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Abstract

The novel coronavirus disease (COVID-19) has crushed daily
routines and is still rampaging through the world. Existing so-
lution for nonpharmaceutical interventions usually needs to
timely and precisely select a subset of residential urban areas
for containment or even quarantine, where the spatial distri-
bution of confirmed cases has been considered as a key cri-
terion for the subset selection. While such containment mea-
sure has successfully stopped or slowed down the spread of
COVID-19 in some countries, it is criticized for being inef-
ficient or ineffective, as the statistics of confirmed cases are
usually time-delayed and coarse-grained. To tackle the issues,
we propose C-Watcher, a novel data-driven framework that
aims at screening every neighborhood in a target city and pre-
dicting infection risks, prior to the spread of COVID-19 from
epicenters to the city. In terms of design, C-Watcher collects
large-scale long-term human mobility data from Baidu Maps,
then characterizes every residential neighborhood in the city
using a set of features based on urban mobility patterns. Fur-
thermore, to transfer the firsthand knowledge (witted in epi-
centers) to the target city before local outbreaks, we adopt a
novel adversarial encoder framework to learn “city-invariant”
representations from the mobility-related features for precise
early detection of high-risk neighborhoods, even before any
confirmed cases known, in the target city. We carried out ex-
tensive experiments on C-Watcher using the real-data records
in the early stage of COVID-19 outbreaks, where the results
demonstrate the efficiency and effectiveness of C-Watcher for
early detection of high-risk neighborhoods from a large num-
ber of cities.

1 Introduction

The novel coronavirus disease (COVID-19), which has been
officially announced as a pandemic by the World Health Or-
ganization (WHO)), is perhaps the most serious public health
emergency over the past decades. The coronavirus continues
to spread around the globe, which challenges the govern-
ments and medical systems all over the world.

While metropolitan-wide lockdown has demonstrated its
effectiveness as a nonpharmaceutical intervention in several
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countries, the cost of such measures, including unemploy-
ment, economic crash, and social anxiety, makes it a tough
decision on behalf of administrators. A compromised solu-
tion is to place containment measures onto a subset of areas
in a city to stop or slow down the spread of COVID-19 while
minimizing the social and economic cost. To precisely dis-
tinguish the high-risk areas from the city, the spatial distribu-
tion of confirmed cases has been used as the key criterion for
the potential containment measures in a data-driven fashion.

While the spatial statistics of confirmed cases work, the
time consumption and the granularity of data acquisition
significantly lower the efficiency and effectiveness of such
methods. For example, the incubation period of COVID-
19 is around 5-6 days on average, but it could last as long
as 14 days. During such a period, a community or neigh-
borhood would have been already invaded by a small num-
ber of asymptotic carriers who might not be with any clin-
ical symptoms. When a small number of cases being con-
firmed, the community and its surrounding neighborhoods
may have fallen into COVID-19 for a long time. Further-
more, though the mobility of confirmed patients is usually
well restricted, the asymptomatic carriers with no symptoms
would still spread the virus to where he/she has gone. When
fine-grained mobility traces are not available, the adminis-
trators can only place containment measures to places in
coarse-grained.

To tackle the technical issues, in this paper, we propose
C(OVID)-Watcher, a novel framework to support early de-
tection of high-risk residential neighborhoods for fighting
against the spread of COVID-19. Our intuition is to incor-
porate human mobility data, so as to (1) characterize the
socioeconomic and demographic status of every neighbor-
hood (Borjas 2020; Huang et al. 2020b) based on “how res-
idents move” (Renso et al. 2013) and (2) unfold the spatial
interactions (Jiang et al. 2020) and potential influences on
COVID-19 caused by the mobility of massive asymptotic
carriers. Specifically, C-Watcher includes a mobility data-
driven machine learning model that screens every neighbor-
hood in a target city and predicts the infection risks, prior to
the spread of COVID-19 from epicenters to the city.

In addition to the use of mobility-related features, we also
hope to generalize the evidence already witted in the epicen-
ter for screening the risk of neighborhoods in the target city,
prior to or in the early stage of local outbreaks. To achieve



the goal, a core component of C-Watcher is a novel cross-
city transfer learning model that transfers knowledge about
COVID-19 infections from the epicenter to the target city,
while cities are quite different in a large number of domains,
ranging from living, foods, transportation, and residences.
All in all, we have made three contributions as follows.

* Through extensive data analytics, we explore a set of em-
pirical features related to long-term/regular human mobil-
ity patterns (before the COVID-19). With such long-term
mobility features, the socioeconomic and demographic
status, as well as the spatial interactions among neighbor-
hoods could be well characterized. In this way, one can
easily distinguish high-risk neighborhoods from the ur-
ban area and predict the potential risks for infection, with
respect to the two factors.

* While these features are with certain discriminative infor-
mation for risk prediction, they also involve some city-
specific characteristics. For example, the popular choices
for transport modes in different cities vary. Such city-
specific characteristics burden the use of mobility-related
features to transfer the knowledge obtained in the epi-
center to the target city. To generalize the knowledge
transfer, C-Watcher adopts a novel adversarial encoder-
decoder framework to learn the “city-invariant” represen-
tations from the mobility-related features for prediction.

e To validate C-Watcher, we collect and construct real-
world datasets for high-risk neighborhood detection based
on the publicly available information from the web and
human mobility traces from the largest online map ser-
vice in China. We conduct extensive experiments for eval-
uation. The results demonstrate that C-Watcher can ac-
curately predict the potential risk of massive residential
neighborhoods in a large number of Chinese cities. With
large datasets, C-Watcher makes insightful suggestions on
preventing the epidemic of COVID-19 alike for different
residential neighborhoods via feature importance.

2 Notations and Related Work

In this section, we first introduce the basic notations used
throughout this paper, and then we formally formulate the
research problem for early detection of high-risk neighbor-
hoods. Last, we review the studies that are relevant to our
work with the most related work discussed.

Notations and Formulation. We use n to denote the fea-
tures of a residential neighborhood which will be presented
in Section 3, and use y to denote the binary label mean-
ing whether the neighborhood is high risky (y = 1) or not
(y = 0). The detection problem can be defined as: f(n) — y
where the function f(-) can be any machine learning model
like Multi-Layer Perceptron (MLP).

The objective of C-Watcher is to make early detection
of high-risk neighborhoods without epidemic outbreaks. In-
stead of relying on the confirmed infection cases to make a
prediction which deemed to be time-delayed like (Fu et al.
2020), we assume that the COVID-19 epidemic only out-
broke in epicenter cities (such as Wuhan in China) and

no prior knowledge of confirmed cases, spreading trend or
known hazard neighborhoods in target cities can be referred
to. Such a cross-city prediction problem of latent high risky
residential neighborhoods can be formulated as:

feross(™ [ {(nZ,yP)}) = y" (1)

where n” and y” denote the features and binary label of a
residential neighborhood in the target city. n” and y” de-
note the features and label of a neighborhood from epicen-
ter cities set. Hereafter, we omit subscript ¢ for simplicity.
The fer0ss(+) is a cross-city transfer learning model which is
trained without ground-truth information in the target city.

Related Work. Aiming to fight against the COVID-19
pandemic, researchers in the computer science commu-
nity carried out many studies from several perspectives re-
cently. For instance, Huang et al. (2020b) exhibit that user
transportation-related behaviors in China have indeed been
impacted by the containment measures during the COVID-
19 pandemic. There are also a few studies (Huang et al.
2020c; Xiong et al. 2020; Liu et al. 2020b) investigating
the human mobility, the local economy, and the information
acquisition during the COVID-19 outbreak in China while
most of these studies remain at city level.

Some studies also demonstrate the effectiveness of mo-
bility data for controlling the spread of COVID-19. Vollmer
et al. (2020) exploit a Bayesian semi-mechanism model
with mobility data to show the effectiveness to slow down
the spread of the virus by constraints on individual move-
ments and social interactions. Based on the integration of
mobility data and the global epidemic model (Balcan et al.
2009), a study also reveals the effectiveness of fine-grained
targeted mobility control policies towards the COVID-19
pandemic (Hao et al. 2020). The mobility data can also
be integrated with compartmental models in epidemiol-
ogy (like Susceptible-Exposed-Infected-Recovered (SEIR)
model) (Ghamizi et al. 2020) to better predict the epidemic
dynamics.

Discussion. From the problems and methodologies per-
spectives, the most relevant work to our study includes (Fu
et al. 2020) and (Xu et al. 2019; Peng and Qi 2019; Mai,
Hu, and Xing 2020). Compared to (Fu et al. 2020), which
smooths the confirmed cases of infections over spatial do-
mains and predicts hazard areas during the COVID-19 out-
breaks using simple spatial features like distance, C-Watcher
system tackles the time delay and coarse-grained granularity
issues and can early detect the high-risk residential neigh-
borhoods even before the outbreaks, through leveraging fea-
tures derived from long-term/regular human mobility pat-
terns. In terms of methodologies, though a great number
of algorithms have been proposed for adversarial represen-
tation learning Makhzani et al. (2015), adversarial metric
learning (Xu et al. 2019) and cross-modalities (Mai, Hu, and
Xing 2020), our work is the first to study the city-invariant
representation learning through Generative Adversarial Net-
works (Goodfellow et al. 2014) in the context of urban com-
puting and COVID-19 prediction.



3 Features for Neighborhood Detection

In this section, we present how to construct features from
mobility data to characterize a residential neighborhood for
early risk detection. We first introduce the data source used
in our framework, and then three groups of constructed fea-
tures are briefly discussed which are Point of Interest (POI)
radius features (see Section 3.1), demographic features (see
Section 3.2) and transportation-related features (see Section
3.3), respectively. More details about the feature construc-
tion can be found in the Appendix A.1.

The feature construction is mainly based on three data
sources: POI basic property data, user profile data and hu-
man mobility data. POI basic property data contains the ba-
sic information of a POI, such as name, coordinates and
types, which provides many semantic information for a POI
(Huang et al. 2020a; Yuan et al. 2020; Hu et al. 2020). This
data enable us to analyze the spatial relationship between
neighborhoods and different types of POlIs, such as hospi-
tals, schools and bus stops (Li et al. 2020). The user pro-
file data are obtained from a user profile platform of Baidu
which can return profile features for almost all internet users
in China, such as gender, age and educational level. Human
mobility data, collected from Baidu Maps in China, record
search and transportation behaviors of the map users.

3.1 POI Radius Features

Here we introduce how to compute a group of POI radius
features for a residential neighborhood based on POI basic
property data. The intuition for this feature group is that ba-
sic living facilities around a residential neighborhood may
have a correlation with the probability of its residents being
infected by COVID-19. For example, a neighborhood lack-
ing basic living facilities may face a high risk, for the resi-
dents may passively go further away for basic living needs
and face greater infection risks. Moreover, neighborhoods
with poor living facilities often lack good property manage-
ment, which may also lead to high infection risks. To de-
scribe these living facilities related characteristics, we con-
struct 15 POI radius features. Each of them is defined as the
shortest distance between the neighborhood and one certain
type of POIs. All the used types of POIs are listed in the
Appendix A.1.

Meanwhile, we define an additional binary feature to di-
rectly represent the perfect degree of living facilities. The
value of this feature will be assigned as “perfect” if a set
of basic living facilities (e.g. hospital, bus stop and so on)
are all within 1km of the given neighborhood. Otherwise,
it is assigned “poor”. The list of basic living facilities is
also shown in the Appendix A.1. We collect the high-risk
and low-risk neighborhoods data in Wuhan city in China
which is officially announced by the local government. Fig-
ure 1(a) presents the ratio distribution of high-risk and low-
risk neighborhoods grouping by this “perfect-poor” facility
label in Wuhan data. As we can see from Figure 1(a), for
the neighborhoods with feature value as “perfect”, the ratio
of low-risk neighborhoods and high-risk ones is 0.57 : 0.44;
whereas the ratio of them for “poor” ones is 0.43 : 0.56. It
indicates that more high-risk neighborhoods have poor liv-
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Figure 1: Features of living facilities and population density
visual analysis.

ing facilities, while the low-risk neighborhoods are just the
opposite.

3.2 Demographic Features

Next, we present the demographic features of a residential
neighborhood. At first, given that the COVID-19 is easy to
transmit in a person-to-person way (Liu et al. 2020c), it is
necessary to take into account population density for infec-
tion risks prediction. As Figure 1(b) illustrates, on average
high-risk neighborhoods do have a higher population density
than low-risk neighborhoods in Wuhan city. We also com-
pute average commute distance as a feature for each neigh-
borhood since residents with long commutes have high in-
fection risks.

Moreover, different groups of residents may face different
risk levels in a neighborhood. For example, old people and
children are easier to be infected. And residents with higher
educational levels may pay more attention to scientific pre-
vention. Hence, we construct 11 features based on the distri-
bution of residents according to different human attributes.
We present each of these features as a vector of histogram
statistics of residents’ distribution. The full list of such at-
tributes is provided in the Appendix A.1.

3.3 Transportation-Related Features

We also extract features of transportation-related behav-
iors from human mobility data to help predict infec-
tion risks. There have been some studies to prove that
transportation-related behaviors have a close relationship
with COVID-19 contagion spreading (Huang et al. 2020b).
The transportation-related behaviors typically are recog-
nized as the origin-transportation-destination (OTD) infor-
mation(Xu et al. 2020; Xu et al. 2016; Liu et al. 2020a).
Thus, we consider detailed features from the perspectives
of T (transportation), OD (origin & destination venues) and
OTD (origin-transportation-destination pattern). All the fea-
tures are extracted from the search and transportation data of
Baidu Maps in a certain time period. Previous studies have
shown that map search behavior is a leading indicator and
predictor for crowd dynamics (Zhou, Pei, and Wu 2018).

A vector in which the value of each element equals the
corresponding ratio of transportation means, mainly includ-
ing walk, bicycle, public transit and private vehicle, is used
to depict the “T feature” for a residential neighborhood. The
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Figure 2: Illustration of cross-city transfer learning model of
C-Watcher.

“OD feature” consists of types of visit venues and the dis-
tance between origin and destination venues. We classify
the destination venues according to their types (e.g. hospi-
tal, restaurant, hotel, and school) and compute the propor-
tion of each type. We also extract origin-destination distance
and categorize it into different distance buckets. The propor-
tions of different distance buckets for the neighborhood are
also formed as a feature vector. Moreover, since the OTD
(origin-transportation-destination) patterns most directly re-
flect human mobility, we collect the top-20 hottest travel pat-
terns from all the cities in our dataset, which is a triplet tu-
ple composed of the type of origin venue (residential area),
means of transportation and type of destination venue. The
histogram distribution of these top-20 OTD travel patterns of
each neighborhood is treated as “OTD” features. More de-
tails about the transportation-related features can be found
in the Appendix A.1.

4 Cross-City Transfer Learning

In this section, we present the cross-city transfer learning
model, which is a core component of C-Watcher, to improve
the performance of early detection of high-risk neighbor-
hoods via transferring the knowledge about COVID-19 in-
fection from the epicenter to the target city. Usually, discrep-
ancies always exist between different cities. Thus, we intend
to learn city-invariant knowledge applicable to both epicen-
ters and target cities, instead of those characteristics unique
to epicenter cities.

4.1 Overview

An overview of our proposed cross-city transfer learning
model with four components is given in Figure 2. The first
component is a neural network encoder used to learn the rep-
resentation of a neighborhood on the basis of three groups of
features introduced in Section 3. However, the discrepancy
of input distributions in different cities may lead to the gap
between encoded representations of epicenter cities and tar-
get cities, which may severely disrupt the detection ability in
target cities. Thus, we adopt adversarial learning by adding
a discriminator component to identify whether the output of
the encoder belongs to the target city or not. In addition, to
ensure that the embedded feature of the encoder still keeps

the ability to depict the residential neighborhoods, we exert
two decoders which recover features of epicenter cities and
target city respectively from the output of the encoder. More-
over, to achieve the prediction goal of C-Watcher, a classifier
is also added to optimize the learned representations space
and make it more related to the prediction of COVID-19 in-
fection risks.

In the following sections, we present our cross-city trans-
fer learning model in detail by introducing how each compo-
nent works. Here comes the notation of model input first. For
both residential neighborhoods in epicenter cities and target
cities, we have a feature vector consist of three groups:

n” = cat(n;, ny, ny)
T, T T )

nT = Cat(nr s Mg, Ty )

where n” denotes all of the features of a residential neigh-
borhood in epicenter cities. n”, n and nf respectively
denote the POI radius features, demographic features and
transportation-related features of that residential neighbor-
hood in epicenter cities. nT, nTT, ng and ntT similarly de-
note the corresponding features of residential ones in target

city. The function cat(+) is the concatenating operation.

4.2 City-Invariant Representation Learning

Since learning unique characteristics of neighborhoods in
epicenter cities brings little benefit for early risk detection
in target cities, we propose a city-invariant representation
learning method, which is inspired by the multi-mode adver-
sarial representation learning methods (Mai, Hu, and Xing
2020; Makhzani et al. 2015). Here the encoder is a trans-
former of data distribution. Given the input vectors n” and
n”, we use n¥ and n’ to denote the outputs of the en-
coder. Similar to (Mai, Hu, and Xing 2020) and (Makhzani
et al. 2015), the distributions transformation from the inputs
to encoded representations can be presented as:

p(RE, D) = / e(7F|n”, 8,) p(n”) dn”
n® 3)
(AT, 3,) = / (@ |nT, ) p(nT) dnT

where p(-) denotes the data distribution and e(-, ®.) rep-
resents the encoding distribution. ®. are parameters of the
encoder, determining the projection space where the distri-
butions of input data p(n¥) and p(n”") are transformed into
that of encoded representations p(n”, ®.) and p(n’, ®.).
In general, p(n, ®.) and p(n’, ®.) are different distri-
butions characterizing different cities. It means that some
features helpful in predicting COVID-19 infection risk may
be unique to neighborhoods in epicenter cities unless we im-
pose constraints on the encoder. To this end, we use adver-
sarial learning to narrow the discrepancies between distribu-
tions p(n”, ®.) and p(n”, ®.) by adding a discriminator to
distinguish whether the neighborhood comes from epicenter
cities or the target city. In this way, the discriminator needs
to do a binary classification task, in which it takes the en-
coded representations as inputs and aims to identify the in-
puts ¥ from epicenter cities as true but the inputs 7 from



target cities as false, while the encoder tries its best to con-
fuse the discriminator to classify both of them as true. We
can formulate the function of discriminator as:

D(RF ®p) =1

- “
DR, ®p) =0

where D(-,®p) denotes the function of the discriminator
which can be an MLP model that outputs the probability
from O to 1. On the contrary, the encoder competes against
the discriminator by:

D(RF ®p) -1
_p &)
D(’I’L ,(I)D) — 1

For this adversarial learning procedure, we use binary
cross entropy (BCE) to define the loss function:

Lar = Laigs (07, 7") + La@", ") ©)
Laiss = —[log(D(®")) +log(1 = D@")] (1)
Lo = —[log(D@E)) + log(D(7HT)] ®

where D(n”) is used to represent D(n¥, ® ) in simplicity
and so does D(n™). The differentiation loss Lg;¢¢ guides
discriminator to predict 2 as true (epicenter cities) but 7
as false (target city), while the encoder tries to learn features
that are common between epicenter cities and target city to
hinder discriminator from distinguishing successfully, under
the effects of cheat loss L. The adversarial procedure will
finally reach an equilibrium situation where the discrimina-
tor could no longer distinguish whether the encoded repre-
sentations come from epicenter cities or target city, then the
encoder is able to extract “city-invariant” features from raw
inputs n® and nT. In this case, discrepancies between cities
decrease and the experience which helps predict infection
risks in epicenter cities can make more sense in target cities.

4.3 Embedding Space Constraints

A problem about city-invariant representation learning is
that, if no regulations and restrictions are imposed on the
embedding space of the encoder, the encoded representa-
tions of epicenter cities and target cities may only be similar
in distribution but fail to retain useful information for identi-
fying high-risk neighborhoods. We solve this problem with
multi-task learning strategy by additionally exerting an auto
encoder-decoder features reconstruction component, as well
as a COVID-19 infection risks prediction component.

The reconstruction component consists of two decoders
(one for residential neighborhoods in epicenter cities and
another one for residential neighborhoods in the target city)
which take the encoded representations as inputs. The de-
coding operation can also be considered as a distribution
transformation like encoding:

p(ﬁE,q)f):/ d¥(@P | nf oF) p(nf)dn”

nkE

p(ﬁT,édT):/ d' (a7 |nT, o1) pmT)dn”

nT

(€))

where nZ, 7T denote the reconstructed outputs of decoders

from n” and n” respectively, and d¥ (n%| nf, &) repre-
sents the epicenter cities decoder function with parameters
L, while dT (nT|nT, ®1) is similar but for the target city.
Aiming to approximate decoded representations to the orig-
inal inputs (n” — n¥ and n” — nT), we use mean square
error to define reconstruction loss function:

»Crec = 'Cfec + ’Cgec (10)
=[I2" n"y + || 2", (1D

Optimized by the reconstruction loss above, the encoder-
decoder framework ensures that the embedding space is still
characterizing a residential neighborhood.

Moreover, considering that our ultimate objective is to de-
tect latent high-risk neighborhoods, we add a classifier to
identify COVID-19 infection risks in epicenter cities upon
the learned encoded representations. The classification prob-
lem can be defined as :

om”, @) = y”, y¥ €{0,1} (12)

where C(-, ®..) denotes the function of MLP classifier with
parameter ®.. This is also a binary classification task and we
use BCE to define the classification loss function:

La=—y"log(C(RF @.))~(1-y")log(1-C (" d.)) (13)

The classification loss transmits the known information car-
ried by label 37 to encoder and classifier, which is COVID-
19 infection risks of neighborhoods in epicenter cities. It
achieves the goals to restrict the encoded representations to
be instructive in high-risk neighborhood identification.

All in all, loss functions generated from all the three com-
ponents of discriminator, decoders and classifier will act on
the encoder and optimize the embedding space in our pro-
posed cross-city transfer model. The total loss function can
be expressed qualitatively as:

L= )\dszﬁdsz + Ach»cch + Arecﬁrec + )\cl»ccl (14)

In model training, the adversarial model is optimized in an
alternate mode. We use differentiation loss Lg4;f; to opti-
mize the discriminator first to improve its discriminatory
ability to neighborhoods in both epicenter cities and that
target city, which also leads to the rise of cheat loss. Then
we apply cheat loss L., combined with L,.. and L., to
guide the encoder to optimize its parameters in a direction
where demands to learn city-invariant, informative and risk-
discriminative features are all taken into consideration. To-
gether with the encoder, the decoders and classifier update
themselves based on L. and L., respectively.

Reference City Validation Mechanism. Another prob-
lem of C-Watcher is how to select the best hyperparameters
to train the model. Here we build a reference city validation
mechanism to tune hyperparameters. The illustrated diagram
is shown in Figure 3. Reference city in our paper can be epi-
center cities, and can also be some cities with COVID-19
outbreak but not so serious as epicenters. We train the C-
Watcher model on epicenter cities set, and use ground truth
data of the reference city as validation data to choose the
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Figure 3: Diagram of reference city validation mechanism.

hyperparameters. Then we evaluate the early detection per-
formance in target cities geographically close to that refer-
ence city. In this case, we ensure that our trained model to
detect latent high-risk neighborhoods in a target city with
best hyperparameters, without any prior information related
to COVID-19 confirmed cases and spreading trend.

S Experiments
5.1 Datasets and Settings

Dataset construction. The constructed datasets simulate
a common outbreak pattern in a country. In the scenarios,
there is a set of epicenter cities in the country (like Wuhan
in China), and a few reference cities (see Section 4.3) which
have some confirmed cases. The C-Watcher can be trained
on the epicenter cities and reference cities datasets, and
then be used to make early detection of high-risk residen-
tial neighborhoods in the rest of cities in the country.!

In this evaluation, all the datasets are built based on 16
cities in China which consists of one dataset from epicenter
city, 5 evaluation datasets from selected reference cities, and
10 test datasets from other cities. The epicenter city dataset
is constructed based on Wuhan, which has the largest num-
ber of confirmed cases in China and is well-recognized as
the epicenter of the COVID-19 outbreak in China. The five
selected reference cities, Shenzhen, Changsha, Chengdu,
Shanghai and Zhengzhou, are key cities in their provinces
and they are also evenly situated in different geographical
regions of China. For each reference city, we also construct
two test datasets from two cities geographically closed to
them. The full list of test cities is in the Appendix A.2. The
POI data and user profile data of all the cities are both col-
lected by the first week of March 2020. The human mobility
data are collected from January 1, 2020 to March 3, 2020.

We also make a great effort to build the ground-truth
dataset. For the Wuhan dataset, we manually collected all
the high-risk residential neighborhoods (released on Febru-
ary 24, 2020) and low-risk residential neighborhoods (re-
leased on March 6, 2020) which are officially published
by the local government. After data cleaning and feature
alignment, there are 336 high-risk neighborhoods and 715
low-risk neighborhoods. The statistics of high-risk neigh-
borhoods in other cities datasets are listed in Appendix A.2.

'The code can be found at https:/github.com/PaddlePaddle/
Research/tree/master/ST_DM/AAAI2021-CWatcher/.

For datasets of other cities, we label the neighborhoods with
at least one confirmed case as high-risk while others as low-
risk, based on the public COVID-19 patients dataset by (Fu
et al. 2020).

In order to tune hyperparameters for baselines, we split
Wuhan dataset into three folds as train, validation and test
data by a 0.7:0.15:0.15 ratio. The hyperparameters tuning
for C-Watcher is done by reference city validation mecha-
nism (see Section 4.3).

Baselines. Since we are the first to study the COVID-19
high-risk neighborhoods early detection problem, there is
no direct competitor of C-Watcher. Thus, we compare C-
Watcher with classical machine learning methods of Multi-
Layer Perceptron (MLP), Support Vector Machine (SVM),
XGBoost (XGB) and Lasso Logistic Regression (Lasso-R).
We use the dataset from epicenter city to train the baselines,
and make a prediction on the datasets of test cities.

Metrics. Since the detection of high-risk neighborhoods is
an imbalance binary classification task (high-risk neighbor-
hoods are much less than low-risk ones), we mainly evalu-
ate the performance by AUC (Area under the ROC Curve),
which reflects model performance within different discrim-
ination thresholds (Manning, Schiitze, and Raghavan 2008;
Fu et al. 2020). In addition, we also calculate the p-value by
pairwise t-test between baselines and C-Watcher to show the
statistical significance of the evaluation results.

Optimization and hyperparameters tuning. We opti-
mize C-Watcher by Adam optimizer. The main hyperparam-
eters of C-Watcher, including weights of the loss function
(Ach> Adiffs Arec and Ay ), learning rate and hidden size
of the neural network of each component are determined by
grid search method, with batch size fixed as 64.

5.2 Performance Evaluation of Early Detection

We evaluate the performance of C-Watcher and its base-
lines for early detection of high-risk neighborhoods on test
datasets of the 10 target cities. In Table 1, the overall col-
umn shows the average AUC of the 10 cities. We can see
that C-Watcher can improve the AUC by 8.18% over the
best baseline (SVM and MLP). We also conduct pairwise t-
test between the C-Watcher and each baseline. The p-values
in Table 1 demonstrate that C-Watcher can achieve signifi-
cantly better performance than other baselines.

We also show the prediction performance on test datasets
of five target cities in Table 1. Each target city corresponds
to one reference city. We can see that the improvement by C-
Watcher over baselines in different cities is different. For ex-
ample, the improvement by C-Watcher over the best baseline
on Shaoyang is 14.57% (i.e., C-Watcher (0.6433) vs. SVM
(0.5615)); but the one by C-Watcher over the best baseline
on Xuchang is about 0% (the AUC of C-Watcher is almost
the same with other baselines). It is an interesting problem to
investigate what factors impact the performance of transfer
learning of C-Watcher. A possible reason is that some geo-
graphically closed cities are not similar, thus the reference
city cannot help to select the best hyperparameters for trans-
fer learning. We leave this problem as a further research in-



\ Overall

| Huizhou | Shaoyang | Lianyungang | Xuchang | Chongging

| AUC | P-value | AUC
SVM 0.5999 | 0.0005 0.7049 0.5615 0.6728 0.7330 0.5693
XGB 0.5810 | 0.0018 0.6266 0.5190 0.6182 0.7067 0.4901
Lasso-R 0.5853 | 0.0006 0.6364 0.5410 0.6515 0.7195 0.5718
MLP 0.5963 | 0.0005 0.6995 0.5594 0.6850 0.7278 0.5438
C-Watcher | 0.6490 - 0.7352 0.6433 0.7218 0.7312 0.6142

Table 1: Early detection performance comparison between C-Watcher and baselines on cross-city datasets. The “target city
- reference city” relationship are “Huizhou - Shenzhen”, “Shaoyang - Changsha”, “Lianyungang - Shanghai”, “Xuchang -

Zhengzhou” and ““ Chongqing - Chengdu”.

vestigation. We put the prediction performance of all the ten
cities in the Appendix A.4.

5.3 Feature Importance

Here we conduct a feature importance analysis to discuss
possible characteristics of neighborhoods leading to the high
risk for infection. We use Lasso Logistic Regression (Lasso-
R) on epicenter Wuhan dataset to select the top-20 important
features according to the absolute coefficient value, which
is illustrated in Figure 4. The full name of each feature is
listed in the Appendix A.5. The feature importance analysis
reveals several insightful and interesting points for prevent-
ing the epidemic. For POI radius features, except the effect
of perfect and poor living facility of a neighborhood (which
are denoted by “P:PFLF” and “P:PRLF” in Figure 4), the co-
efficient of “P:RTS” indicates that the long distance to a train
station can reduce the risk of the neighborhood. For the de-
mographic features, except the high population density (de-
noted by “D:PD”), the long average commute distance (de-
noted by “D:ACD”) also increases the risk of the neighbor-
hood. For the transportation-related features, we find that the
percentage of travelling on walk (denoted by “T:TW”) can
reduce the risk of the neighborhood by a large margin. We
believe such analysis can help us identify factors for high-
risk neighborhoods, and provide insightful suggestions on
preventing the epidemic of COVID-19 in future.
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Figure 4: The top-20 most important features for high-risk
neighborhoods detection.

5.4 Effectiveness of Feature Groups

In this section, we verify the effectiveness of 3 groups of
hand-crafted features. In specific, we separately evaluate the
performance of each group of features in detecting high/low-
risk neighborhoods, then we compare them with the perfor-
mance of taking all 3 groups of features together as inputs.
All the comparative experiments for feature effectiveness are
conducted by MLP on the epicenter Wuhan dataset. As we
can see from Table 2, all the three groups of features can
positively classify the high-risk and low-risk neighborhoods.
More importantly, the combination of these three groups
certainly improves the model’s overall performance, which
proves complementary among the three groups of features.

Feature groups AUC
POI Radius 0.8033
Demographic 0.7579
Transportation-Related | 0.7414
All three Groups 0.8458

Table 2: Detection performance comparison of MLP with
different feature groups on Wuhan dataset.

6 Conclusion

In this paper, we study the problem of predicting infection
risks of COVID-19 in urban neighborhoods. We first con-
struct a set of features incorporating human mobility data to
characterize the demographic/socioeconomic status and spa-
tial interactions of a residential neighborhood, then propose
C-Watcher, a data-driven framework based on these features
to early detect high-risk neighborhoods in a city ahead of lo-
cal COVID-19 outbreaks. To improve infection risks identi-
fication in target cities, C-Watcher adopts adversarial learn-
ing algorithms that learn “city-invariant” features to boost
generalizing knowledge witted in epicenter and build a ref-
erence city validation mechanism for hyperparameters se-
lection. We conduct extensive experiments upon real-world
data in the early stage of COVID-19 outbreaks from China
to demonstrate the advantages of C-Watcher to early detect
high-risk neighborhoods across cities and analyze the im-
portance and effectiveness of explored features.
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A Appendix
A.1 Feature Constructions

Types of POIs As mention in section 3.1, we construct 15
POI radius features defined as the shortest distance between
a neighborhood and one certain type POIs. The 15 types of
POIs are as follows: hospital, clinic, campus, kindergarten
& primary school & secondary school (we see these three
types as a whole), bus stop, subway station, airport , train
station, coach station, shopping mall, supermarket, market,
shop, police station, scenic spots.

We also define another binary feature to directly reflect
the perfect degree of basic living facilities and it will be as-
sign “perfect” if there are all the following types of living fa-
cilities shown in Table 5 within 1 km of the given neighbor-
hood. The types of living facilities within 1 km are mainly
selected according to a official document released by Min-
istry of Housing and Urban-Rural Development of China 2.

Human Attributes Features In section 3.2, we introduce
11 demographic features of a neighborhood based on dis-
tributions of residents according to the attributes shown in
Table 3.

Feature | Attribute | Feature | Attribute
<18 Marriage | Yes
Age 18-24 No
25-34 Low
Food Middle
Gender Male High
Female Life Stage Student
<2499
Income 2500-3999 Manager
Job Technician
Low
Consumption Middle IT
High Industry Food
High School
Education College Car Yes
Bachelor No

Table 3: Features of human attributes.

Transportation-Related Features In section 3.3, we dis-
cuss transportation-related features from the perspectives of
T (means of transportation) features, OD (types of visit
venues and the distance between origin and destination

“http://www.mohurd.gov.cn/wijfb/201811/W020181130044801
.pdf

venues) features and OTD (origin-transportation-destination
pattern) features. The details of each feature are shown in
Table 6.

A.2 Statistics of Datasets

Table 4 shows the statistics of high-risk neighborhoods of
datasets used in our experiments. Note that the number of
high-risk and low-risk neighborhoods of Wuhan is officially
announced by local government. Thus, the total number of
neighborhoods of Wuhan is small.

Datasets High-Risk | Total
Epicenter City Wuhan 336 1051
Shenzhen 852 28249
Shanghai 245 36852
Reference City Changsha 296 12145
Zhengzhou 155 14006
Chengdu 198 27008
Huizhou 18 6403
Guangzhou 659 26055
Nanjing 93 11854
Lianyungang 18 1774
Target City Shelloyan g 26 1637
Yiyang 12 960
Xuchang 25 1799
Anyang 9 875
Chongqing 630 19137
Kunming 56 8465

Table 4: Statistics of high-risk neighborhoods of datasets.

A.3 Hyperparameters

We evaluate cross-city early detection performance of our
C-Watcher and baselines in section 5.1. Table 8 presents the
hyperparameters of each baseline.

A.4 Results of Early Detection

Table 7 shows the high-risk neighborhoods detecting perfor-
mance our C-Watcher and baselines. The “target city - refer-
ence city” relationship are “Huizhou & Guangzhou — Shen-
zhen”, “Shaoyang & Yiyang — Changsha”, “Lianyungang &
Nanjing — Shanghai”, “Xuchang & Anyang — Zhengzhou”
and “ Chongqing & Kunming — Chengdu”.

A.5 Features Abbreviation and Full Name

In the analysis of features importance in section 4, we use
abbreviation to name our constructed features (see section
3) for simplicity. The abbreviation — full name matches are
presented in Table 9.



Types of Living Facilities | Types of POIs

Medical Institutions Comprehensive Hospital | Special Hospital | Clinic
Shopping Places Shopping mall | Supermarket | Market | Shop
Sports Venues Gymnasium | Fitting Center | Extreme sports venues | Others
Education Services Primary School & Middle School
Catering Services Chinese Restaurant | Western Restaurant
Financial Services Bank
Communication services Communication Business Hall
Government Apparatus Public Security Organ
Transportation Facilities Bus Stop | Subway Station

Table 5: Types of basic living facilities and corresponding types of POIs. “&” represents that a neighborhood equips such type
of living facility when all the types of POIs connected by “&” should be within 1km, while “|” represents that a neighborhood
equips such type of living facility as long as one of the types of POIs connected by “|” is within 1km.

Category | Feature Value
Walk
T Means of Transportation Bicycle

Public Transmit
Private Vehicle

Hotel
Types of Visited Venues Shopping
D
© < 1lkm
Origin—Destination Distance 2 —5km
Neighborhood — Neighborhood
Top-20 hottest Origin — Walk — Destination Patterns Neighborhood — Food
Neighborhood — Neighborhood
Top-20 hottest Origin — Bicycle — Destination Patterns Neighborhood — Shopping
OTD

Neighborhood — Neighborhood
Top-20 hottest Origin — Public Transmit — Destination Patterns Neighborhood — Shopping

Neighborhood — Neighborhood
Top-20 hottest Origin — Private Vehicle — Destination Patterns Neighborhood — Company

Table 6: Transportation-related features.



| Shenzhen | Changsha | Shanghai | Zhengzhou | Chengdu
| Huizhou | Guangzhou | Shaoyang | Yiyang | Lianyunguang | Nanjing | Xuchang | Anyang | Chongqing | Kunming
SVM 0.7049 0.5510 0.5615 0.6039 0.6728 0.5623 0.7330 0.5170 0.5693 0.5235
XGB 0.6266 0.5392 0.5190 0.6744 0.6182 0.6033 0.7067 0.4604 0.4901 0.5717
Lasso-R 0.6364 0.5798 0.5410 0.6318 0.6515 0.5556 0.7195 0.4394 0.5718 0.5263
MLP 0.6995 0.5688 0.5594 0.6113 0.6850 0.5664 0.7278 0.4631 0.5438 0.5377
C-Watcher | 0.7352 0.6008 0.6433 0.6618 0.7218 0.5776 0.7312 0.5637 0.6142 0.6403

Table 7: Early detection performance comparison between C-Watcher and baselines on 10 cross-city datasets.

MLP \ SVM \ XGB \ Lasso-R
Dense Layer 1024 Min Child Weight = 1
ReLU Depth =10
Dropout = 0.5 C=1 N-Tree = 160
Dense Layer 1 Gamma = 0.0196 Gamma = 0.025 A=3
Sigmoid Tolerance = 0.001 Learning Rate = 0.0001 Max Iteration = 3

Optimizer = Adam
Learning Rate = 0.0001
L2 Weight Decay = 0.001
Batch Size = 16

Kernel = RBF
Max Iteration = No Limit

Scale Positive Weight = 1.8
Sub-Sample = 0.7
Colsample-Bytree = 0.7
Colsample-Bynode = 1

Solver = LibLinear

Table 8: Types of baselines MLP, SVM, XGB and Lasso-R. In all the different baselines, random seeds are set to 2. We conduct
baseline experiments with Python 3.8 except XGB using Python 2.7.

Abbreviation | Full Name | Abbreviation | Full Name

P : PFLF Perfect Living Facilities D : LFCL Low Food Consumption Level

P: PRLF Poor Living Facilities D:LIL Low Income Level

P:RTS Radius to Train Station D: ACD Average Commute Distance

P : RPMSK Radius to I;fllénla(rli C/1 eSrZZ?tr;llary School T : N-N-PV From Nei%};,b;;i}i,(;?s \t/(;lll\ilslieghborhood
P:RS Radius to Shop T : N-N-W From Neighborhood to Neighborhood on Walk
P:RA Radius to Airport T:TW Travel on Walk

P:RC Radius to Campus T:TD> 30 Travel Distance > 30km

D:PD Population Density T:2<TD< 5 2km < Travel Distance < 5km

D : MFCL Middle Food Consumption Level T:N-T-B From Neighborhood to Transportation by Bus
D:LEL Low Educational Level T :N-N-B From Neighborhood to Neighborhood by Bus

Table 9: Abbreviation and corresponding full name of Features.



