.; Chai, J.; Schluter,



N.; and Tetreault, J. R., eds., Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, 34–40. Association for
Computational Linguistics.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch .

Suhr, A.; Iyer, S.; and Artzi, Y. 2018. Learning to
Map Context-Dependent Sentences to Executable Formal
Queries. In Proceedings of NAACL-HLT, 2238–2249.

Wang, K.; Tian, J.; Wang, R.; Quan, X.; and Yu, J.
2020. Multi-Domain Dialogue Acts and Response Co-
Generation. In Jurafsky, D.; Chai, J.; Schluter, N.; and
Tetreault, J. R., eds., Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, 7125–7134. Association
for Computational Linguistics.

Wang, Y.; Berant, J.; and Liang, P. 2015. Building a semantic
parser overnight. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 1332–1342.

Wen, T.; Vandyke, D.; Mrksic, N.; Gasic, M.; Rojas-
Barahona, L. M.; Su, P.; Ultes, S.; and Young, S. J. 2017.
A Network-based End-to-End Trainable Task-oriented Dia-
logue System. In Lapata, M.; Blunsom, P.; and Koller, A.,
eds., Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Volume
1: Long Papers, 438–449. Association for Computational
Linguistics.

Xu, X.; Liu, C.; and Song, D. 2017. Sqlnet: Generating
structured queries from natural language without reinforce-
ment learning. arXiv preprint arXiv:1711.04436 .

Yin, P.; and Neubig, G. 2017. A Syntactic Neural Model for
General-Purpose Code Generation. In Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 440–450.

Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; and Radev, D. 2018a.
TypeSQL: Knowledge-based Type-Aware Neural Text-to-
SQL Generation. In Proceedings of NAACL-HLT, 588–594.

Yu, T.; Yasunaga, M.; Yang, K.; Zhang, R.; Wang, D.;
Li, Z.; and Radev, D. R. 2018b. SyntaxSQLNet: Syntax
Tree Networks for Complex and Cross-Domain Text-to-
SQL Task. In Riloff, E.; Chiang, D.; Hockenmaier, J.;
and Tsujii, J., eds., Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, 1653–
1663. Association for Computational Linguistics.

Yu, T.; Zhang, R.; Er, H.; Li, S.; Xue, E.; Pang,
B.; Lin, X. V.; Tan, Y. C.; Shi, T.; Li, Z.; et al.
2019a. CoSQL: A Conversational Text-to-SQL Challenge
Towards Cross-Domain Natural Language Interfaces to
Databases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 1962–1979.
Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li,
Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. 2018c. Spider:
A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 3911–3921.
Yu, T.; Zhang, R.; Yasunaga, M.; Tan, Y. C.; Lin, X. V.; Li,
S.; Er, H.; Li, I.; Pang, B.; Chen, T.; et al. 2019b. SParC:
Cross-Domain Semantic Parsing in Context. arXiv preprint
arXiv:1906.02285 .
Yu, T.; Zhang, R.; Yasunaga, M.; Tan, Y. C.; Lin, X. V.;
Li, S.; Heyang Er, I. L.; Pang, B.; Chen, T.; Ji, E.; Dixit,
S.; Proctor, D.; Shim, S.; Jonathan Kraft, V. Z.; Xiong,
C.; Socher, R.; and Radev, D. 2019c. SParC: Cross-
Domain Semantic Parsing in Context. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational
Linguistics.
Zelle, J. M.; and Mooney, R. J. 1996. Learning to
parse database queries using inductive logic programming.
In Proceedings of the thirteenth national conference on
Artificial intelligence-Volume 2, 1050–1055.
Zettlemoyer, L. S.; and Collins, M. 2005. Learning to
map sentences to logical form: structured classification
with probabilistic categorial grammars. In Proceedings of
the Twenty-First Conference on Uncertainty in Artificial
Intelligence, 658–666.
Zhang, L.; Wang, R.; Zhou, J.; Yu, J.; Ling, Z.; and Xiong,
H. 2020. Joint Intent Detection and Entity Linking on
Spatial Domain Queries. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: Findings, 4937–4947.
Zhang, R.; Yu, T.; Er, H.; Shim, S.; Xue, E.; Lin, X. V.;
Shi, T.; Xiong, C.; Socher, R.; and Radev, D. 2019.
Editing-Based SQL Query Generation for Cross-Domain
Context-Dependent Questions. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 5341–
5352.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2SQL:
Generating Structured Queries from Natural Language using
Reinforcement Learning. arXiv preprint arXiv:1709.00103
.


	Instruction
	Related Work
	Text-to-SQL Datasets and Methods
	Dialog State Tracking Task

	Preliminary
	Dataset
	Task Formulation

	Proposed Method
	Interaction State Tracking
	Utterance Encoder
	Schema Linking
	Decoder with Copy Mechanism

	Experiments
	Implementation Details
	Metrics
	Overall Results
	Ablation Study
	Analysis

	Conclusion

