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Structure of indicators and the selection criteria 

This Chinese report is the regional spin-off of the global Lancet Countdown report.1 The definition of 
indicators and the selection criteria were described in the previous global reports. For the audiances who are 
not familiar with the global Lancet Countdown report, we reiterate the structure of indicators and the selection 
criteria here.  

As denoted in the global Lancet Countdown reports, the global and Chinese Lancet Countdown report aims 
to "track progress on health and climate change and publish annual updates of the indicators" across five key 
domains: 1.The health impacts, exposures and vulnerabilities of climate change; 2.Adaptation, planning and 
resilience for health; 3.Mitigation actions and their health co-benefits; 4.Economic and financial aspects of 
the interaction between climate change and health; 5.Public and political engagement in climate change and 
health. Each following report has been an iteration of the previous, with new indicators introduced and 
improved methodologies, naming and categorizing of indicators in order to fill the indicator gaps of each 
domain.  
 
The indicators are intended to be grouped by the problem they focus on and/or the solution they lead to. For 
the first domain, the indicators are grouped within different climate change-health pathways: heat, extreme 
weather events, infectious diseases (and in the global report also food security and migration). The second 
domain is structured around the WHO Operational Framework for Climate Resilient Health Systems. The 
global report also covers the areas of climate information services and health adaptation spending. Within 
the third domain, indicators are grouped by sector, with air pollution as a co-benefit and a separate indicator, 
as it spans across sectors. The global report also has indicators on agriculture and healthcare mitigation. 
Within the fourth domain, the indicators are grouped into two areas: the health and economic costs of climate 
change and benefits from mitigation, and the economics of the transition to zero-carbon economies. In the 
global report, the final domain is organized into five different areas of engagement: media, individual, 
scientific, government and corporate.  
 
The selection criterias of the indicators include: 1.Track an aspect of the relationship between health and 
climate change, well evidenced in the literature and not adequately covered through other indicators in the 
report; 2.Utilise data from a reliable source, available at adequate temporal and spatial scales to enable 
globe/regional trends to be observed at a global/regional level; 3.Be updatable periodically, ideally annually. 
In this year’s Chinese report, one new indicator that is unique to China’s characteristics and fulfill the 
forementioned three criterias has been included (indicator 1.2.2-cyclones). 
 
The current suite of indicators in the Chinese Lancet Countdown report is not fully comprehensive due to 
limited word count and limited time to develop this report. But they will be improved to cover a wider range 
of important impacts and interventions in future reports.  

Important notes about the additional indicators in the appendix 

The 2020 China Lancet Countdown report is the first annual report that documents indicators of progress on 
health and climate change. Although the findings of 23 indicators are reported in the main text, 34 indicators 
went through a process of development this year. Some indicators reflect the indicator structure of the global 
2020 Lancet Countdown report, but were merged into single indicators in the main text. These include 
indicators 2.1.1 and 2.1.2, and 3.1.1 to 3.1.3, which are reported in the main text as 2.1 and 3.1 respectively. 
The methods and data of these lower-level indicators are displayed here in the appendix.  

A further seven indicators (as shown in Table 1) reflect the indicators of the global 2020 Lancet Countdown 
report and a comprehensive assessment of health and climate change in China. Initial methods, data and 
findings of these indicators are reported here in the appendix and these indicators (along with the other 23 
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reported in the main text) will undergo further development and improvement, with their findings reported 
in full in 2021.  

Table 1: Additional indicators under development and reported in the appendix 
Indicator number Name of indicator 

1.1.4 Health and exposure to warming 

1.1.5 Vulnerability to extremes of heat 

1.2.3 Flood and drought 

2.1.3 City-level climate change risk assessments 

2.3 Climate information services for health 

3.5 Food, agriculture, and health 

4.1.4 Economic losses due to climate-related extreme events 

 

Section 1: Climate change impacts, exposures, and vulnerability 

Indicator 1.1: Health and heat 
 
Indicator 1.1.1: Exposure of vulnerable populations to heatwaves  

Methods 

This indicator compared changes in heatwave exposure among the elderly population in China, using 
temperature data from the European Centre for Medium-Range Weather Forecasts, ERA5 reanalysis dataset,2 
and population count from a hybrid gridded demographic dataset, provided by Chambers (2020),3 that 
combines the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population of the 
World (GPWv4) and the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Histsoc dataset. The 
methodology for this indicator is similar to methodology described in the 2020 global Lancet Countdown 
reports, but the definition of heatwave in the China report is different from the global report. The 92.5th 
percentile of daily maximum temperature over the warm season (May 1st to Sep 30th) between 1986 and 2005 
was computed as reference, and a heatwave event was defined as a period of three or more days where the 
daily maximum temperature was higher than the reference at a given grid. The days of heatwave were defined 
as the number of days within the heatwave event.  
 
Here we made some explaination about why we chose a definition that is different from the global report. 
Actually, defining heatwave remains a highly controversial topic.4 An extremely strict heatwave definition 
(e.g., at least four consecutive days with daily maximum temperature ≥ 99th percentile) may underestimate 
the heat-related deaths and could not protect the public health efficiently because moderate heatwave (e.g., 
at least two consecutive days with daily maximum temperature ≥ 90th percentile) may have already caused 
considerable number of deaths, while a loose heatwave definition may activate the heatwave early warning 
too early and too frequently, and cause inconvenience to the public and waste health resources.  
 
Previous studies in different regions have adopted different heatwave definitions. For instance, Tian et al. 
found that heatwave definition using 97.5th percentile of daily mean temperature and duration ≥ 2 days 
performed best on estimating the effect of heatwave on mortality from coronary heart disease in Beijing;5 
Chen et al. reported that heatwave defined as ≥4 consecutive days with daily mean temperature > 98th 
percentile was the most appropriate definition to assess the influence of heatwave added effect on mortality 
in Nanjing;6 Daniel et al. found that heatwave defined as ≥2 consecutive days with daily maximum apparent 
temperatures > 95th percentile was the most appropriate definition in Rome and Stockholm.7 
 
Generally, these studies were carried out only in a single or limited number of cities, and it is unsuitable to 
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generalize these identified heatwave definitions directly to other cities. To determine which heatwave 
definition could best capture the health impact of heatwave in China, Yang et al. compared the goodness of 
model fits among 15 heatwave definitions using the Akaike Information Criterion for quasi-Poisson (Q-
AIC).8 In detail, they summed Q-AIC values for each heatwave definitions from all group-specific mortality 
in 31 capital cities of China; and the minimal sum of Q-AIC produced the best model fit and the best heatwave 
definition. Finally, they found that heatwave definition as at least 3 consecutive days with daily maximum 
temperature ≥ 92.5th percentile performed the best model fit at the national scale, as the Q-AIC under this 
definition was much smaller than others (Table 2). Therefore, although different from the global definition, 
we believe this definition is the best and most appropriate one to estimate the health impact of heatwave at 
the national level for China.  
 
 
 
 
Table 2. Sum values of Akaike’s Information Criteria for quasi-Poisson (Q-AIC) for 31 Chinese cities, 
using daily maximum temperature in warm season (May-September) for heat wave definitions. 

Heatwave Definition QAIC 
HW01 Daily maximum temperature ≥ 90.0th percentile for two or more consecutive day 1893057 
HW02 Daily maximum temperature ≥ 90.0th percentile for three or more consecutive day 1892853 
HW03 Daily maximum temperature ≥ 90.0th percentile for four or more consecutive day 1892960 
HW04 Daily maximum temperature ≥ 92.5th percentile for two or more consecutive day 1892955 
HW05 Daily maximum temperature ≥ 92.5th percentile for three or more consecutive day 1892623 
HW06 Daily maximum temperature ≥ 92.5th percentile for four or more consecutive day 1893024 
HW07 Daily maximum temperature ≥ 95.0th percentile for two or more consecutive day 1893082 
HW08 Daily maximum temperature ≥ 95.0th percentile for three or more consecutive day 1893081 
HW09 Daily maximum temperature ≥ 95.0th percentile for four or more consecutive day 1893423 
HW10 Daily maximum temperature ≥ 97.5th percentile for two or more consecutive day 1893215 
HW11 Daily maximum temperature ≥ 97.5th percentile for three or more consecutive day 1893496 
HW12 Daily maximum temperature ≥ 97.5th percentile for four or more consecutive day 1893758 
HW13 Daily maximum temperature ≥ 99.0th percentile for two or more consecutive day 1893654 
HW14 Daily maximum temperature ≥ 99.0th percentile for three or more consecutive day 1893790 
HW15 Daily maximum temperature ≥ 99.0th percentile for four or more consecutive day 1893981 

 (Source: Yang et al. 2019) 

 
Instead of year-round ambient temperature, most of previous studies only included the warm season (e.g., 1 
May to 30 September) or summer-time ambient temperature in heatwaves on population health analyses 4,6,7,9. 
Only using the warm season data can effectively remove the confounding effect of cold temperature, and also 
adjust the effect of moderate hot temperature to avoiding the overestimation of the risk of heatwave. 
Therefore, , we also adopted the warm season ambient temperature in this study. 

The gridded 92.5th percentile of daily maximum temperature was calculated for 1986 - 2005 with a resolution 
of 0.5°. For each year from 2000 to 2019, the number of heatwave events and total days of heatwaves per 
year was calculated according to the definition. 

The vulnerable population was defined as people aged over 65. The heatwave exposure of the vulnerable 
population was calculated in person-days, i.e. the number of heatwave days multiplied by the exposed 
population over 65, at each grid. Provincial-level and country level exposure were computed by summing 
over corresponding cell data. The heatwave exposure from 1986 to 2005 was averaged to be the baseline 
data. For each year from 2000 to 2019, the change in heatwave exposures relative to the baseline was assessed. 
It was divided by the elder population to obtain the exposure per elder person. 
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Due to the increase of frequency/intensity of heatwaves, the per person heatwave exposure is showing an 
increasing trend. Therefore, the spatial differences in the per person exposure shown in the figure is mainly 
due to the spatial distribution differences of changes of heatwave days. The total heatwave exposure 
(mentioned in the text) is also showing an increasing trend. It is not only associated with increase of 
heatwaves, but also with the aging of population.   

Data   

1. Climate data was taken from European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 
project.2  

2. Population data from the hybrid gridded demographic data for the world was taken from Chambers 
(2020).3  

Caveats  

The definition of vulnerable population (above the age of 65) does not include vulnerable groups that are 
vulnerable due to limited access to healthcare, poor health status, low socioeconomic status and etc. As 
described in the global Lancet Countdown 2020 report, there may be some inconsistencies with the 
population data due to the use of two distinct data sources.   
 
The caveats associated with the definition of a heatwave are described in indicator 1.1.2. 

Future Form of Indicator  

Future indicator may define vulnerable population based on socioeconomic status, healthcare accessibility 
(e.g., number of hospital beds per unit number of people), and prevalence of medical conditions that increase 
risk of morbidity and mortality from heatwaves, such as cardiovascular and respiratory conditions. 
 

Additional Information  

The differences of results between the 2020 global report and the China report can be explained. Based on 
the definition of a heatwave event in the 2020 global report (99th percentile of minimum temperature), the 
heatwave exposure of 65+ population in 2019 would be 0.5 billion in China. If based on the definition in the 
China report (92.5th  percentile of maximum temperature) , then the number of heatwave exposure was 2.82 
billion in 2019 (about 5.6 times of that using the old definition). So there was indeed a significant difference 
between the heatwave event and the heatwave exposure assessed in person days between the global and 
Chinese report. 

 

Indicator 1.1.2: Heatwave-related mortality 

Methods 

The heatwave definition and the rationale of choosing this definition has been described in details in indicator 
1.1.1 The attributable number (AN) of deaths associated with heatwave is calculated. The method is as 
follows: 

𝑨𝑵 = 𝑷𝒐𝒑𝒚,𝒑 × 𝑴𝒐𝒓𝒕𝒚,𝒑 × 𝑯𝑾𝒚,𝒑 × 𝑨𝑭𝒑 

Where Popy, p refers to the grid cell-level population size in a specific year; Morty, p is the baseline daily non-
accidental mortality rate; the mortality rate from China Statistical Yearbook is divided by 365 as a pre-process 
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because it is an annual statistic. HWy, p is the heatwave days in a specific year. AFp is the attributable fraction 
(AF), which is calculated as: 

𝐴𝐹 =
𝑅𝑅 − 1

𝑅𝑅
 

Where RR represents the increase in the risk of mortality resulting from heatwave, compared with non-
heatwave. The daily death data of urban residents in 31 provincial capital cities of China and the daily weather 
data is used to calculate the exposure-response relationships, using Poisson generalized linear models. For 
detailed information, please refer to Yang et al. (2019). 4  
 
The exposure-response relationship between heatwave and mortality in different provinces (autonomous 
regions) is represented by the related capital cities in mainland China, and the relationship is assumed to be 
consistent during the study period. The annual heat-related deaths in a specific province (municipality or 
autonomous regions) is the sum of the calculated annual heat-related deaths in the grid cells belong to this 
province (municipality or autonomous regions), and the annual heatwave-related deaths in mainland China 
is the sum of the deaths of the total grid cells. 

Data   

1. RR values are derived from Yang et al, (2019). 4  
2. Mortality rates at province levels  (𝑴𝒐𝒓𝒕𝒚,𝒑) are derived from China Statistical Yearbook. 
3. Gridded climate data was from the European Centre for Medium-Range Weather Forecasts (ECMWF), 

ERA5 project.2  
4. Population data was from the Chambers (2020) hybrid gridded demographic data for the world.3   
5. Population structure data was from United Nations-World Population Prospects.10  

Caveats  

First, only limited number of exposure-response functions were used for such a big country like China. 
Second, the exposure-response functions, which can be considered as the effects of high temperature and 
heatwave on mortality, were assumed to be constant for the past 30 years. This might create an estimation 
bias. In fact, along with the aging process, people’s increasing adaptation ability, the popularity of air 
conditioning and other potential factors, the exposure-response function might also have changed in the past 
30 years. However, due to lack of investigation into this field, for now, we assume the exposure-response 
functions remains constant. 

Future Form of Indicator  

One possible improvement of this indicator would be to use further city-level exposure-response function 
parameters within each province.  
 
 
Indicator 1.1.3: Change in labour capacity 

Methods 

Firstly, gridded (0.5°) daily temperature, dew point temperature and relative humidity were used to 
calculate wet bulb globe temperature (WBGT) in the shade. The calculation method of WBGTmax, 
WBGTmean and WBGThalf is the same as Watts et al.1 
Secondly, the fraction of work hours lost (WHL) in each industry was estimated by the loss function 
from Watts et al.1  
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𝑙𝑜𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
1

2
1 + ERF 

WBGT − Prod

Prod
 

WBGT refers to the WBGTmax, WBGTmean and WBGThalf estimated in the first step. Prod  
and Prod  refer respectively to the mean and standard deviation of labour loss fraction. They are the 
fixed parameters for labourers working with different activity levels. Their respective values are 
displayed in Table 3. Labour is commonly divided into engaging in the primary, secondary and tertiary 
industry in China.1 The primary industry refers to agricultural, forestry, animal husbandry and fishery, 
the secondary industry includes manufacturing, construction, mining and utilities, and the tertiary 
industry includes transport, trade, catering services, finance, real estate and other services.11 Labour in 
the primary industry  was assumed to work at a metabolic rate of 400w, the secondary industry was at 
300w and the tertiary industry was at 200w. After estimating the loss fractions in each industry working 
at different levels of WBGT, these fractions were clipped at both extremes using the same method as 
Watts et al.1  
 
Table 3: Input values for labour loss fraction1 

Work level 𝐏𝐫𝐨𝐝𝐦𝐞𝐚𝐧 𝐏𝐫𝐨𝐝𝐬𝐝 

200w 35.53 3.94 

300w 33.49 3.94 

400w 32.47 4.16 

Note: w is short for watts. Work levels at 200w/300w/400w represent light/medium/heavy physical work respectively.  

 
Thirdly, a labourer was assumed to work 8 hours a day (2 hours at WBGTmean, 2 hours at WBGTmax 
and 4 hours at WBGThalf), as 8 hours is the legal working time stipulated by the Labour Law of 
China.12 Based on the loss function and the above assumption, the daily loss of each person in each 
industry was estimated. This was then multiplied by the number of people working in each industry to 
obtain daily losses in each industry. Finally, the total WHL in each industry from 2000-2019 was 
estimated by summing these daily losses. 

Data 

1. Gridded climate data was from the European Centre for Medium-Range Weather Forecasts 
(ECMWF), ERA5 project.2   

2. Population data was from the hybrid gridded demographic data for the world by Chambers (2020).3   
3. Data on the percentage of people working in each industry in the previous years was from 2019 

Statistical Yearbook of China.13  

Caveats 

The loss function was used to estimate WHL globally.1 However, whether the function is appropriate 
for estimating WHL at the provincial level of China is still unknown.  
 
The percentage of workers in the primary, secondary and tertiary industries is only reported at the 
country level, hence this proportion is distributed evenly to all grid cells, which is not consistent with 
the actual situation. 
 
The result was different with the global report by Watts as we take different data sources and 
methodologies. Firstly, gridded population data was from the hybrid gridded demographic data for the 
world, and the percentage of people working in each industry was from the Chinese Statistical Bureau. 
Secondly, based on the Chinese national economy classification standard, workers were divided into 
engaging in the primary, secondary and tertiary industries instead of agriculture, industry and service 
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sectors in Watts et al.1 Thirdly, we assumed a labourer works 8 hours a day instead of 12 hours. The 
daily work time of 8 hours is more realistic in China as this is stipulated by the Chinese labour law. In 
the sensitivity analysis, the WHL increased by 53%-56% if we assumed a labourer works 12 hours a 
day as Watts et al.1 
 

Future form of indicator 

The loss function should be further tested whether it is suitable for the actual situation in China, and the 
percentage of workers in different industries at the provincial or city level is needed. Also, this indicator 
will be updated to show WHL in more specific sectors (e.g., manufacturing and construction) in the 
future. Finally, the percentage of workers in the primary, secondary and tertiary industries is only 
reported at the country level, hence this proportion is distributed evenly to all grid cells. In the future, 
the percentage at the provincial or city level is needed. 

Additional Information 

 

 
Figure 1: Heat-related work hours lost in China. (A) Annual potential work hours lost due to heat 
per person employed in each industry from 2000 to 2019. (B) Total work hours lost in different 
provinces in 2019. 

 

Table 4: The total work hours lost (WHL, millions) and average WHL per person working in the primary 
industry, secondary industry and tertiary industry from 2000 to 2019 in China 

Year 

Primary industry  Secondary industry  Tertiary industry  All industry 
Total 
WHL 

(millions) 

WHL 
per 

person 

 Total WHL 
(millions) 

WHL per 
person 

 Total WHL 
(millions) 

WHL per 
person 

 Total WHL 
(millions) 

WHL per 
person 

2000 8481.2 24.6  969.1 6.3  33.1 0.2  9483.4 13.8 
2001 8360.3 24  1211.2 7.8  60.4 0.3  9631.9 13.9 
2002 8468.9 24.2  1163.8 7.8  102.8 0.5  9735.5 13.9 
2003 11476.5 33.2  1998.4 13.1  298.1 1.4  13773 19.5 
2004 7818 23.5  1140.1 7.1  44.1 0.2  9002.1 12.7 
2005 8638.5 27  1267.5 7.5  38.4 0.2  9944.5 13.9 
2006 9627.1 31.5  1709.4 9.5  64.6 0.3  11401.1 15.9 
2007 8227.3 28  1617.7 8.4  53.4 0.2  9898.4 13.7 
2008 5920.5 20.7  936.7 4.8  16.1 0.1  6873.2 9.5 
2009 7374.8 26.6  1547.1 7.7  43.3 0.2  8965.2 12.3 
2010 9292.1 34.7  2553.2 12.2  230 0.9  12075.3 16.5 
2011 6374.7 25  1489.6 6.9  39.6 0.2  7903.8 10.8 
2012 6149.4 24.8  1528.9 6.9  19.1 0.1  7697.4 10.5 
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2013 9040 38.9  3209 14.4  238.5 0.8  12487.4 16.9 
2014 5312 24.3  1506.1 6.8  66.4 0.2  6884.5 9.3 
2015 4459 21.2  1228.9 5.6  18.4 0.1  5706.3 7.7 
2016 8356.7 40.5  3397.8 15.8  368.3 1.1  12122.8 16.3 
2017 8663 43.2  3486.6 16.7  473.9 1.4  12623.4 17 
2018 8239.5 42.5  2962.3 14.5  156.5 0.5  11358.3 15.3 
2019 6905 35.7  2757.9 13.5  275.3 0.8  9938.2 13.4 

 

The reasons why results for indicator 1.1.2 and 1.1.3 have different spatial patterns are at least two-fold:  

First, the working hour loss(WHL) is affected by two factor, heat and working-age population, while the 
vulnerable population of heatwave-related mortality are mainly people older than 65 years. So, the different 
spatial patterns of working-age people and old people caused the different distribution of figure 3 and 4. For 
example, Guangdong province is the most concentrated province of manufacturing industry, so there are 
much more people aged 14-65 than 65+. That's why Guangdong's WHL is high but the heatwave-related 
mortality is relatively low. 

Second, although the temperature is the same, the heat effects are different for WHL and heatwave-related 
mortality. WHL is calculated using WGBT, while heat-related mortality is calculated using daily maximum 
temperature. The two are different because WGBT related to air humidity, air movement, radiation 
temperature and air temperature. 

 
Indicator 1.1.4: Health and exposure to warming 

Methods 

This indicator remains similar to the methodology described in the 2019 and 2020 global Lancet Countdown 
reports, with a focus on China. Monthly averaged summer temperature (June, July and August) was obtained 
from the ERA5 reanalysis data set and population count data from a hybrid gridded demographic data. Both 
are gridded data with horizontal grid of 0.5°. Population-weighted temperature and area-weighted 
temperature were calculated every year from 1986 to 2019 for every province and the entire country. Changes 
in population-weighted and area-weighted temperatures were calculated every year 2000 to 2019 with 1986-
2005 as the baseline. Area-weighted temperature was calculated by averaging temperature records at every 
grid inside a province/for the entire country. Population-weighted temperature was calculated in a similar 
method with weights proportional to population count. 

Data   

1. Climate data was taken from European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 
project.2  

2. Population data is from a hybrid gridded demographic data for the world, created by Chambers (2020).3 

Caveats  

The horizontal resolution of temperature data is too coarse to reflect warming trend at local level. Localized 
temperature data are preferred.   

Future Form of Indicator  

Future version may consider using localized reanalysis data set, instead of the global reanalysis data set. 

Findings  
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The country-wide population-weighted temperature rose by 0.64°C in 2019 compared with the 1986-2005 
baseline. Province-level changes in annual average population-weighted temperature from 2000 to 2019 are 
presented (Figure 2, Figure 3), relative to the 1986-2005 average. Regions with profound warming are in 
Southwest China, such as Qinghai-Tibet Plateau and Sichuan Province, where ecosystems are fragile, and 
Yangtze Delta region, the most economically advanced and populous region in China. Subtropical provinces 
in South Central China, such as Hainan, Guangdong and Guangxi, witness less population-weighted 
temperature rise.  

 
Figure 2: Change in population-weighted summer temperature in 2019, relative to the 1986-2005 
average 

  
Figure 3: Mean summer warming relative to the 1986–2005 average in China 
 

Indicator 1.1.5: Vulnerability to extremes of heat 

Methods 
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This indicator displays a heat vulnerability index derived from (1) the proportion of the population over 65 
years, (2) the prevalence of chronic disease among population over 65 years, (3) the proportion of the 
population living in urban areas, (4) the number of air conditioners owned per 100 urban households at year-
end and (5) the green covered area as % of built-up area, using the equation below: 
 
 
 

in which, HVi refers to the heat vulnerability index in province i; pop65i refers to the proportion of population 
over 65 years in province i; popurbani refers to the proportion of the population living in urban areas in 
province i; diseasei is the chronic disease prevalence among population over 65 years in province i. ACi is 
the air conditioner ownership per 100 urban household in province i, greeni is the percentage of green covered 
area in province i. Increased urbanization may exacerbate heat island effect and therefore the health effect of 
heat 14, while expanding green area and installing air conditioner are treated as adaptation measures of this 
15,16. 

Reasons why five factors are considered in the heat vulnerability index are as follows: 
 
The equation to calculate the heat vulnerability index is referred to sub-indicator 1.1.1 Vulnerability to 
extremes of heat in the 2019 Lancet Countdown Report 1, indicator 1.1 vulnerability to the heat-related risks 
of climate change in the 2018 Lancet Countdown report 17 and indicator 1.1 Vulnerability to the heat-related 
risks of climate change in the 2019 MJA-Lancet Countdown Report 18. In these three reports, the heat 
vulnerability index is calculated with the same indicators which include proportion of the population over 65 
years, the prevalence of cardiovascular, diabetes and chronic respiratory diseases among population over 65 
years and the proportion of the population living in urban (i.e. urbanization rate). As concluded from 
previously studies, populations aged over 65 years, especially those with underlying disease are more 
vulnerable to health effect of heat than others 1. And increased urbanization may exacerbate heat island effect 
and therefore the health effect of heat 14. Therefore, these three indicators are taken into account to be a 
measure of possibly increased heat vulnerability. However, some other studies also show that expanding 
green area and installing air conditioner are treated as adaptation measures from heat 15 16, which are proved 
to decrease the heat vulnerability to some extent. In addition, Watts N, et al also mentioned that heat 
vulnerability in their report did not include prevalence of cooling devices and the prevalence of green areas 
in cities, which are the caveats of their studies. To make some improvement of this indicator, the number of 
air conditioners owned per 100 urban households at year-end and the green covered area as % of built-up 
area are included in the China Lancet Cutdown Report. According to the opposite effect of these indicators 
on the heat vulnerability, the equation from the global report was revised, using addition when the indicator 
may increase the vulnerability and subtraction when it may decrease the vulnerability. Although there are 
still lots of influencing factors of heat vulnerability, for now we only focus on these five most important and 
relatively convinced factors due to the limited evidence and data availability.  
 
Equal weights are assigned to each indicator without consideration of the relative importance of them. Some 
researchers applied weights to the indicators based on the strength of statistical relationship with health 
outcome 19. However, the indicators used may not be independent of each other due to the complexity of the 
vulnerability, which may lead to the unbalanced emphasis of the factors when using unequal weights 20. 
What’s more, the weights of the factors may largely depend on the context, thus the weights may change with 
the different part of China. Therefore, equal weights are assigned for each indicator in this study to avoid the 
possible bias from the inadequate understanding of the heat vulnerability. 
 
The number of air conditioners owned per 100 urban households at year-end was normalized to the range 
from 0 to 1 using Max-Min Method to keep consistent with other sub-indicators before calculation. Then the 
index was normalized again to provide ranges between 0 and 100. The higher value of the index, the higher 
the vulnerability to heat exposure is. Due to data limits, the number of air conditioners owned per 100 urban 
households at year-end was missing for Tianjin, Jilin, Shanghai, Hunan, Yunnan, Tibet, Gansu and Xinjiang 
in 2013 and 2014, and green covered area as % of built-up area was missing for Beijing in 2010, Tianjin in 
2007 and 2008, and Shanghai in 2008 and 2009. To account for  the missing values, a linear regression 
model was used to make the estimations, as the sub-indicator shows a good linear relationship with year. In 

𝐻𝑉 =
(𝑝𝑜𝑝65 + 𝑝𝑜𝑝𝑢𝑟𝑏𝑎𝑛 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 − 𝐴𝐶 − 𝑔𝑟𝑒𝑒𝑛 )

5
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addition, the prevalence of chronic disease among the population over 65 years were available for 1998, 2003, 
2008 and 2013 at the national level. A linear regression model was used again to estimate the prevalence for 
other years during 2000-2013. However, the prevalence after 2013 was assumed to be unchanged to avoid 
further uncertainty. The index displays aggregated trends by regions for the period 2000 to 2018. The Cox-
Stuart trend test was used to examine the significance of trend with years. 

Data 

1. The prevalence of chronic disease among population over 65 years was extracted from National Health 
Service Survey (NHSS) Report published by Statistical Information Center of National Health 
Commission. (http://www.nhc.gov.cn/mohwsbwstjxxzx/).  

2. The other data related to the heat vulnerability index (proportion of the population over 65 years, 
proportion of the population living in urban areas, air conditioner owned per 100 urban households at 
year-end, green covered area as % of built-up area (%)) was extracted from China Statistical Yearbook 
compiled by National Bureau of Statistics from 2001 to 2019.13 

Caveats 

The caveats of this indicator would mainly be in four aspects.  
 
First, the prevalence of chronic disease among population over 65 years is not available at the provincial 
level. Second, the index does not include the existence of heat early warning systems. Third, a linear 
regression model was used to handle with the missing value in some sub-indicators, leading to some bias. 
Fourth, adjustment of survey method used by National Bureau of Statistics during the study period may cause 
fluctuation of the data to some extent. 

Future Form of Indicator  

In the future, we would consider including more sub-indicators to better reflect various aspects of 
vulnerability to heat. 

Findings 

Despite the increasing heat and heatwave exposure per capita, the national average vulnerability has increased 
by 0.92% since 2000. Vulnerability continues to rise in every region of China (Figure 4). Northeast China 
remains the most vulnerable area, followed by Northwest China, Southwest China and North China. If 
adaptation measures such as green area and air conditioner were excluded from the index, the vulnerability 
to extremes of heat in China would increase by 59% from 2000 to 2018.  
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Figure 4: Vulnerability to extremes of heat in China. (A) Trend in different regions from 2000 to 
2018. (B) Distribution of vulnerability index in 2018 
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Figure 5: Trend of (A) Proportion of the population over 65 years, (B) Proportion of the population 
living in urban areas, (C) Green covered area as % of built-up area (%), (D) Air conditioner owned 
per 100 urban households at year-end in China from 2000 to 2018, (E) The prevalence of chronic 
disease among population over 65 years.  
 
The sudden decline in proportion of population over 65 years around 2011, air conditioner ownership in 
China around 2013 was due to the change in statistical approach. 
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Indicator 1.2: Health and extreme weather events 

Indicator 1.2.1: Wildfires 

Methods 

The methodology for this indicator remains the same as the indicator in the 2020 global Lancet Countdown 
report. It was calculated by the following equation: 

𝑃𝐷 =  𝑃𝑜𝑝  ×  𝐹𝑃 ,  

Where PDy refers to person-days exposed to wildfire in a specified year y, and Popy refers to the population 
count from gridded population data in a specified year y. FPd,pixel refers to a fire point count located within a 
population data pixel in an unique day d of year y. The Collection 6 active fire product21 is acquired by the 
Moderate Resolution Imaging Spectroradiometer aboard the NASA Terra and Aqua satellites. Unique 
acquired date counts of all fire points within a population pixel were calculated, and multiplied by population 
count per square kilometer, taken from NASA SEDAC GPWv4.35,21 with urban areas (population density ≥ 
400 persons/km2) removed. Annual exposure days are grouped by into four periods: 2001-2005, 2006-2010, 
2011-2015 and 2016-2019. Then mean value of each period was calculated. Finally, the exposure days were 
allocated to provinces (Figure 7 and Table 5) and 6 regions of China (Figure 8) using zonal statistical 
methods. 

Data 

1. Fire point data was downloaded from NASA Near Real-Time and MCD14DL MODIS Active Fire 
Detections (SHP format).22  

2. Population data was taken from the Chambers (2020) hybrid gridded demographic data for the world23 
and the Gridded Population of the World Version 4 (GPWv4).22 

Caveats 

The information on confidence field and pixel distance in MODIS database haven’t been used in this year’s 
analysis to identify the number of people affected.  
 
This indicator doesn’t explicitly describe how the smoke from wildfire would influence human health.24 
The  exposure level in wildland-urban interface is underestimated due to the removal of urban area based 
on the population density.  

Future Form of Indicator 

In the future, VIIRS data (available since 2012) can be merged to MODIS fire points to calculate the annual 
indicator result, rather than simply validate the result. The information on fire point confidence and pixel 
coverage from MODIS database can be used to identify the number of people affected.  
 
Further work will also be undertaken to explore how exposure to wildfire smoke can be captured in this 
indicator.  

Additional Information 
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Figure 6: Annual average change in exposure to wildfire per capita in different provinces of 
China during 2016-2019, compared to 2001-2005 
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Figure 7: Annual Average Person-days Exposed to Wildfire in Provinces of China, from 2001 to 2019 

 
Figure 8: Annual Average Person-days Exposed to Wildfire in six regions of China, from 2001 to 2019 
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Table 5: Annual Average Person-days Exposed to Wildfires in Provinces of China, from 2001 to 2019 
Province 2001-2005 2006-2010 2011-2015 2016-2019 
Beijing 9,527  20,460  29,892  15,056  
Tianjin 21,134  44,468  76,944  73,957  
Hebei 115,508  240,993  463,425  558,113  
Shanxi 102,214  201,257  343,560  366,931  
Inner Mongolia 62,258  108,625  288,942  326,831  
Liaoning 90,067  265,632  586,606  509,408  
Jilin 35,975  161,840  539,265  546,148  
Heilongjiang 164,006  309,878  1,025,086  1,132,985  
Shanghai 9,785  14,098  2,153  620  
Jiangsu 275,753  525,651  463,493  240,491  
Zhejiang 79,967  158,207  177,609  140,601  
Anhui 276,908  716,847  1,101,342  303,894  
Fujian 182,076  320,030  190,356  122,355  
Jiangxi 282,228  466,663  424,280  287,285  
Shandong 164,443  319,377  557,111  444,405  
Henan 151,468  426,745  631,763  231,280  
Hubei 106,333  232,618  372,435  268,833  
Hunan 455,882  898,682  650,163  383,556  
Guangdong 631,397  873,869  653,493  318,867  
Guangxi 582,128  977,535  687,837  499,334  
Hainan 32,626  21,198  24,164  21,681  
Chongqing 7,157  18,591  42,229  73,652  
Sichuan 67,653  127,245  221,497  232,508  
Guizhou 98,069  298,292  171,208  155,944  
Yunnan 331,808  518,658  455,622  328,971  
Tibet 14,145  32,650  37,689  27,778  
Shannxi 47,629  54,016  93,267  100,947  
Gansu 15,558  35,436  55,198  82,155  
Qinghai 957  9,432  18,803  14,552  
Ningxia 7,599  18,142  44,339  38,598  
Xinjiang 21,103  44,423  76,160  55,776  
Taiwan 15,870  22,881  15,635  22,128  
Hong Kong 698  438  407  211  
Macao NaN NaN NaN NaN 

Note: NaN means not available due to the area of Macau being too small.  
  

Indicator 1.2.2: Cyclones 

Methods 

In this indicator, data on  exposure and damage levels from cyclones were taken three databases were used 
to estimate the effects of tropical cyclones in China. Exposure data from 1980 to 2019 are from the China 
Meteorological Administration (CMA) Tropical Cyclone Database provided by CMA Tropical Cyclone Data 
Centre.25 Damage data in mainland China is taken from China Meteorological Disaster Yearbook, which has 
been published since 2004 by China Meteorological Press. The damage related information in Taiwan 
Province was downloaded from the Statistical Bureau of Taiwan. The time scale of damage data is from 2004 
to 2017. 
 
Based on maximum average wind speeds near the bottom center of tropical cyclones given by the CMA, six 
different grades could be defined: (1) tropical depression (10.8-17.1m/s); (2) tropical storm (17.2-24.4m/s); 
(3) severe tropical storm (24.5-32.6m/s);(4) typhoon (32.7-41.4m/s); (5) severe typhoon (41.5-50.9m/s); (6) 
super typhoon (≥51m/s).  
 
On the exposure dimension, the tropical cyclones are described in frequency, intensity and spatial-temporal 
distributions at both the country and provincial levels. The student t-test is used to compare the difference 
between the number of tropical cyclones from 2000 to 2019 and the baseline of the reference period (1980-
1999) when the data satisfy the normality test. Otherwise, the Mann-Whitney U test is used. Based on these 
methods, the cluster of typical vulnerable areas could be found. The intensity changes could also be identified 
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by comparing the relationships among the tropical cyclone levels on temporal scales. 
 
Based on the hot-spot areas on exposure dimension, the spatial-temporal distribution of population affected 
and relocated as well as houses and crop fields destroyed are used to evaluate the damages of these disasters 
on the eco-system. The Mann-Kendall test, a non-parametric test, is used to explore the tendencies of these 
aspects of damage dimension.26  

Data 

1. Exposure data from 1980 to 2019 are from the CMA Tropical Cyclone Database provided by CMA 
Tropical Cyclone Data Centre. (http://tcdata.typhoon.org.cn) 25,27 

2. Damage data in mainland China origin from China Meteorological Disaster yearbook published by 
China Meteorological Press.27 

3. The damage data in Taiwan Province was downloaded from the Statistical Bureau of Taiwan. 28 

Caveats 

The caveats of this indicator would mainly be in three aspects. First, the health effects caused by tropical 
cyclones on the vulnerable population are not evaluated. The data is provincial-based, so the change of 
vulnerability cannot be reflected, especially in typical cities that are most affected by tropical cyclones. The 
changing of adaptation capability at the provincial levels is not evaluated. 

Future form of indicator 

1. More information on the relationships between tropical cyclones and health outcomes in China will be 
studied.  
2. Data at the typical cities would be used to identify the health vulnerability after the tropical cyclone 
exposure. 

Additional information 
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Figure 9: The spatial-temporal distribution of tropical cyclone and its damages nationwide (A) The 
spatial pattern of cumulative landing locations of tropical cyclones from 2000-2019. (B) Spatial pattern 
of cumulative damage occurrences of tropical cyclone from 2004-2017, China. (C) The temporal trends 
of occurrence of tropical cyclones below the typhoon grade. (D) The temporal trends of occurrence of 
tropical cyclones typhoon grade and above . 

 

 
Figure 10: Frequency of Landing on Tropical Cyclones from 1980 to 2019. There is no statistical 
difference in distribution between the study period and the reference period of tropical cyclones.  
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Figure 11: Frequency of Tropical Cyclones Landfalling on Different Levels from 1980 to 2019.  
The dashed lines are the mean of landfalling frequency at different levels in the reference period. Compared 
with the reference period, the statistical difference was found at above typhoon level, because of the 
increasing occurrences of severe and super typhoons.  
 

 
Figure 12: Population affected by Tropical Cyclones 2004-2017 in typical provinces that are most 
affected by tropical cyclones. The dashed lines are the mean in the study period. The population 
affected in Fujian Province are declining significantly.  
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Figure 13: Population Relocated due to Tropical Cyclones in typical provinces that are most affected 
by tropical cyclones. The dashed lines are the mean in the study period. The relocated population in 
Zhejiang Province had declined significantly. 
 

 
Figure 14: Houses Collapsed caused by Tropical Cyclones on typical provinces that are most affected 
by tropical cyclones. The dashed lines are the mean in the study period. The houses collapsed in 
Zhejiang Province had declined significantly. 
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Figure 15: Crop Fields Destroyed caused by Tropical Cyclones on typical provinces that are most 
affected by tropical cyclones. The dashed lines are the mean in the study period. The crop fields 
destroyed in Fujian Province had declined significantly.  
 
Table 6: Frequency of Different Grades of Tropical Cyclones on Landing from 1980 to 2019 

Year 
Tropical  

Depression 
Tropical  
Storm 

Severe Tropical  
Storm 

Typhoon Severe Typhoon Super Typhoon 

1980 2 5 3 2 2 0 

1981 6 3 5 0 1 0 

1982 1 3 3 0 1 0 

1983 2 0 2 3 0 0 

1984 4 1 10 1 0 0 

1985 6 1 7 2 1 0 

1986 4 3 1 4 1 0 

1987 2 0 4 2 0 0 

1988 4 0 2 4 0 0 

1989 3 2 5 5 0 1 

1990 2 4 5 4 1 0 

1991 1 0 2 4 2 0 

1992 1 3 5 3 0 0 

1993 1 1 1 5 0 0 

1994 3 4 7 2 2 0 

1995 4 3 5 1 0 0 

1996 0 3 3 3 1 0 

1997 1 1 3 2 0 0 

1998 2 2 3 0 0 0 

1999 5 1 3 2 0 0 

2000 2 0 3 3 0 1 

2001 5 2 4 6 0 0 

2002 2 3 3 1 0 0 

2003 1 2 1 7 0 0 

2004 1 3 3 1 2 0 
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2005 1 0 3 3 5 0 

2006 4 1 2 4 0 1 

2007 2 4 1 3 4 0 

2008 1 5 4 2 3 1 

2009 1 6 2 5 0 0 

2010 1 2 0 5 1 0 

2011 0 5 2 3 0 0 

2012 0 0 2 4 2 0 

2013 1 2 3 1 4 0 

2014 2 3 4 0 4 2 

2015 0 0 3 1 2 1 

2016 1 3 1 4 1 2 

2017 0 5 3 2 1 0 

2018 7 9 2 1 1 0 

2019 0 8 1 1 0 1 

 

Table 7: Total Frequency of Different Grades of Tropical Cyclones on Landing at Provincial Levels 
from 1980 to 2019 

Landing 
Provinces 

Tropical 
Depression 

Tropical 
Storm 

Severe Tropical 
Storm 

Typhoo
n 

Severe 
Typhoon 

Super 
Typhoon 

Fujian 7 19 21 21 3 1 

Guangdong 30 31 44 32 8 2 

Guangxi 6 10 5 0 1 0 

Hainan 24 20 17 19 3 1 

Jiangsu 1 0 2 1 0 0 

Liaoning 3 2 1 0 0 0 

Shandong 5 5 2 0 0 0 

Shanghai 0 2 2 0 0 0 

Taiwan 7 7 19 23 22 4 

Hong Kong 2 3 3 0 0 0 

Zhejiang 1 4 10 10 5 2 

 
Table 8: Damages Caused by Tropical Cyclones 

Year Population Affected/1,000 Population Relocated/1,000 Houses Collapsed/1,000 Damage Area/Hectares 

2004 NA NA 89.4 1019.22 

2005 73679 9399 342 4663 

2006 72251.4 8940.1 723 2957.9 

2007 42260.6 7273.6 84 2082.03 

2008 37915.6 4922.3 127.6 2310.3 

2009 19435.6 2784.6 25.3 1114.3 

2010 11491.6 1227 49.2 342 

2011 18128 2715 25 1548 

2012 47637 5696 130 3491 

2013 49222 5552 91 2672 

2014 26595 1773 52 2483 

2015 23756 3595 23 1721 

2016 17212 2606 38.2 2024 
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2017 5859 1091 3.9 394 

 
Table 9: Damages Caused by Tropical Cyclones at Provincial Levels from 2004 to 2017 

Affected 
Province  

Population 
Affected/1,000 

Damage 
Area/Hectares 

Population 
Relocated/1,000 

Houses 
Collapsed/1,000 

Anhui 18562.9 133.384 1284.9 132.6 

Fujian 44404.3 231.45 13719.3 304.9 

Guangdong 95122.7 577.51 8847.5 370.3 

Guangxi 53511.9 394.19 3848.9 148.6 

Guizhou 235 1.1 15 0 

Hainan 38883.1 230.163 3915.8 67 

Hebei 5698 8.5 359 24.1 

Heilongjiang 3708 136.6 5 1 

Henan 2022 19.34 1 12.5 

Hubei 4431.2 36.62 180.7 42.1 

Hunan 20590.6 98.629 2373.3 223.4 

Jiangsu 19162.1 214.813 865.9 23.5 

Jiangxi 17417.7 93.723 1271.2 98.8 

Jilin 3697 27.3 59 2 

Liaoning 6666 62.3 745 31 

Shandong 12770.5 121.61 1037 50 

Shanghai 2655.1 18.413 1499.7 16 

Tianjin 322 6.7 0 2 

Yunnan 5650 34.51 79.5 15.1 

Zhejiang 89932.7 435.32 17466.9 238.7 

 

 

Indicator 1.2.3: Flood and drought 

Methods 

China suffers from frequent floods. More than half of the deaths related to natural disasters were caused by 
flood in the past two decades.22 Apart from direct death or physical and mental harms, it also destroys 
livelihood and shelters disease vectors that threaten human health and well-being.29 Prolonged drought may 
impact human health by shortening water supply and farmland production.30 

In this context, flood is defined as hydrological flood, including riverine flood (the overflow of water from a 
stream channel onto normally dry land in the floodplain), coastal flood (higher-than-normal levels along the 
coast and in lakes or reservoirs) and flash flood (pooling of water at or near the point where the rain fell). 
Drought refers to climatological drought, which is an extended period of unusually low precipitation that 
produces a shortage of water for people, animals and plants. For a disaster to be entered into this report at 
least one of the following criteria must be fulfilled: (1) 10 or more people reported killed; (2) 100 or more 
people reported affected; (3) declaration of a state of emergency; and (4) call for international assistance.31  
 
All flood and drought disasters in China (including Taiwan, Hong Kong and Macao) for years 1980-2019 
were extracted from the EM-DAT international disaster database, and the number of disasters in China and 
each province per year was counted according to the location recorded in EM-DAT. The Student’s t-test is 
used to compare the difference between the number of floods and droughts from 2000 to 2019 and the 
baseline of reference period (1980-1999) when the data meet the normal test. Otherwise, the Mann-Whitney 
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U test is used. Furthermore, flood is classified into three levels including moderate and less flood, severe 
flood, and major flood according to the number of deaths and overall economic losses (Table 10).32  
 
Table 10: Criteria of catastrophe classes for flood 

Flood classes 
Overall losses (in million US dollars) 

Fatalities 
1980-1989 1990-1999 2000-2009 2010-2019 

Moderate or less 0.63≤US$<29 0.91≤US$<42 1.18≤US$<54 1.33≤US$<61 1-19 
Severe 29≤US$<114 42≤US$<164 54≤US$<212 61≤US$<239 20-99 
Major US$≥114 US$≥164 US$≥212 US$≥239 ≥100 

Note: If only one criterion is met (i.e. either fatalities or overall losses), this is sufficient for classification 
 
The cumulative number of floods and droughts in each province during 2000-2019 was counted and the 
vulnerable regions are identified. 

Data 

1. EM-DAT at the Centre for Research on the Epidemiology of Disasters (CRED) at the Université 
Catholique de Louvain, Belgium31  

 

Caveats 

It is difficult to estimate the number of people exposed to floods and droughts because the locations of 
disasters in EM-DAT database cannot always be accurate to city level. Additionally, since there is no direct 
index of disaster intensity, the death number and total economic loss of each catastrophe are used to classify 
the disasters, which may lack consistency in different databases and studies.  
 
Data here is taken from the global EM-DAT database. The reasons for not choosing Meteorological Disaster 
Yearbooks in China as the data sources are three fold: first, the data from the yearbook only covers 2004-
2017; second, they have three-year’s lag in reporting the data. So the current latest data in the yearbook is in 
2017; third, most of the disasters don’t have data for occurrences. EM-DAT data is also used because it has 
detailed data on the occurrences, the province where the disaster  occured, the number of people affected 
and the number of deaths. It is also easier to make comparisons with the global report. 

Future Form of Indicator 

The EM-DAT database is compiled from various sources including United Nations, governmental and non-
governmental agencies, insurance companies, research institutes and press agencies and updated on a daily 
basis to ensure its credibility and completeness. It will continue to be the main data source for tracking this 
indicator. However, efforts should be made in the future to obtain the number of people exposed to each 
disaster through cooperation with Chinese institutions. 

Findings 

Compared with the reference period (1980-1999), the number of flood disasters, and especially major floods, 
has increased significantly from 2000 to 2019. It is noted that the number of flood disasters increased 
significantly from 2013 to 2017, which is probably due to the 2014-2016 strong El Niño.33 In 2019, there 
were six floods classified as disasters in China. Most floods occurred in provinces in Southwest and South 
Central China such as Sichuan, Guizhou, Hunan and Hubei provinces, and their flood occurrences are all 
significantly higher than that of the reference period. 
 
Compared with 1980-1999, there was no significant change in the number of drought in 2000-2019, with no 
severe drought between 2018 and 2019. Northern China is drought-prone, with Inner Mongolia suffering the 
most.  
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Figure 16: Temporal and spatial distribution of flood and drought: 2000-2019. (A) Changes in the 
occurrences of flood and drought (horizontal dashed lines represent the baseline levels of reference 
period. (B) Number of flood with different intensity levels. (C) Cumulative number of flood from 2000 
to 2019 by province. (D) Cumulative number of drought from 2000 to 2019 by province. 

 

Table 11: Annual occurrences of flood and drought between 1980-1999 and 2000-2019 
Year Number of flood Number of drought Year Number of flood Number of drought 

1980 4 0 2000 9 3 

1981 5 1 2001 9 2 

1982 5 0 2002 10 3 

1983 2 2 2003 6 2 

1984 3 0 2004 9 0 

1985 9 1 2005 13 2 

1986 2 0 2006 21 1 

1987 6 0 2007 12 0 

1988 8 1 2008 7 1 

1989 2 0 2009 7 2 

1990 3 0 2010 5 1 

1991 3 1 2011 5 0 

1992 7 2 2012 13 0 

1993 4 0 2013 14 1 

1994 7 2 2014 13 2 

1995 3 1 2015 12 1 

1996 4 0 2016 12 1 

1997 8 1 2017 13 1 

1998 6 0 2018 8 0 
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1999 6 1 2019 6 0 

Total 97 13 Total 204 23 

 
Table 12: Cumulative number of floods and droughts in each province from 2000 to 2019 

Province Number of flood Number of drought Province Number of flood Number of drought 

Anhui 24 4 Jiangxi 42 3 

Beijing 5 0 Jilin 11 4 

Chongqing 40 2 Liaoning 7 4 

Fujian 31 2 Macao 0 0 

Gansu 25 4 Ningxia 4 3 

Guangdong 43 3 Qinghai 7 1 

Guangxi 40 2 Shaanxi 28 5 

Guizhou 62 3 Shandong 18 5 

Hainan 8 0 Shanghai 2 0 

Hebei 8 5 Shanxi 8 6 

Heilongjiang 12 2 Sichuan 66 5 

Henan 21 2 Taiwan 4 0 

Hong Kong 1 0 Tianjin 2 0 

Hubei 51 2 Tibet 1 0 

Hunan 58 4 Xinjiang 9 0 

Inner 
Mongolia 

10 8 Yunnan 43 4 

Jiangsu 21 2 Zhejiang 22   2 

 
 

 
Figure 17: Time trends of flood among four most vulnerable provinces: 2000-2019 (horizontal dashed 
lines represent the baseline levels of the reference period) 
 

Indicator 1.3: Climate-sensitive infectious diseases 

Methods 

This indicator focuses on dengue – a notable climate-sensitive vector-borne infectious disease in China. There 
are three sub-indicators in indicator 1.3 – the climate suitability for Aedes aegypti (A. aegypti) and Aedes 
albopictus (A. albopictus), the vulnerability index to dengue, and the disease burden for dengue in China.  
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The climate suitability of A. aegypti and A. albopictus is represented by Vectorial capacity (VC), which 
expresses the average daily number of subsequent cases in a susceptible population resulting from one 
infected case. It is affected by climatic and environmental factors such as land-use type, temperature and 
rainfall. The VC was calculated according to the method provided by Rocklӧv et al.(2019)34 and Liu-
Helmersson et al. (2014)35. It takes into account interaction among host, vector and virus. VC is expressed 
as: 

𝑉𝐶 = 𝑚𝑎 𝑏 𝑝 /− 𝑙𝑛 𝑝 

Where a is the average vector biting rate, bm is the probability of vector infection and transmission of virus 
to its saliva, p is the daily survival probability,  n is the duration of the extrinsic incubation period-(EIP) , 
and m is set to 1 assuming female vector and human population as in Watts et al.(2019). 1 Detailed model 
description and explanation, as well as the relationship between daily temperature with these parameters can 
be found in Rocklӧv et al. (2019).34 In this study, the time unit is 1 day, and each vector parameter depends 
on the temperature. The parameter value comes from the literature, usually from experimental data, as 
described in Liu-Helmersson et al. (2014).35 The trend of VC time series was analyzed by Mann Kendall 
trend test. The time unit is 1 season. A two-tailed p < 0.05 was considered statistically significant.  

The dengue vulnerability index was calculated by dividing VC with average International Health Regulation 
(IHR) core capacity. The average of IHR core capacity scores is the percentage of attributes of 13 core 
capacities that have been attained at a specific point in time (presented on an annual basis). It measures the 
ability to detect, assess, report, inform and deal with public health emergencies. The 13 core capacities of 
IHR are: (1) National legislation, policy and financing; (2) Coordination and National Focal Point 
communications; (3) Surveillance; (4) Response; (5) Preparedness; (6) Risk communication; (7) Human 
resources; (8) Labouratory; (9) Points of entry; (10) Zoonotic events; (11) Food safety; (12) Chemical events; 
(13) Radionuclear emergencies. 

Vulnerability=VC/ average IHR core capacity 

National trends for dengue fever are retrieved from the Global Burden of Disease project database over the 
period 1990-2017 36 and provincial changes for these diseases between 1990 and 2017.37 The national trends 
are presented as incidence rates per 100,000 individuals per year as well as Disability-Adjusted Life Years 
(DALYs) rates per 100,000 individuals over the period.   

Data   

1. Monthly average daily temperature (minimums, maximum, and mean) data with the resolution 0.25° 
from 1961-2018 were from Library for Climate Studies of Chinese Meteorological Administration.38  

2. The spatio-temporal distributions of A. aegypti and A. albopictus in 1961-2018 in China were from the 
China CDC.39  

3. The IHR core capacity scores from 2010 to 2018 in China were downloaded from WHO website.40 
4. The national and province-level DALYs rate and incidence rates of dengue over the period use the Global 

Burden of Disease Study 2017 (GBD 2017) results published for China by the Global Health Data 
Exchange and provincial-level findings of China published in a systematic analysis in China for GBD 
2017.36,37 The databases were accessed on 29 April 2020.  

Additional Information   

The average monthly VC for A. aegypti and A. albopictus in mainland China from 1961 to 2018 are presented 
in Figure 18. VC for A. aegypti and A. albopictus is found to have increased by 37% and 14% respectively 
when comparing the 2014-2018 average value with the 1961-1965 average value. The overall vulnerability 
index for two species (A. aegypti and A. albopictus) had increased slightly by 8% in mainland China over 
2010-2018 (Figure 19). The vulnerability index for A. aegypti is higher than that of A. albopictus during the 
same year.   
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Figure 18: The average monthly VC in mainland China, 1961-2018 

 
Figure 19: Trends in the annual average vulnerability index for A. aegypti  and A. albopictus in 
mainland China, 2010-2018. 

Due to the increased climate suitability, China has witnessed an obvious northward shift of dengue cases 
(Figure 20). The frequency of indigenous dengue outbreak has increased rapidly in China since 2013. In 
2019, China experienced an unprecedented multi-sites indigenous outbreak of dengue in 13 provincial-level 
administrative divisions (PLADs) which significantly higher than the average level (3.67 PLADs per year) 
from 2013 to 2018. 
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Figure 20: Dengue case numbers distinguished by colour according to the magnitude in each city 
during 1980-2004 (A) and 2005-2016 (B) (adapted with the permission from authors).41  
 
Major caveat of this figure is that it doesn’t distinguish local cases with imported cases. But it could still 
broadly show that dengue has a clear northward trend to the provinces that have no dengue before. The data 
were unable to be updated till 2019 or 2018 or adapted to have a same baseline as above due to data 
unavailability.  
 
Table 13: Provincial all-age DALY rate percentage changes between 1990 and 2017 for dengue in 
China 

No. 
Location 

name 

All-age DALY rate (per 100 
000) percentage change of 

dengue, 1990-2017* 
No. 

Location 
name 

All-age DALY rate (per 100 000) 
percentage change of dengue, 

1990-2017* 
1 China 468.75% 19 Jiangxi NA 
2 Anhui NA 20 Jilin NA 
3 Beijing NA 21 Liaoning NA 
4 Chongqing NA 22 Macau 404.40% 
5 Fujian 345.53% 23 Ningxia NA 
6 Gansu NA 24 Qinghai NA 
7 Guangdong 359.11% 25 Shaanxi NA 
8 Guangxi 386.77% 26 Shandong NA 
9 Guizhou NA 27 Shanghai NA 

10 Hainan 339.33% 28 Shanxi NA 
11 Hebei NA 29 Sichuan NA 
12 Heilongjiang NA 30 Taiwan 421.35% 
13 Henan NA 31 Tianjin NA 
14 Hong Kong 382.31% 32 Tibet NA 
15 Hubei NA 33 Xinjiang NA 
16 Hunan NA 34 Yunnan 276.53% 

17 
Inner 

Mongolia NA 35 Zhejiang 
358.97% 

18 Jiangsu NA    
*"NA" means that the all-age DALY rate (per 100 000) percentage changes between 1990 and 2017 for dengue can not 
be calculated in these provinces when the all-age DALY rate (per 100 000) of Dengue in 1990 and 2017 is zero as dengue 
cases are few. 

Caveats  

Key caveats and limitations of the VC model and its parameterization are fully described in Liu-
Helmersson et al. (2014, 2016)35,42 and Rocklӧv et al., (2019).34 Overall, the most important limitation 
is the assumption that the VC is a function of temperature, which should be improved by the more 
sophisticated model in future. In addition, lacking data concerning IHR core capacities score in each 
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province of China is another major caveat.   

Future Form of Indicator  

In future reports, VC can be calculated considering climatic and environmental factors such as factors 
including temperature and rainfall and local reported dengue cases and monitored vector density in the model 
synthetically according to different mosquito virus serotypes. New information about data, method and 
spatial-temporal scale, etc. will be investigated further. In future, the vulnerability index for the provinces 
with Ae. aegypti and Ae. albopicuts distribution can be calculated if we can obtain the alternative indicator 
of  IHR at the provincial level. 
 

Section 2: Adaptation, planning, and resilience for health 

Indicator 2.1: Adaptation planning and assessment 

Indicator 2.1.1: National adaptation plans for health 

Methods 

A mixed approach, including qualitative analysis of national government documents related to climate 
change response and a nation-wide China Health and Climate Change Survey for quantitative analysis, was 
first applied for this indicator. Both documents review and quantitative survey will continue to be conducted 
annually.  
Government documents were searched on the websites of the State Council of PRC, the National 
Development and Reform Commission, the National Health Commission of PRC etc., and search covered 
keywords related to climate change, health, adaptation, vulnerabilities, and response etc. All of the documents 
were read through and relevant contents/sections related to climate change and health adaptations were 
extracted for further analysis. The following national government documents were identified as highly 
relevant:  
 The People’s Republic of China. China’s National Plan in Response to Climate Change (in Chinese). 
2007. 
 China’s National Development and Reform Commission and eight other ministries. China’s National 
Climate Change Adaptation Strategy (in Chinese). 2013.China ’ s National Development and Reform 
Commission. China’s National Climate Change Planning (2014-2020) (in Chinese). 2014. 
 
 The survey questionnaire was designed by the research team from Sun Yat-sen University, adapting the 
2018 WHO Health and Climate Change Country Survey. The survey questions related indicator 2.1.1 
included “Has your province implemented adaptation plans or strategies to address climate change health 
risks at the provincial level?”, “How is the implementation of relevant policies and strategies?”, “What do 
you think are the main constraints and challenges ahead?”, “What do you think should be the priority to 
implement climate change and health response strategy?”. Focus group discussions, key informant 
consultations were operated at least five times to ensure the validation of the questionnaire. The survey was 
sent to the provincial Centers for Diseases Control and Prevention in all 31 provinces/regions/municipalities 
in mainland China in early May 2020, and 17 of them completed the survey.  

Data 

1. Government documents were retrieved from government websites as described above.  
2. Data on provincial adaptation plans or strategies for health was obtained from the nation-wide online 

voluntary survey conducted by Sun Yat-sen University and China’s CDC in early May, 2020.  

Caveats  
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The national online survey related to climate change and health adaptations was conducted in China for the 
first time in 2020. The survey was not completed by all provinces, regions or municipalities as it was 
voluntary. It was completed by the provincial Centers for Diseases Control and Prevention in the 
provinces/regions/municipalities in mainland China, which might only reflect the adaptation plans at local 
governments’ perspectives. 
 

Future Form of Indicator 

National reports and documents on climate change and adaptation plans for health will continue to be 
searched and reviewed annually. The China Health and Climate Change Survey will also be conducted 
annually and will continue to be the primary source of data to track this indicator 2.1.1. The survey tool could 
be improved in the future, in terms of the questionnaire validation and response rate. 

Additional Information 

The Central Government of China issued the National Plan in Response to Climate Change in 2007, which 
mentions the health impacts of climate change.43 In 2013, the National Development and Reform 
Commission (NDRC) and eight other ministries jointly published the National Climate Change Adaptation 
Strategy, with a section entitled “Human Health”, proposing to improve the health and epidemic prevention 
system, so to provide public weather-health information services.44 In 2014, the NDRC further implemented 
the National Climate Change Planning (2014-2020), emphasising the improvement of population adaptability 
under climate change.45  
 

Indicator 2.1.2: National assessments of climate change impacts, vulnerability, and adaptation for 
health 

Methods 

A mixed approach, including qualitative analysis of national assessment reports and a nation-wide survey for 
quantitative analysis, was applied for this indicator.  

National reports and documents on assessments of climate change impacts, vulnerability, and adaptation for 
health released since the year 2000 were systematically searched. The series of reports, “Climate and 
Environmental Evolution in China”, “The National Assessment Report on Climate Change”, and “Green 
Book of Climate Change-Annual Report on Actions to Address Climate Change” were mainly reviewed to 
qualitatively summarise the national assessment findings. 

The provincial-level quantitative data for this indicator is sourced from the China Health and Climate Change 
Survey as described in indicator 2.1.1.  

Data 

1. Government documents were retrieved from government websites as described above.  
2. Data on provincial assessments of climate change impacts, vulnerability, and adaptation plans for health 

was obtained from the nation-wide online voluntary survey conducted by Sun Yat-sen University and 
China’s CDC in early May, 2020.  

Caveats 

The survey was not completed by all provinces as this survey was voluntary; however, the inclusion of 17 
provinces in this survey covered most climate zones in China. 
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Future Form of Indicator  

National reports  on assessments of climate change impacts, vulnerability, and adaptation for health will 
continue to be searched and reviewed. The China Health and Climate Change Survey will be conducted 
annually and will continue to be the primary source of data to track this indicator. The survey tool could be 
improved in the future, in terms of the questionnaire validation and response rate. 

Additional Information  

China is facing severe and complex health challenges of climate change. In recent years, the national reports 
on climate change had involved health as a part of the assessments. Health had been included as a section of 
a chapter in the report of “Climate and Environmental Evolution in China: 2012”46 and “The Third National 
Assessment Report on Climate Change”47 in 2015.  
 
A scientific assessment of health impacts, vulnerability and adaptation to climate change serves as a baseline 
analysis of health risks and response measures, which may influence health policymaking and resource 
allocation.1 In recent years, the national reports on climate change have involved health as a chapter in the 
assessment.46,47 However, the assessment was relatively brief and mainly focused on extreme weather events 
related to health outcomes and infectious diseases. The projections of health impacts and vulnerability were 
also included, but the projections were mainly qualitative, and no climate change scenario was used for 
quantitative estimation.  
 
Of 17 provinces surveyed, only Shanghai reported having completed a province-wide comprehensive 
assessment of health impact, vulnerability and adaptation to climate change, and five indicated the work had 
been done in a few cities (Figure 21). Heatwave related morbidity or mortality was the most assessed climate-
sensitive health outcomes (Figure 22). However, only two provinces thought their assessment findings had 
somewhat influence on the health policy-making, while four indicated the influence was minimal. In terms 
of the allocation of human and financial resources, only Shanghai indicated the assessment findings had 
somewhat influence, while others reported minimal or no impact (Figure 24).  

 
Figure 21: Number of provinces with a scientific assessment of climate change impacts, vulnerability, 
and adaptation for health 
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Figure 22: The assessed climate sensitive diseases and health outcomes 
 

 
Figure 23: The impacts of assessment findings on the policy prioritisation and the allocation of 
human and financial resources (Six provinces conducted comprehensive assessment) 
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Figure 24: The impacts of assessment findings on the policy prioritisation and the allocation of 
human and financial resources (Six provinces conducted comprehensive assessment) 
 

Indicator 2.1.3: City-level climate change risk assessments 

Methods 

Cities have been accommodating an increasing proportion of the total population of China, up to 60 percent 
by the end of 2019.

48
 This indicator is measured with the CDP surveys of global cities in 2017, 2018, and 

2019.49 Fourteen Chinese cities in total joined the annual survey at least once and responded to the related 
questions about climate change risk or vulnerability assessments and infrastructure affected by climate 
hazards. 
 
Three sub-indicators were developed based on three questions. The first is the number of the cities that have 
undertaken a climate change risk or vulnerability assessment, recorded by the 2017, 2018, and 2019 surveys. 
The second is the number of cities whose climate change risk or vulnerability assessment covering the public 
health sector, recorded by the 2019 survey. The third is the number of the cities that reported the assets or 
services related to public health would be affected by climate hazards, recorded in 2018 and 2019 surveys. 
The methodology follows the 2019 global report of Lancet Countdown but adds a sub-indicator about the 
inclusion of the public health sector in risk assessments.  
 

Data   

1. CDP Annual Cities Survey data 

Caveats  

Only a small portion of Chinese cities (14 out of more than 600 cities) were involved into the 2017, 2018, 
and 2019 CDP surveys. The responding cities include Hong Kong, 10 in Taiwan, and 3 in Mainland China. 
The results lack representativeness.  
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Future Form of Indicator  

The CDP survey is conducted annually. Newly released data will be used with previous data in future 
reports. 

In the future, the 28 pilot cities/counties/districts’ climate change risk assessments will be evaluated after the 
project ends in 2020. The successful cases will be expanded to the whole country. We believe there will be 
more cities to plan, conduct, and release their own climate change risk assessment. Therefore, a national 
survey is expected to be designed and conducted to collect responses from city-level governments across 
China about whether a climate change risk/vulnerability assessment has been undertaken for the city area and 
whether the health sector has been covered by the assessment. 

Findings  

Fourteen Chinese cities in total responded to related questions in at least one of the 2017, 2018, and 2019 
CDP surveys.  

The joint results show 11 (including Hong Kong and 10 in Taiwan) of the 14 cities have undertaken a climate 
change risk or vulnerability assessment and one (Zhenjiang) in progress, but one (Nanjing) has not 
undertaken an assessment and one (Shenzhen) has no intention in the future. Concerning the vulnerable 
sectors, seven cities’ completed assessments cover public health. Besides, ten cities in total present that their 
assets or services related to public health would be affected by climate change.  

The great demand of city-level climate change risk assessments for vulnerable areas, groups, and sectors 
including public health in China has spawned a pilot project from 2017 to 2020 containing 28 
cities/counties/districts, which is directed by a national plan jointly issued by Ministry of Housing and Urban-

Rural Development (MOHURD) and National Development and Reform Commission (NDRC) in 2016
50,51

.  

Table 14: Chinese cities that have undertaken a climate change risk or vulnerability assessment  
2017 2018 2019 

Yes (11 cities in 
total) 

Hong Kong, Hsinchu (City)*, 
Kaohsiung*, New Taipei*, 
Pingtung*, Taichung*, Taipei* 

Hong Kong, Kaohsiung*, 
New Taipei*, Pingtung*, 
Taichung*, Taipei* 

Hong Kong, Kaohsiung*, Kinmen*, 
New Taipei*, Pingtung*, Taichung*, 
Tainan*, Taipei*, Taoyuan*, Yilan* 

In progress Yilan* Yilan* Zhenjiang 

No Shenzhen, Taoyuan* Nanjing 
 

Not intending to 
undertake 

  
Shenzhen 

*Cities in Taiwan  
 
List of cities whose risk and vulnerability assessment covering the public health sector (seven cities in 
total) 
2019: Hong Kong, Taoyuan*, Taipei*, Tainan*, Taichung*, New Taipei*, Kaohsiung*  
(*cities in Taiwan) 
 
List of cities that reported the assets or services related to public health would be affected by climate 
hazards (10 cities in total) 
2018: Hong Kong, Nanjing, New Taipei*, Pingtung*, Taichung* 
2019: Hong Kong, Kaohsiung*, New Taipei*, Pingtung*, Taichung*, Tainan*, Taipei*, Taoyuan*, 
Zhenjiang 
(*cities in Taiwan) 
 
List of 28 areas in the pilot project

51
 for the Action Plan for Urban Adaptation to Climate Change 

1. Chaoyang, Liaoning 
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2. Dalian, Liaoning 
3. Hohhot, Inner Mongolia 
4. Xifeng District, Qingyang, Gansu 
5. Baiyin, Gansu 
6. Huangzhong County, Xining, Qinghai 
7. Xixian New Area, Shaanxi 
8. Shangluo, Shaanxi 
9. Baicheng County, Aksu City, Xinjiang 
10. Korla, Xinjiang 
11. Shihezi, Xinjiang Production and Construction Corps, Xinjiang 
12. Huaibei, Anhui 
13. Hefei, Anhui 
14. Jiujiang, Jiangxi 
15. Jinan, Shandong 
16. Lishui, Zhejiang 
17. Anyang, Henan 
18. Wuhan, Hubei 
19. Shiyan, Hubei 
20. Changde, Hunan 
21. Yueyang, Hunan 
22. Haikou, Hainan 
23. Baise, Guangxi 
24. Tongan District, Chongqing 
25. Bishan District, Chongqing 
26. Hezhang County, Bijie, Guizhou 
27. Liupanshui, Guizhou 
28. Guangyuan, Sichuan 

 (Source: http://www.mohurd.gov.cn/wjfb/201702/t20170228_230767.html) 
 

Indicator 2.2: Adaptation delivery and implementation  

Indicator 2.2.1: Detection, preparedness, and response to health emergencies 

Methods 

Because of the consistent structure of the provincial government health emergency management system, the 
health emergency management and response characteristics are similar among all the provinces of China. 
However, due to  the differences in management efficiency, infrastructure construction and social 
preparation, different provinces will perform differently. It is very important to analyse these differences, and 
thus point out the direction of improvement for the government and society. Based on the fundamental of 
Research and Demonstration of Safety Resilient City Construction and Disaster Prevention Technology 
(National Key R&D Program of China, Grant No. 2018YFC0809900), from 2019, we started to propose an 
index system to assess the comprehensive health emergencies management ability of different provinces in 
China, which suppprted Check-up for China's Cities, an official campaign to promote urban environmental 
high-quality development launched by Ministry of Housing and Urban-Rural Development of the PRC.. The 
system includes three dimensions: risk exposure and preparedness, detection and response, resource support 
and social participation. The index applies to public health emergencies, covering disease outbreaks, mass 
illness of unknown origin, serious food and occupational poisoning and other emergencies jeopardising 
public health severely, including the climate-sensitive diseases and mediacal rescue caused by climate-related 
extreme events. The three dimensions are divided into six second-level indicators and 20 third-level 
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indicators. The indicators of the index system are listed as follows. The index system could be updated 
annually by indicators updating and data updating. 

 
Table 15: The indicators of the provincial comprehensive health emergencies management ability 
index system 

First-level Indicators Second-level Indicators Third-level Indicators 

Risk Exposure and Preparedness(RE&P): 
the degree of risk faced by the provinces 
in the health environment and the work 
done about emergency preparedness. 

RE&P 1: Health emergency environmental 
risks: the health risks due to population 
mobility and risk management of the 
provinces. 

RE&P 1.1: Proportion of cities 
identifies as National Health Cities 
RE&P 1.2: Urban population density  
RE&P 1.3: Percentage of migrant 
population 
RE&P 1.4: Passenger traffic volume 
RE&P 1.5: Number of port entry 
and exit personnel 

RE&P 2: Health emergency preparedness: 
the health emergency preparedness of the 
provinces, in terms of emergency planning, 
emergency space, and fiscal investment. 

RE&P 2.1: Completeness of 
emergency planning for public 
health emergencies 
RE&P 2.2: Construction space for 
emergency facilities 
RE&P 2.3: Percentage of medical 
and health expenditure out of total 
government public expenditure 

Detection and Response(D&R): the ability 
for infectious diseases detection and early 
warming of the provinces, and the health 
emergency response ability from the 
perspective of results. 

D&R 1: Health emergency detection and 
early warning: the ability for infectious 
diseases detection and early warming of the 
provinces from the perspective of 
information construction. 

D&R 1.1: Construction of Infectious 
Disease Surveillance Reporting 
Systems 
D&R 1.2: Availability rate of 4G 
mobile phone 

D&R 2: Health emergency response: • the 
management and response to infectious 
diseases of the provinces. 

D&R 2.1: Incidence of category A 
and B infectious diseases 
D&R 2.2: Death rate of category A 
and B infectious diseases 

Resource Support and Social 
Participation(RS&SP): the ability to 
guarantee medical services and the degree 
of participation of social forces in health 
care of the provinces. 

RS&SP 1: Medical service and resource 
support: the condition of medical resources 
and material supplies of the provinces. 

RS&SP 1.1: Number of hospitals per 
1,000 population 
RS&SP 1.2: Number of primary 
health care institutions per 1,000 
population 
RS&SP 1.3: Number of practicing 
and assistant doctors per 1,000 
population 
RS&SP 1.4: Number of registered 
nurses per 1,000 population 
RS&SP 1.5: Number of beds in 
medical and health institutions per 
1,000 population 
RS&SP 1.6: Production capacity of 
pharmaceutical manufacturing 
industry 

RS&SP 2: Health emergency social 
participation: the participation of 
stakeholders in health emergencies. 

RS&SP 2.1: Percentage of registered 
volunteers 
RS&SP 2.2: Number of social 
organisations in the health sector 

 
The contents and calculation methods of the indicators are described as follows. 
 

 RE&P 1.1: Proportion of cities identified as National Health Cities: This indicator is measured by 
the ratio of the number of National Health Cities in one province to the total number of cities in the 
province. The National Health City is a national selection carried out every year by Bureau of 
Disease Control and Prevention, National Health Commission of the PRC. The list of National 
Health Cities was obtained from the website of National Health Commission of the PRC. The 
amount of cities was obtained from China Statistical Yearbook. 

 RE&P 1.2: Urban population density: Urban population density is relevant to the risk of disease 
spread. It was obtained from China Urban and Rural Construction Statistical Yearbook. 
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 RE&P 1.3: Percentage of migrant population: The percentage of migrant population reflects the 
risk level of imported infectious diseases and affect community resilience to emergencies. It was 
obtained from Migrant Population Data Platform, which is an online database provided by Migrant 
Population Service Center, National Health Commission of the PRC. 

 RE&P 1.4: Passenger traffic volume: This indicator is measured by the domestic passenger traffic 
volume per year via one province, including railway, highway and waterway. It’s also an indicator 
reflects the risk level of imported infectious diseases. The data was obtained from China Statistical 
Yearbook. 

 RE&P 1.5: Number of port entry and exit passengers:  This indicator is measured by the number 
of port entry and exit personnel per year via one  province, including land ports, waterway 
ports and air ports. It also reflects the risk level of imported infectious diseases. The data was 
obtained from China Port Statistical Yearbook. 

 RE&P 2.1: Completeness of emergency planning for public health emergencies: This indicator is 
measured by text analysis to provincial emergency planning for public health emergencies. The 
results are graded into 0-5 points. The criteria of text analysis include definition of emergencies at 
different levels, reporting standards, responsibilities and tasks of different departments, mechanisms 
of emergency response. The text of provincial emergency planning for public health emergencies 
was obtained from website of general office of provincial government. 

 RE&P 2.2: Construction space for emergency facilities: The redundancy of construction space for 
emergency facilities is important when severe epidemic outbreaks. This indicator is measured by 
the area of urban construction land for municipal utilities per 10,000 population. The data of area of 
urban construction land for municipal utilities was obtained from China Urban and Rural 
Construction Statistical Yearbook. The data of population was obtained from China Statistical 
Yearbook. 

 RE&P 2.3: Percentage of medical and health expenditure out of total government public expenditure: 
Fiscal investment is a fundamental work in health emergency preparedness. The data was obtained 
from China Statistical Yearbook. 

 D&R 1.1: Construction of Infectious Disease Surveillance Reporting System: Infectious Disease 
Surveillance Reporting System is a national major project in the field of health emergency response. 
The system plays an important role in detection, surveillance and rapid reporting to infectious 
diseases. This indicator is measured by the percentage of counties covered by the system in one 
province. The data is collected by Chinese Center for Disease Control and Prevention. 

 D&R 1.2: Availability rate of 4G mobile phone: This indicator is measured by the percentage of 
population who own a 4G mobile phone. It is a key indicator that reflects the accessibility of 
warming information. The data was obtained from China Information Almanac. 

 D&R 2.1: Incidence of category A and B infectious diseases: This indicator is one of the most 
common used indicator in health emergency response assessment. The infectious diseases are 
divided into Category A, B and C based on the Law of the People's Republic of China on the 
Prevention and Treatment of Infectious Diseases52. Category A and B infectious diseases are the 
diseases prevalent and cause casualties easily. The data was obtained from China Health Statistics 
Yearbook. 

 D&R 2.2: Death rate of category A and B infectious diseases: This indicator is another one of the 
most common used indicator in health emergency response assessment. The data was obtained from 
China Health Statistics Yearbook. 

 RS&SP 1.1: Number of hospitals per 1,000 population: Hospitals are the major place for health 
emergency medical treatment. The data was obtained from China Health Statistics Yearbook. 

 RS&SP 1.2: Number of primary health care institutions per 1,000 population: Primary health care 
institutions are the major place for early medical treatment and disease prevention. The data was 
obtained from China Health Statistics Yearbook. 

 RS&SP 1.3: Number of practicing and assistant doctors per 1,000 population:The number of 
doctors reflects the ability of treatment for health emergency. The data was obtained from China 
Health Statistics Yearbook. 

 RS&SP 1.4: Number of registered nurses per 1,000 population: The number of nurses reflects the 
ability of nursing for health emergency. The data was obtained from China Health Statistics 
Yearbook. 
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 RS&SP 1.5: Number of beds in medical and health institutions per 1,000 population: The number 
of beds in medical and health institutions reflects the admission capacity for health emergency. The 
data was obtained from China Health Statistics Yearbook. 

 RS&SP 1.6: Production capacity of pharmaceutical manufacturing industry: The production 
capacity of pharmaceutical manufacturing industry is important for medical material supplies when 
severe epidemic outbreaks. This indicator is measured by the annual gross domestic product of 
pharmaceutical manufacturing industry per 10,000 population. The data of annual gross domestic 
product of pharmaceutical manufacturing industry was obtained from China Industry Statistics 
Yearbook. 

 RS&SP 2.1: Percentage of registered volunteers: Volunteer participation assists the response to 
health emergency, and it also reflects residents' resilience to health emergency. The data was 
obtained from the Website of China Volunteer Service, an online platform provided by Ministry of 
Civil Affairs of the PRC. 

 RS&SP 2.2: Number of social organisations in the health sector:Social organisations play important 
roles in the process of heath emergency response. This indicator is measured by the total number of 
social organisations in the health sector in one province including social groups, foundations and 
private non-enterprises. These data was obtained from China Civil Affairs’ Statistics Yearbook. 

 
To integrate these indictors into an index, we determine weights for all the indicators. We assume the six 
second-level indicators take equal weights for the index and determine the relative weights of the third-level 
indicators under the same second-level indicators by Entropy Weigh method (EWM). 
 
The calculation steps of EWM are as follows. 

a) Min-Max Normalization. 
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 is the original data of the 𝒋th third-level indicator of the 𝒊th province, 𝒏 is the amount of provinces. A 

positive indicator is an indicator that larger value means better result, while a negative indicator is an indicator 
that larger value means worse result. 
 

b) Calculate the proportion of normalised sample value. 

𝒑
𝒊𝒋

=
𝝋

𝒊𝒋
′

∑ 𝝋
𝒊𝒋
′𝒎

𝒊=𝟏

 (𝒋 = 𝟏, 𝟐, … 𝒎) 

𝒎 is the amount of the third-level indicators under the same second-level indicator. 
 

c) Calculate the entropy of indicators. 

𝒆𝒋 = −
𝟏

𝐥𝐧𝒏
𝒑

𝒊𝒋
𝐥𝐧 𝒑

𝒊𝒋

𝒏

𝒊=𝟏

 (𝒋 = 𝟏, 𝟐, … 𝒎) 

𝒆𝒋 is the entropy of the 𝒋th third-level indicator. 
 

d) Calculate the entropy redundancy of indicators. 

𝒅𝒋 = 𝟏 − 𝒆𝒋 

𝒅𝒋 is the entropy redundancy of the 𝒋th third-level indicator. 
 

e) Determine the relative weights of indicators. 
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𝒘𝒋 =
𝒅𝒋

∑ 𝒅𝒋
𝒎
𝒋=𝟏

 (𝒋 = 𝟏, 𝟐, … 𝒎) 

The relative weights of third-level indicators are shown below. 
 

Table 16: Relative weights of third-level indicators under the same second-level indicator 

First-level Indicators Second-level Indicators Third-level Indicators 
Relative 
weights 

Risk Exposure and 
Preparedness(RE&P) 

RE&P 1: Health emergency 
environmental risks 

RE&P 1.1: Proportion of the National Health 
City 

0.570 

RE&P 1.2: Urban population density  0.149 
RE&P 1.3: Percentage of migrant population 0.113 
RE&P 1.4: Passenger traffic volume 0.131 
RE&P 1.5: Number of entry and exit 
passengers 

0.037 

RE&P 2: Health emergency 
preparedness 

RE&P 2.1: Completeness of emergency 
planning for public health emergencies 

0.231 

RE&P 2.2: Construction space for 
emergency facilities 

0.563 

RE&P 2.3: Percentage of medical and health 
expenditure in government public 
expenditure 

0.206 

Detection and Response(D&R) 

D&R 1: Health emergency 
detection and early warning 

D&R 1.1: Construction of Infectious Disease 
Surveillance Reporting System 

0.280 

D&R 1.2: Availability rate of 4G mobile 
phone 

0.720 

D&R 2: Health emergency 
response 

D&R 2.1: Incidence of category A and B 
infectious diseases 

0.357 

D&R 2.2: Death rate of category A and B 
infectious diseases 

0.643 

Resource Support and Social 
Participation(RS&SP) 

RS&SP 1: Medical service 
and resource support 

RS&SP 1.1: Number of hospitals per 1,000 
population 

0.175 

RS&SP 1.2: Number of primary health care 
institutions per 1,000 population 

0.152 

RS&SP 1.3: Number of practicing and 
assistant doctors per 1,000 population 

0.163 

RS&SP 1.4: Number of registered nurses per 
1,000 population 

0.080 

RS&SP 1.5: Number of beds in medical and 
health institutions per 1,000 population 

0.130 

RS&SP 1.6: Production capacity of 
pharmaceutical manufacturing industry 

0.299 

RS&SP 2: Health emergency 
social participation 

RS&SP 2.1: Percentage of registered 
volunteers 

0.293 

RS&SP 2.2: Number of social organisations 
in the health sector 

0.707 

 

Data 

Unless otherwise specified, the most recent version of data available is used in this study. 
 
1. The list of National Health Cities is obtained from the website of National Health Commission of the 

PRC (http://www.nhc.gov.cn/). The most recent available version is the list of 2018. 
2. Data for total cities, population, passenger traffic volume (including railway, highway and waterway), 

and percentage of medical and health expenditure in government public expenditure is taken from the 
China Statistical Yearbook. The most recent available version is China Statistical Yearbook 201953, 
which contains the data of every province in 2018. 

3. The data on urban population density and area of urban construction land for municipal utilities is based 
on China Urban and Rural Construction Statistical Yearbook. The most recent available version is China 
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Urban and Rural Construction Statistical Yearbook 2018,54 which contains the data of every province in 
2018. 

4. The data on the percentage of migrant population is based on the website of Migrant Population Data 
Platform (http://www.chinaldrk.org.cn/wjw/#/home). The most recent available data is based on the 
Sixth National Census of China. 

5. The data on the number of entry and exit personnel at the port is based on China Port Statistical Yearbook. 
The most recent available version is China Port Statistical Yearbook 2016,55 which contains the data of 
every province in 2016. 

6. The text of provincial emergency planning for public health emergencies is taken from the websites of 
the general office of every provincial government. 

7. The percentage of counties covered by Infectious Disease Surveillance Reporting System is collected by 
Chinese Center for Disease Control and Prevention. 

8. The data on the percentage of population available to a 4G mobile phone is based on China Information 
Almanac. The most recent available version is China Information Almanac 2017,56 which contains the 
data of every province in 2016. 

9. The data on the incidence of category A and B infectious diseases, the death rate of category A and B 
infectious diseases, the number of hospitals, the number of primary health care institutions number of 
practicing and assistant doctors, the number of registered nurses and number of beds in medical and 
health institutions is based on China Industry Statistics Yearbook. The most recent available version is 
China Health Statistics Yearbook 2019,57 which contains the data of every province in 2018. 

10. The data on annual gross domestic product of pharmaceutical manufacturing industry is based on China 
Industry Statistical Yearbook. The most recent available version is China Industry Statistical Yearbook 
2017,58 which contains the data of every province in 2016. 

11. The data of percentage of registered volunteers is based on the Website of China Volunteer Service 
(https://npo.chinavolunteer.cn). The data we use in this study was obtain on 2020-05-05. 

12. The data on the number of social organisations in the health sector (including social groups, foundations 
and private non-enterprises) is taken from the China Civil Affairs’ Statistics Yearbook. The most recent 
available version is China Civil Affairs’ Statistics Yearbook 2017,59 which contains the data of every 
province in 2016. 

Caveats  

In this study, the data of most third-level indicators are based on 2018. But limited by the availability of data, 
the data of some third-level indicators is based on 2016. 

 

Future Form of Indicator 

A Time-Series Analysis could be done in the future. And more indicators about comprehensive health 
emergencies management assessment could be considered.  All the data we adopt in this year is collected 
by official government and could be updated in the next years. 

Additional Information  

This assessment covers all the other 31 provinces of China except Hong Kong, Macau, Taiwan. The index 
results and rank of provincial comprehensive health emergencies management ability are listed below. The 
results present regional differences and take the order of East China, North China, Northeast China, South 
Central China, Northwest China and Southwest China from higher to lower. The average index result of 
provinces in East China, North China, Northeast China, South Central China, Northwest China and 
Southwest China are 55.24, 50.77, 48.29, 45.46, 44.82 and 42.15 respectively.  
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Table 17: Index results and rank of provincial comprehensive health emergencies management 
ability 

Region Province Index result Rank 

North China 

Beijing 60.87 3 

Tianjin 42.92 24 

Hebei 51.82 11 

Shanxi 47.49 16 

Northeast China 

Jilin 51.87 10 

Liaoning 49.46 13 

Heilongjiang 43.31 23 

Inner Mongolia 48.54 14 

East China 

Shanghai 54.29 6 

Jiangsu 69.72 1 

Zhejiang 54.89 4 

Anhui 52.99 8 

Fujian 45.62 19 

Jiangxi 40.26 28 

Shandong 68.91 2 

Taiwan —— —— 

South Central China 

Henan 54.35 5 

Hubei 49.72 12 

Hunan 41.93 25 

Guangdong 46.16 18 

Guangxi 35.16 29 

Hainan 45.44 20 

Hong Kong —— —— 

Macau —— —— 

Southwest China 

Sichuan 48.22 15 

Guizhou 45.23 21 

Yunnan 41.50 27 

Chongqing 43.58 22 

Tibet 32.23 30 

Northwest China 

Shaanxi 52.26 9 

Gansu 47.30 17 

Qinghai 41.73 26 

Ningxia 53.40 7 

Xinjiang 29.40 31 

 

 

Indicator 2.2.2: Air conditioning - benefits and harms 

Methods 
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The benefit of air conditioning is associated with the prevention of heatwave-related mortality. The 
methodology of the prevented fraction calculation is the same as the 2019 global Lancet Countdown report, 
using the data on the proportion of households with air conditioning in China, as well as a relative risk for 
heatwave-related mortality of 0.23. 

The harms of air conditioning mainly include the increasing energy consumption and CO2 emissions. The 
energy consumptions of urban household air conditioning from 2001 to 2015 in China were kindly provided 
by the Building Energy Conservation Research Center in Tsinghua University, which can represent the 
intensity of harms due to air conditioning. The CO2 emission attributable to air conditioning can be calculated 
by the conversion coefficient between CO2 emission and electricity consumption (i.e. 0.785kg CO2 emission 
per 1kWh electricity consumption of air conditioning). 

Data 

1. The IEA kindly provided data on the proportion of households with air conditioning in China, which 
can be used to calculate the prevented fraction of heatwave-related mortality due to air conditioning in 
China.  

2. The energy consumption of urban household air conditioning in China was from the Annual Report on 
China Building Energy Efficiency by the Building Energy Conservation Research Center in Tsinghua 
University. 

Caveats  

Firstly, for the prevented fraction calculation, the value of relative risk (RR) was assumed to be the same as 
the global scenario. Although the RR due to heatwave in China has been analysed by several Chinese 
researchers, the results of RR were inconsistent, which varied significantly from 0.91 to 1.34, because of 
different definitions of heatwave, death categories, genders, age groups and lag periods.60,61 Furthermore, the 
application of different values of RR would be inconducive to the international comparison of heatwave-
related mortality prevention of air conditioning. For these purposes, the value of RR in this study were still 
kept the same as that in 2019 global Lancet Countdown report. 

Secondly, the prevented fraction of heatwave-related mortality due to air conditioning discussed here was not 
reconciled with the heat-related mortality in section one, because of different data sources. The former was 
calculated based on data from the IEA, while the latter used data from other published papers. As research 
continues, work will be undertaken to make these two indicators consistent in the future. 

Thirdly, the calculation of energy consumption of air conditioning did not include commercial buildings and 
rural areas. 

Fourthly, this indicator cannot be broken down to the city level yet due to the inaccessibility of more 
detailed data. 

Future Form of Indicator 

This indicator will be improved to reconcile the heatwave-related mortality (indicator 1.1.3) with the 
prevented fraction discussed here.  

Additional Information  

In 2015, the total energy consumption of urban household air conditioning in China was 74.5 billion kWh, 
which accounted for 12% of the total energy consumption of urban residential sector.62 The large amount of 
energy consumption and CO2 emissions due to air conditioning inevitably enhances urban heat island effect 
and contributes to climate change. 
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Indicator 2.3: Climate information services for health 

Methods 

This indicator is measured with web traffic to the website of the National Emergency Early Warning 
Information Release System (http://www.12379.cn/), 63 established in 2015 that releases meteorological 
services, specifically, the yearly total numbers of page views for the website in 2018 and 2019. The system 
releases more than 20 types of meteorological warnings at the national, provincial, city, and county levels. 
The warnings for some meteorological hazards like cold wave, high temperature, and haze are released with 
health suggestions for sake of risk prevention.  

Data 

1. The data of web traffic to the website of the National Emergency Early Warning Information Release 
System (http://www.12379.cn/), specifically, the yearly total number of page views for the website 
separately for 2018 and 2019, was provided by the China Meteorological Administration (CMA). 

Caveats  

This method only captures the public’s active use of the website of the National Emergency Early Warning 
Information Release System. However, the system releases meteorological warnings via multiple channels 
not limited to this website. Moreover, the proportion of the website usage for health-related warnings is 
unknown. 

Future Form of Indicator 

In future reports, this indicator will be improved to better assess the sensitivity and effectiveness of climate 
information services for health. The presence of provincial level early warning information release systems 
could be assessed. Warnings for specific climate change and health exposure pathways could be linked with 
indicators in section 1 of the report to determine the proportion of events identified in section 1 are addressed 
by the National Emergency Early Warning Information Release System. In the future, the traffic data for 
different warning release channels adopted by the National Emergency Early Warning Information Release 
System could also be collected for a more comprehensive delineation of the public use of the system. 

Findings 

The web traffic data offered by the website operator, the China Meteorological Administration (CMA), was 
used for this indicator. The meteorological warnings released in 201864 and 201965 accounted for 96% and 
97% of the respective total warnings across the country (270,256 and 261,959, separately) released by the 
system. The warnings for health-related hazards66 like high temperature (8.65%), cold wave (3.17%), haze 
(1.11%), and sandstorm (0.25%) occupied 13% of the total meteorological warnings in 2019.65 Along with 
the multi-level warnings, health suggestions are provided.67  
 
The total number of page views for the website throughout a year sharply increased from 3.8 million in 2018 
to 8.7 million in 2019. The figures could, to some extent, measure the popularity of the national warning 
release platform for health purposes, although the system releases warnings via multiple channels including 
short message service, mobile applications and etc. 
 
Table 18: Health suggestions for health-related meteorological hazards 

Warning Health suggestions 
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High 
temperature 

preventing heatstroke, reducing outdoor activities, providing specific suggestions and protections for 
vulnerable groups 

Cold wave keeping warm, taking care of vulnerable groups 

Haze wearing masks, people with respiratory diseases reducing outdoor activities 

Sandstorm wearing masks, people with respiratory diseases or allergic to sand staying indoor 

Note: The National Emergency Early Warning Information Release System releases warnings of meterological hazards apart 
from these four hazards. . Health suggestions are provided for these four hazards. The health suggestions were summarized 
based on Trial Procedures on the Release of Early Warning Signals for Unexpected Meteorological Disasters promulgated 
by the China Meteorological Administration in 2004. 

 

Section 3: Mitigation actions and health co-benefits 

Carbon intensity of the economic system 

Methods 

This indicator contains two components: 
1. Carbon intensity (CI) of the economic system, both at national (2000-2019) and regional (six regions) 

(2000-2017) scales, in kgCO2/US$; and 
2. National CO2 emissions from energy combustion by fuel and industrial process (mainly cement), in 

MtCO2 (2000-2019).  
 
The technical definition of CI is the kilograms (kg) of CO₂ emitted for each unit (US$) of GDP. The rationale 
for the indicator choice is that carbon intensity of the economic system will provide information on the level 
of fossil fuel use, which has associated air pollution impacts. Higher intensity values indicate a more fossil 
dominated economic system, and one that is likely to have a higher coal share. As countries pursue climate 
mitigation goals, the carbon intensity is likely to reduce with benefits for air pollution. The indicator is 
calculated based on total CO2 emissions from fossil fuel divided by Gross Domestic Product (GDP)). GDP 
reflects the economic development status in an area/country. 
 
CO2 emissions of China and 30 provinces (excluding Tibet) from 2000 to 2017 are calculated by sectoral 
approach and reference approach individually, while in year 2018 and 2019, CO2 emissions of China are 
calculated by reference approach. Below is the equation for CI:   

𝐶𝐼 = 𝐶𝑂2 /𝐺𝐷𝑃  
 
Where s denotes region; t represents year; CO2st denotes CO2 emission in s in t; GDPst represents the GDP in 
s in t which is collected from China Statistical Yearbook 68 . 

CO2 emissions data by sectoral/reference approach  during 2000 to 2017 is collected from China Emission 
Accounts and Datasets  (CEADs, www.ceads.net);69,70 CO2 emissions data of China from 2018 to 2019 is 
calculated by reference approach and for details of this approach see Shan et al. (2018).69 The daily CO2 
emissions of China in 2019 and 2020 is taken from https://arxiv.org/abs/2004.13614.  

Data   

1. Energy balance tables are taken from China Energy Statistical Yearbook 2001-2018;68  
2. CO2 emissions are taken from China Emission Accounts and Datasets (CEADs, www.ceads.net).69,70 
3. The daily CO2 emissions of China in 2019 and 2020 is taken from https://arxiv.org/abs/2004.13614. 

Caveats  

CO2 emissions of China in 2018 and 2019 are estimated by reference approach and they may be overestimated. 
Compared sectoral emissions, reference emissions were 1-7% higher for three key reasons. Firstly, the energy 
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loss during energy transformation process is not excluded from the reference energy consumption.69 Secondly, 
only transport loss and nonenergy usage of primary energy sources are excluded from the total consumption 
in the reference approach, without the removeal of secondary energy sources. Finally, there is roughly a 1.2% 
difference between the energy production and consumption data in China’s energy balance table. According 
to the data from 2000 to 2017 provided by CEADs (www.ceads.net), the  CO2 emissions of China by 
reference approach is an average of 3.4% higher emissions estimated by sectoral approach.  

Future Form of Indicator  

This indicator for provinces will need to be updated to provide the data for the most recent years. 

Additional Information  

CI of China from 2000 to 2019 is generally decreasing (Figure 25). The reason behind this is that the average 
annual increase rate of CO2 emissions of China (7.3%) is lower than that of GDP (8%). CO2 emissions from 
fossil fuel combustion in China rose rapidly between 2000 and 2012, then fluctuated between 2013-2017 (by 
sectoral approach), and increased by 2.7 % from 2018 to 2019 (by reference approach) (Figure 25).69,70 
However, CO2 emissions from natural gas combustion has increased by 1.6 times from 2000 to 2019 by 
reference approach. 69,71  
 
The CI of six regions is also generally decreasing. However, the CI in Northwest and Northeast China has 
increased by 4.1% and 0.2% respectively in 2017 compared to 2016, with large fluctuations in CI seen in 
Northwest China from 2003 to 2017. The CI of Northwest China because Ningxia province lacked the CO2 
emissions data from 2000 to 2002.  At 1.2kg/US$1 in 2017, East China had the lowest CI, while Northwest 
China had the highest CI at 4 kg/US$. 
 

A B 

  
Figure 25. CO2 emissions of China  calculated by (A) sectoral approach (2000-2017) and (B) 
reference approach (2000-2019) 
 

Indicator 3.1: The energy system and health 

Indicator 3.1.1: Coal phase-out 

Methods 

Two indicator componentsare used here:  
1. Total primary supply of coal in China and by province (in EJ units); and  
2. Share of coal in total primary energy supply. 
 
The indicator on primary energy supply of coal is an aggregation of all coal types used across all sectors, 
with data taken from annual editions of Energy Statistical Yearbook of China. The share of coal in total 
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energy supply is estimated by dividing primary energy supply of coal across all sectors by total primary 
energy supply.  
 
The data for both indicator components is available for the period 2000-2018 at the national level, and for 
the period 2000-2017 for each province. 

Data   

1. The data for this indicator is taken from annual edition of Energy Statistical Yearbook of China.72 
 

Caveats  

These indicators provide a proxy for air quality emissions associated with the combustion of coal. Further 
work is required to convert coal use by sector and type into emissions of different air quality pollutants. 

Future Form of Indicator  

In the future, this indicator set could be developed to also estimate the actual air pollutant emissions 
associated with coal use. This could be estimated using the GAINS model, with inputs of sectoral use, coal 
type (both of which are available) and appropriate emission factors. 

Additional Information  

Due to the energy use from all sources, the overall coal share in China’s TPES continued to decline, from 
72% in 2005 (the highest share during 2000-2018) to 66% in 2014, and further to 59% (Figure 26) in 2018, 
reduced by 14% during 2000-2018. From regional perspectives, Beijing-Tianjin-Hebei area and East China 
provinces along the coastline have cut their coal use substantially in recent years, while a continuous increase 
was observed in Northwestern provinces, (Figure 26). As a result of the COVID-19 pandemic, demand for 
coal fell by 6.8% in the first quarter of 2020 in China,73 and is projected to decline by 5% throughout the 
year.74 
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Figure 26: National and regional Total Primary Energy Supply (TPES) from coal (2000-2018). (A) 
TPES from coal and the proportion in TPES in China; (B) TPES from coal in six regions. 

 

Table 19 Coal consumption by province, 2010-2017, Unit: PJ 
Province 2010 2011 2012 2013 2014 2015 2016 2017 

Beijing 551.5  495.3  475.2  422.7  363.5  243.9  177.4  102.7  

Tianjin 1006.2  1101.5  1109.0  1105.0  1052.4  950.1  885.5  811.3  

Hebei 5749.3  6445.8  6564.5  6628.2  6203.7  6058.7  5883.4  5739.3  

Shanxi 6251.7  7008.3  7232.7  7669.2  7868.3  7769.4  7456.6  8989.2  

Inner Mongolia 5652.8  7260.5  7665.8  7309.0  7633.5  7640.6  7677.3  8079.3  

Liaoning 3539.5  3779.3  3813.8  3795.8  3768.5  3629.1  3546.9  3681.6  

Jilin 2006.0  2310.0  2320.0  2179.9  2172.7  2052.6  1971.3  1958.2  

Heilongjiang 2557.9  2763.2  2923.3  2777.2  2846.0  2811.9  2937.9  3028.8  

Shanghai 1229.9  1285.7  1193.8  1189.3  1024.8  989.8  968.3  958.3  

Jiangsu 4835.7  5728.2  5811.5  5850.0  5633.7  5695.8  5871.4  5572.4  

Zhejiang 2920.2  3093.1  3008.9  2964.4  2893.9  2894.2  2919.9  2985.5  

Anhui 2800.0  3043.3  3078.0  3279.2  3304.7  3280.5  3292.5  3367.0  

Fujian 1470.8  1824.1  1776.2  1691.1  1716.2  1603.5  1429.0  1579.0  

Jiangxi 1307.5  1462.8  1423.9  1518.6  1565.2  1611.5  1594.6  1624.7  

Shandong 7814.0  8147.4  8422.1  7888.4  8281.6  8567.3  8569.9  7989.1  

Henan 5453.1  5939.6  5283.6  5245.5  5076.3  4965.4  4862.1  4745.4  

Hubei 2819.7  3308.5  3307.2  2546.9  2488.5  2463.0  2446.2  2465.3  

Hunan 2370.3  2722.6  2529.6  2349.5  2281.6  2332.4  2395.5  2596.7  
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Guangdong 3345.9  3859.9  3691.4  3581.0  3561.5  3472.3  3377.6  3594.7  

Guangxi 1299.3  1472.2  1520.6  1537.4  1422.7  1265.8  1364.4  1384.4  

Hainan 135.5  170.6  194.9  211.2  213.2  224.4  212.5  230.1  

Chongqing 1339.1  1504.9  1413.0  1213.0  1276.0  1265.9  1187.8  1182.0  

Sichuan 2411.6  2397.7  2485.2  2444.7  2312.2  1944.5  1856.7  1644.5  

Guizhou 2283.4  2529.8  2790.0  2857.5  2745.9  2686.5  2855.9  2807.1  

Yunnan 1957.1  2023.0  2061.9  2047.9  1815.9  1614.6  1561.9  1509.6  

Shaanxi 2436.3  2787.9  3302.0  3610.6  3846.6  3846.2  4117.7  4201.2  

Gansu 1128.2  1319.4  1372.8  1369.3  1405.9  1372.6  1335.0  1331.5  

Qinghai 266.0  315.7  389.1  434.0  380.3  315.7  410.8  365.7  

Ningxia 1206.8  1663.6  1686.2  1786.3  1854.1  1864.6  1813.9  2314.8  

Xinjiang 1696.9  2039.9  2517.9  2973.7  3367.8  3633.9  3974.2  4264.1  

Note: (1) data for Tibet is not available. (2) Due to statistical difference, provincial sum does not equal to 
national total. 
 

Indicator 3.1.2: Low-carbon emission electricity  

Methods 

Two indicators are used here, and presented in two ways: 
1. Total low-carbon electricity generation (including solar, wind, hydropower and nuclear), in absolute 

terms (TWh) and as a % share of total electricity generated; and 
2. Total renewable generation (excluding hydro), in TWh, and as a % share of total electricity 

generated. 
 
The increase in the use of low carbon and renewable energy for electricity generation will push other 
fossil fuels, such as coal, out of the mix over time, resulting in an improvement in air quality, with 
benefits to health. The renewables (excluding hydro) indicator has been used to allow for the racking of 
rapidly emergent renewable technologies. For both indicators, generation, rather than capacity, has been 
chosen as a metric as the electricity generated from these technologies is what actually displaces fossil-
based generation.  
 
 
Due to lack of electricity generation data at the provincial level, six provinces with the highest GDP in 
201975 we selected to represent their region (Beijing for North; Liaoning for Northeast; Jiangsu for East; 
Guangdong for South central; Sichuan for Southwest; Shaanxi for Northwest). The data is taken from 
the China energy balance datasets.76  The absolute level indicators are the total gross electricity 
generated, aggregating the relevant technology types. The share indicators are estimated as the low 
carbon or renewable generation as a % of total generation.  
 

Data   

1. The data is taken from the China energy balance datasets. 76 

Caveats  

1. Solar, wind and nuclear generation data from the National Bureau Statistics of China is only 
available from 2015.  

2. This indicator set does not provide information on the air pollutant emissions displaced due to the 
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increasing share of renewable generation. 
 

Future Form of Indicator  

 
Detailed data of provinces should be updated to get the accurate regional results. 
 

Additional Information  

Low-carbon electricity in China and six regions has been generally increasing from 2015 to 2019.From 2000 
to 2014, the only low-carbon electricity reported in China was  hydropower, which accounts for a larger 
share of low-carbon electricity than renewable energy (57.1% ~74.09% of total low-carbon electricity) from 
2015 to 2019, but its share has declined during this period. The national share of renewable energy increased 
annually. In 2019, low-carbon electricity nationally accounted for 31.13% of total China electricity 
generation). From 2018 to 2019, renewable energy increased by 16.77% while hydropower increased by 
5.67%.  
 
As costs continue to fall, solar generation continues to grow at remarkable rates of around 26.51 % but still 
only accounts for 3.06 % of total generation. Among 30 provinces of China. At 11.2 TWh in 2019,  Qinghai 
produces the most solar power.76 Northwest China is the area that provides the most solar power in China 
due to appropriate natural environment for solar generation.  Southwest and South Central regions generate 
more hydropower than northern provinces,  mainly because that there are more rivers, a more favorable 
terrain and a more humid climate in the southern area of China than the northern area. However, it should be 
noted that in the Northeast China also has abundant hydropower.  
 
The shares of low-carbon electricity in Northeast and South Central China were higher than national average, 
but they had different shares of types of renewable energy in their mix mainly due to their resource 
endowment and socioeconomic development level. In Liaoning, nuclear, wind and solar generation made up 
66.15%, 30.91% and 2.88% of low-carbon electricity, respectively; while nuclear, wind and solar generation 
were  92.17% , 5.76% and 2.07% of low-carbon electricity in Guangdong. 
 
The detailed data of different sources of electricity generation in China and other six regions see Table 
20 to Table 26 
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Figure 27: Renewable and low-carbon emission electricity generation 
(A) Electricity generated from low-carbon sources. (B) Share of electricity generated from low-carbon 
sources. (C) Electricity generated from renewable sources (excluding hydropower). (D) Share of 
electricity generated from renewable sources (excluding hydropower). TWh=terawatt hours. 
 
Table 20: Different sources of electricity generation in China (TWh) 
 
 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation 

Total 
generation 

2000 222.4 0.0 0.0 0.0 1088.5 222.4 0.0 1328.7 

2001 277.4 0.0 0.0 0.0 1176.8 277.4 0.0 1480.8 

2002 288.0 0.0 0.0 0.0 1328.8 288.0 0.0 1602.4 

2003 283.7 0.0 0.0 0.0 1580.4 283.7 0.0 1910.6 

2004 353.5 0.0 0.0 0.0 1795.6 353.5 0.0 2203.3 

2005 397.0 0.0 0.0 0.0 2047.3 397.0 0.0 2500.1 

2006 435.8 0.0 0.0 0.0 2369.6 435.8 0.0 2865.9 

2007 485.3 0.0 0.0 0.0 2722.9 485.3 0.0 3281.6 

2008 637.0 0.0 0.0 0.0 2707.2 637.0 0.0 3495.8 

2009 615.6 0.0 0.0 0.0 2982.8 615.6 0.0 3714.7 

2010 722.2 0.0 0.0 0.0 3331.9 722.2 0.0 4207.0 

2011 698.9 0.0 0.0 0.0 3833.7 698.9 0.0 4712.9 

2012 872.1 0.0 0.0 0.0 3892.8 872.1 0.0 4987.7 

2013 920.3 0.0 0.0 0.0 4247.0 920.3 0.0 5431.6 

2014 1072.9 0.0 0.0 0.0 4400.1 1072.9 0.0 5794.3 

2015 1130.3 170.8 185.8 38.8 4284.2 1525.6 395.3 5814.9 

2016 1184.0 213.3 237.1 61.6 4437.1 1696.0 511.9 6133.0 

2017 1189.8 248.1 295.0 96.7 4662.7 1829.6 639.8 6451.1 
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2018 1232.1 295.0 365.8 176.9 4924.9 2069.8 837.7 6769.2 

2019 1301.9 348.7 405.7 223.8 5045.0 2280.1 978.2 7325.3 

 
Table 21: Different sources of electricity generation in Beijing (representing North China) (TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 

2000 0.9 0.0 0.0 0.0 13.7 0.9 0.0 14.5 

2001 0.2 0.0 0.0 0.0 13.0 0.2 0.0 13.3 

2002 0.4 0.0 0.0 0.0 13.6 0.4 0.0 14.2 

2003 0.7 0.0 0.0 0.0 18.6 0.7 0.0 19.2 

2004 0.4 0.0 0.0 0.0 19.8 0.4 0.0 20.4 

2005 0.5 0.0 0.0 0.0 21.0 0.5 0.0 21.3 

2006 0.5 0.0 0.0 0.0 20.7 0.5 0.0 21.5 

2007 0.5 0.0 0.0 0.0 22.3 0.5 0.0 22.8 

2008 0.0 0.0 0.0 0.0 24.3 0.0 0.0 24.3 

2009 0.0 0.0 0.0 0.0 24.1 0.0 0.0 24.3 

2010 0.4 0.0 0.0 0.0 26.2 0.4 0.0 26.9 

2011 0.4 0.0 0.0 0.0 25.6 0.4 0.0 26.3 

2012 0.4 0.0 0.0 0.0 28.3 0.4 0.0 29.1 

2013 0.5 0.0 0.0 0.0 32.8 0.5 0.0 33.6 

2014 0.7 0.0 0.0 0.0 35.9 0.7 0.0 36.9 

2015 0.7 0.0 0.3 0.1 41.1 1.0 0.3 42.1 

2016 1.2 0.0 0.3 0.1 41.8 1.7 0.4 43.4 

2017 1.1 0.0 0.3 0.1 37.2 1.6 0.5 38.8 

2018 1.0 0.0 0.4 0.1 42.3 1.4 0.4 43.7 

2019 1.0 0.0 0.0 0.1 42.1 1.1 0.1 43.1 

 
Table 22: Different sources of electricity generation in Liaoning (representing Northeast China) 
(TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 

2000 1.5 0.0 0.0 0.0 62.8 1.5 0.0 64.6 

2001 2.3 0.0 0.0 0.0 63.9 2.3 0.0 66.2 

2002 1.4 0.0 0.0 0.0 70.9 1.4 0.0 72.5 

2003 2.3 0.0 0.0 0.0 81.2 2.3 0.0 83.7 

2004 3.9 0.0 0.0 0.0 83.4 3.9 0.0 87.5 

2005 5.7 0.0 0.0 0.0 84.5 5.7 0.0 90.4 

2006 4.7 0.0 0.0 0.0 96.3 4.7 0.0 101.5 

2007 4.4 0.0 0.0 0.0 106.5 4.4 0.0 111.5 

2008 3.9 0.0 0.0 0.0 108.5 3.9 0.0 113.8 

2009 2.9 0.0 0.0 0.0 111.7 2.9 0.0 116.3 

2010 4.4 0.0 0.0 0.0 120.4 4.4 0.0 129.5 

2011 3.2 0.0 0.0 0.0 126.0 3.2 0.0 137.0 

2012 3.8 0.0 0.0 0.0 130.4 3.8 0.0 144.1 

2013 6.1 0.0 0.0 0.0 133.4 6.1 0.0 155.4 

2014 4.2 0.0 0.0 0.0 137.0 4.2 0.0 165.6 

2015 3.2 14.5 11.2 0.1 135.8 29.0 25.8 166.5 

2016 4.7 20.0 12.9 0.3 140.0 37.9 33.2 177.9 

2017 3.5 23.6 14.4 0.6 140.9 42.0 38.6 182.9 

2018 2.8 28.4 16.5 1.0 141.1 48.7 45.9 189.8 

2019 2.8 32.7 15.3 1.4 147.4 52.2 49.4 199.6 

 
Table 23: Different sources of electricity generation in Jiangsu (representing East China) (TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 
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2000 0.0 0.0 0.0 0.0 91.0 0.0 0.0 91.0 

2001 0.0 0.0 0.0 0.0 98.6 0.0 0.0 98.7 

2002 0.1 0.0 0.0 0.0 111.6 0.1 0.0 111.7 

2003 0.4 0.0 0.0 0.0 133.3 0.4 0.0 133.7 

2004 0.3 0.0 0.0 0.0 155.1 0.3 0.0 155.5 

2005 0.3 0.0 0.0 0.0 211.4 0.3 0.0 212.0 

2006 0.3 0.0 0.0 0.0 251.3 0.3 0.0 253.6 

2007 0.3 0.0 0.0 0.0 257.7 0.3 0.0 267.5 

2008 0.7 0.0 0.0 0.0 263.1 0.7 0.0 281.5 

2009 0.2 0.0 0.0 0.0 276.2 0.2 0.0 292.8 

2010 0.3 0.0 0.0 0.0 316.6 0.3 0.0 335.9 

2011 0.2 0.0 0.0 0.0 356.3 0.2 0.0 376.3 

2012 1.1 0.0 0.0 0.0 377.9 1.1 0.0 400.1 

2013 1.1 0.0 0.0 0.0 409.9 1.1 0.0 432.1 

2014 1.2 0.0 0.0 0.0 409.4 1.2 0.0 434.6 

2015 1.2 16.6 5.9 1.9 410.4 25.6 24.5 436.1 

2016 1.7 15.4 9.4 4.1 440.3 30.6 28.9 470.9 

2017 2.9 17.3 11.7 6.2 453.0 38.0 35.1 491.5 

2018 3.3 24.2 17.3 4.6 447.7 49.4 46.1 493.4 

2019 3.3 32.9 15.9 5.9 443.9 57.9 54.7 501.5 

 
Table 24: Different sources of electricity generation in Guangdong (representing South Central 
China) (TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 

2000 10.6 0.0 0.0 0.0 103.9 10.6 0.0 129.3 

2001 19.0 0.0 0.0 0.0 107.5 19.0 0.0 141.8 

2002 10.9 0.0 0.0 0.0 121.0 10.9 0.0 152.6 

2003 18.0 0.0 0.0 0.0 139.9 18.0 0.0 188.3 

2004 19.2 0.0 0.0 0.0 166.1 19.2 0.0 214.1 

2005 20.8 0.0 0.0 0.0 176.5 20.8 0.0 227.9 

2006 26.8 0.0 0.0 0.0 188.4 26.8 0.0 246.6 

2007 24.1 0.0 0.0 0.0 218.7 24.1 0.0 273.2 

2008 38.8 0.0 0.0 0.0 196.9 38.8 0.0 271.6 

2009 26.9 0.0 0.0 0.0 215.8 26.9 0.0 275.8 

2010 34.9 0.0 0.0 0.0 248.8 34.9 0.0 323.7 

2011 33.1 0.0 0.0 0.0 301.8 33.1 0.0 380.2 

2012 36.7 0.0 0.0 0.0 288.1 36.7 0.0 376.4 

2013 38.9 0.0 0.0 0.0 297.3 38.9 0.0 387.5 

2014 40.7 0.0 0.0 0.0 301.9 40.7 0.0 401.3 

2015 43.7 60.6 5.5 0.2 293.4 110.0 66.4 403.5 

2016 44.3 70.3 4.7 0.4 297.2 119.9 75.5 417.0 

2017 30.8 80.0 5.5 1.1 332.9 117.3 86.5 450.3 

2018 14.7 89.2 6.3 0.8 326.0 111.0 96.3 437.0 

2019 18.5 110.2 6.9 2.5 334.6 138.0 119.5 472.6 

 
Table 25: Different sources of electricity generation in Sichuan (representing Southwest China) 
(TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 

2000 31.5 0.0 0.0 0.0 18.5 31.5 0.0 50.0 
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2001 42.2 0.0 0.0 0.0 20.9 42.2 0.0 63.3 

2002 41.0 0.0 0.0 0.0 28.6 41.0 0.0 69.6 

2003 48.0 0.0 0.0 0.0 36.8 48.0 0.0 84.9 

2004 62.1 0.0 0.0 0.0 31.4 62.1 0.0 93.4 

2005 65.3 0.0 0.0 0.0 36.5 65.3 0.0 101.9 

2006 78.5 0.0 0.0 0.0 44.2 78.5 0.0 122.7 

2007 81.4 0.0 0.0 0.0 44.9 81.4 0.0 126.3 

2008 98.1 0.0 0.0 0.0 40.1 98.1 0.0 138.3 

2009 106.5 0.0 0.0 0.0 51.3 106.5 0.0 157.9 

2010 121.3 0.0 0.0 0.0 57.0 121.3 0.0 179.5 

2011 136.4 0.0 0.0 0.0 60.9 136.4 0.0 198.1 

2012 156.2 0.0 0.0 0.0 58.8 156.2 0.0 215.1 

2013 200.2 0.0 0.0 0.0 62.8 200.2 0.0 263.1 

2014 250.1 0.0 0.0 0.0 59.0 250.1 0.0 309.5 

2015 266.8 0.0 1.0 0.1 45.0 267.9 1.1 313.0 

2016 285.2 0.0 1.8 0.6 39.8 287.6 2.4 327.4 

2017 304.1 0.0 3.8 1.7 38.4 309.6 5.5 348.0 

2018 298.2 0.0 5.5 1.4 44.8 305.1 6.9 349.9 

2019 307.6 0.0 7.3 2.0 50.3 316.8 9.3 367.1 

 
Table 26: Different sources of electricity generation in Shaanxi (representing Northwest China) 
(TWh) 

Year Hydropower Nuclear Wind Solar 
Thermal 
power 

Low carbon 
generation 

Renewable 
generation Total generation 

2000 3.5 0.0 0.0 0.0 23.7 3.5 0.0 27.2 

2001 14.9 0.0 0.0 0.0 27.5 14.9 0.0 42.4 

2002 2.6 0.0 0.0 0.0 31.8 2.6 0.0 34.4 

2003 4.7 0.0 0.0 0.0 37.3 4.7 0.0 41.9 

2004 4.2 0.0 0.0 0.0 45.6 4.2 0.0 49.8 

2005 5.1 0.0 0.0 0.0 49.6 5.1 0.0 54.9 

2006 4.0 0.0 0.0 0.0 54.5 4.0 0.0 58.5 

2007 5.5 0.0 0.0 0.0 65.1 5.5 0.0 70.7 

2008 6.4 0.0 0.0 0.0 78.7 6.4 0.0 85.3 

2009 7.5 0.0 0.0 0.0 83.4 7.5 0.0 90.9 

2010 8.7 0.0 0.0 0.0 102.5 8.7 0.0 111.2 

2011 10.0 0.0 0.0 0.0 112.2 10.0 0.0 122.2 

2012 8.9 0.0 0.0 0.0 125.2 8.9 0.0 134.2 

2013 11.1 0.0 0.0 0.0 139.2 11.1 0.0 151.2 

2014 11.7 0.0 0.0 0.0 149.1 11.7 0.0 163.0 

2015 13.4 0.0 2.8 0.8 145.2 17.0 3.6 162.3 

2016 12.5 0.0 3.7 1.3 158.1 17.6 5.1 175.7 

2017 14.2 0.0 5.1 3.4 158.6 22.7 8.5 181.4 

2018 11.5 0.0 7.2 4.0 156.7 22.7 11.2 178.2 

2019 13.7 0.0 7.1 5.2 185.9 26.0 12.2 211.9 
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Indicator 3.2: Clean household energy 

Methods 

This indicator is modelled with household investigation data collected by Building Energy Conservation 
Research Center, Tsinghua University and per capita household energy consumption data compiled by 
National Bureau of Statistics. 
The definition of clean energy differs from the global Lancet Countdown. Here, nuclear and renewable energy 
(solar energy, hydroenergy, wind energy, biomass energy, etc.) are defined as clean energy in China and also 
electricity is not tracked. 
The energy consumption data of the different types of energy consumption were converted through the 
average energy efficiency in 2015. 
Since energy structure adjustment is related to infrastructure, fossil fuel utilization status such as urban natural 
gas penetration rate was investigated. Meanwhile, renewable energy sources including solar energy and 
geothermal energy are mostly used in domestic hot water, so that the equipment was investigated as well. 
The data provided in the 2020 report focuses on household energy consumption and energy structure,  
particularly cooking and domestic hot water. 

Data   

1. The per capita household energy consumption data is taken from the National Bureau of Statistics. 
2. The data on household cooking energy sources and domestic hot water equipment is taken from the 

Building Energy Conservation Research Center, Tsinghua University. 
3. The data on rural households is taken from CRECS 2013.62 

Caveats  

The caveats of this indicator would mainly be in three aspects. First, the sample size of cooking and domestic 
hot water investigation is limited to urban households in 2015 while data on rural households are from an 
investigation in 2013. More recent and adequate data may reveal different results, as more policies have been 
introduced since China joined the Paris Climate Agreement in 2015 to promote clean energy. Annually data 
collection should be organized or initiated by the government.Second, the impact of markets and policies on 
the promotion of clean energy was not included. 

Additional Information  

 

 
              

Figure 28: Household Energy Consumption in China. (A) Household energy consumption per capita 
from 2000 to 2017, total (left axis) vs electricity (right axis). (B) Per capita household energy 
consumption by fuel type from 2000 to 2017. 
 

 



58 

 

Indicator 3.3: Air pollution, energy, and transport 

Indicator 3.3.1: Exposure to air pollution in cities 

Methods 

This indicator reports the trends of annual air pollutant concentrations in China’s cities based on 
monitoring data of air pollutants. The distribution of cities’ annual average PM2.5 ae well as the 
developing trends are analyzed with statistical description method (Minimum, Lower quartile, Median, 
Upper quartile and Maximum) based on the monitoring data involve 367 cities during 2015-2019 in 
China.  
Population of the Beijing-Tianjin-Hebei region (so-called “2+26” cities), Fenhe and Weihe plain, and 
Northwest China exposed to the most serious PM2.5 pollution. “2+26” cities are considered an important 
atmospheric pollution transit corridor which connects Jing-Jin-Ji district with the surrounding area while 
Fenhe and Weihe plain is another corridor linking Fenhe plain, Weihe plain and surrounding cities. 

Data   

Data of daily 24-hour average PM2.5 concentrations in cities are downloaded from the Data Center of Ministry 
of Ecology and Environment of China. According to ‘Technical Regulation for Ambient Air Quality 
Assessment’ (HJ 633-2013) published by the Ministry of Environmental Protection of China, the city-specific 
annual average PM2.5 concentration is calculated by arithmetic mean of daily 24-hour average PM2.5 
concentrations. 77  

Caveats  

The indicator relies on the accuracy and timeliness of the air pollution monitoring.  

Future Form of Indicator  

The combination of monitoring data, atmospheric transport and chemistry model (e.g., GEOS-Chem), and 
air pollutant emission projection model (e.g., GAINS) has a practical urgency for pollutant exposure analysis 
of higher resolution78,79. 

Additional Information  

Benefiting from the toughest ever clean air action plan launched in 2013 and subsequent effective measures 
(such as strengthening industrial emission standards, upgrades on industrial boilers, phasing out outdated 
industrial capacities and promoting clean fuels in the residential sector), remarkable air quality improvements 
have been made in China80. 
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Figure 29: Distribution of annual average PM2.5 concentrations of China’s 367 cities.  
The white dot represents the median Q2; The black rectangle is the range from the lower quartile Q1 
to the upper quartile Q3; The external shape of the black rectangle is kernel density estimation, of 
which the vertical length represents dispersion degree and the horizontal width denotes city frequency 
in a certain pollutant concentration. 

 

Table 27: Statistics for annual average PM2.5 concentrations of China’s cities (Unit: µg/m3). 
Year Minimum Lower quartile Median Upper quartile Maximum 
2015 10 37 49 59 118 
2016 11 34 45 56 157 
2017 10 34 42 53 100 
2018 8 30 38 48 116 
2019 7 27 36 46 110 

 
Table 28:  List of “2+26” cities and the Fenhe and Weihe Plain. 

“2+26” cities Fenhe and Weihe Plain 

Province/Municipality City Province City 

Beijing Beijing 

Shanxi 

Jinzhong 
Tianjin Tianjin Yuncheng 

Hebei 

Shijiazhuang Linfen 
Baoding Lvliang 
Langfang 

Henan 
Luoyang 

Cangzhou Sanmenxia 
Hengshui 

Shaanxi 

Xian 
Xingtai Tongchuan 
Tangshan Baoji 
Handan Xianyang 

Shanxi 

Taiyuan Weinan 
Yangquan Yangling 
Changzhi  
Jincheng 

Shandong 

Jinan 
Zibo 
Jining 
Dezhou 
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Binzhou 
Liaocheng 
Heze 

Henan 

Zhengzhou 
Kaifeng 
Anyang 
Hebi 
Xinxiang 
Jiaozuo 
Puyang 

 
 

Indicator 3.3.2: Premature mortality from ambient air pollution by sector  

Methods 

This indicator quantifies the number of premature deaths attributable to long-term ambient fine particulate 
matter (PM2·5) exposure by sectorial sources for each province in China. The greenhouse gas-air pollution 
interactions and synergies (GAINS) model is used to quantify the sectorial contribution to ambient PM2·5.81 
Data from the International Energy Agency (IEA) World Energy Outlook 2019 and the data of Chinese 
statistical yearbook in 2018 is integrated into GAINS to develop the provincial air pollution emission 
inventory by fuels and sectors.  
 
Atmospheric chemistry and dispersion coefficients with the European Monitoring and Evaluation 
Programme (EMEP) Chemistry Transport Model are used to simulate the changes in ambient PM2·5 with 
varying emissions.82 Validation of the performance of the ambient annual PM2·5 concentration of the GAINS 
against results from the observed are presented in Figure 30. Premature deaths from total ambient PM2·5 by 
provinces and sectors in China are calculated using the integrated exposure-response functions (IERs) 
employed by the WHO (2016) assessment on the disease burden from long-term exposure to ambient air 
pollution,83 which relies on cause-specific mortality relative risk (RR) functions and requires the application 
to a higher range of annual average concentrations in the study area.84 
The concentration-response (C-R) functions and relative risks [Eq. (1)] were based on the IERs from the 
GBD 2013,83 across the full range of PM2·5 concentrations. RRIER(z) represents the relative risks in the PM2·5 
exposure concentration of C (in micrograms per meter cubed); C0 represents the counterfactual concentration 
below which it is assumed there is no additional risk. For very large C, RRIER(z) approximates 1+α. A power 
of PM2·5, δ, was included here to predict risk over a very large range of concentrations. 
 

𝑅𝑅 (Z)=
                                     1, for  C < 𝐶

1 + α1 − exp − C − C )] , for  𝐶 ≥  𝐶               
 (1) 

 
We adopted a calculation approach [Eq. (2)] developed for the GBD 2013 to estimate PM2.5-related premature 
mortality in each province, and the following five endpoints are included in our estimation: ischemic heart 
disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC), and stroke in adults, and 
acute lower respiratory infections (ALRI) in children less than 5 years old. For IHD and stroke, the RR is 
different between age strata, and for COPD and LC, the RR in the same exposure concentration is the same 
for the entire group of adults (aged 25 or more). We estimated the premature mortality Mi,j of each province 
(and of each age stratum for IHD and stroke) and disease endpoint j attributable to ambient PM2·5 for Province 
i. 
 

𝑀 , =𝑃 𝐼 (𝑅𝑅 (𝐶 ) − 1), where  𝐼 =                                (2) 

 
𝐼 represents the hypothetical “underlying incidence” (i.e., cause-specific mortality rate) that would remain if 
PM2·5 concentrations were reduced to the theoretical minimum risk concentration. Here, Pi is the population 
of province i, Ij is the reported regional average annual disease incidence (mortality) rate for endpoint j, Ci 
represents the annual-average PM2·5 concentration in county i, RRj (Ci) is the relative risk for end point j at 
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concentration Ci, and RRj represents the average population-weighted relative risk for end point j. 
 

Data 

1. Emissions data was taken from the IEA World Energy Outlook 2019 and the Chinese statistical 
yearbook in 2018 

2. Provincial air pollution emission inventory by fuels and sectors was from GAINS model;  
3. Provincial demographic and mortality data was from Chinese statistical yearbook in 2015; 
4. Baseline mortality data was obtained from Zhou et al.85 and the results of GBD 2013 studies;83 
5. The RR value and estimated parameters were from GBD 2013.83 
 

Caveats 

There are three key caveats of this indicator. Firstly, the indicator relies on model calculations which are 
currently available for a limited set of regions (Europe, South Asia, East Asia). Uncertainty in the shape 
of integrated exposure-response relationships in different provinces make the quantification of health 
burden inherently uncertain. Secondly, estimated annual mean PM2·5 concentration for each province 
was calculated from GAINS model, the health effects related to air pollution are calculated based on 
provincial concentration rather than grid data, this part will be improved in the future. Thirdly, PM2·5 
from various sources used the same C-R function and RR, so the estimated results may deviate from the 
actual situation to some extent. 
 

Additional information 

The three provinces with the highest number of PM2·5-related deaths are Shandong, Henan, and Hebei 
Province. Compared to 2015, the number of premature deaths in 2018 dropped by roughly 17,000, 15,000, 
and 11,000 for these three provinces, respectively. The contribution from households dropped sharply 
between 2015 and 2018 due to restrictions on raw coal consumption, although households continue to account 
for 18% of total premature deaths in North China, where residential heating is required. Households and 
transport play a key role in megacities (i.e. Beijing and Chongqing), while industry and power have a 
dominant contribution in less developed provinces, for example Anhui, Hebei, Henan, Shandong, and 
Sichuan provinces.  
 
Table 29: Premature deaths due to long-exposure to PM2·5 from different sectors in each province in 
2015 (Unit: person).  

Province Power 
plants 

Industry Transport Households Waste Agriculture Other 
sectors 

Natural Total 

Anhui 4293 11340 4380 6763 3206 15946 2986 2174 51087 

Beijing 731 2851 1345 3650 1351 3400 1730 1180 16240 

Chongqing 1243 4631 3196 7689 1244 5768 1092 261 25124 

Fujian 1288 2796 2503 1455 1369 3765 961 1507 15644 

Gansu 589 1394 503 1912 638 1471 284 4123 10913 

Guangdong 3830 8229 7451 4112 5464 9296 2991 2882 44255 

Guangxi 1748 5636 2627 3050 1562 4549 801 3254 23226 

Guizhou 1382 3239 1181 5311 1005 3410 431 2558 18517 

Hainan 186 395 356 200 164 334 99 477 2211 

Hebei 4408 19003 4224 12944 4261 18501 6424 5846 75612 

Heilongjiang 1577 3322 2716 4522 1587 4692 918 2232 21566 

Henan 7357 22243 6438 12681 5963 28194 5432 2814 91121 
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Hubei 3093 11136 3831 7934 2851 12091 1991 1082 44009 

Hunan 2918 11271 3876 7496 2803 10914 1721 2287 43285 

Inner 
Mongolia 

822 1476 954 5233 605 1516 352 5484 16443 

Jiangsu 5054 13052 6808 5341 3263 15827 4376 2971 56692 

Jiangxi 1712 5173 1960 2244 1462 5716 1011 1297 20574 

Jilin 1413 3388 1773 4135 1341 4450 726 1069 18295 

Liaoning 3224 10289 4476 7123 2801 9738 2229 2596 42476 

Ningxia 225 329 111 293 107 295 50 1367 2778 

Qinghai 98 295 197 417 175 260 66 625 2131 

Shaanxi 1769 4165 1960 6048 2402 5767 1269 2664 26045 

Shandong 8430 22821 8461 12400 4443 29039 5693 3608 94895 

Shanghai 1581 3721 1946 861 1018 3067 1144 0 13338 

Shanxi 1897 5559 1209 5068 1355 5573 1069 3132 24863 

Sichuan 3375 14144 6759 14190 4798 15698 2613 1070 62647 

Tianjin 879 2599 1291 1752 558 2824 1004 727 11634 

Tibet 0 1 1 2 0 1 0 9 14 

Xinjiang 533 1114 1732 2530 195 1505 598 5908 14117 

Yunnan 517 2085 975 1813 224 1962 222 4153 11951 

Zhejiang 2627 4859 3344 1704 1016 6746 1989 1558 23843 

 
Table 30: Premature deaths due to long-exposure to PM2·5 from different sectors in each province in 
2018 (Unit: person). 

Province Power 
plants 

Industry Transport Households Waste Agriculture 
Other 
sectors 

Natural 
Province 

total 
Anhui 3806 10650 4295 1673 2592 17366 3854 2589 46825 
Beijing 695 2626 1212 940 750 3659 2291 1457 13631 
Chongqing 1106 4785 3141 1590 1085 6360 1653 346 20065 
Fujian 1003 2647 2418 435 803 3900 1212 1734 14152 
Gansu 523 1350 472 965 403 1433 399 4787 10333 
Guangdong 3257 8340 7015 2376 2670 9838 3901 3470 40867 
Guangxi 1355 5723 2343 1178 919 4575 1029 3730 20852 
Guizhou 1089 2992 1013 5287 652 3175 555 2838 17601 
Hainan 149 376 325 85 91 316 117 509 1969 
Hebei 4134 17808 3861 3565 3122 20173 8406 7078 68146 
Heilongjiang 1347 2740 2054 5270 726 4298 1047 2308 19790 
Henan 6644 19873 5906 3423 4669 30865 7089 3389 81858 
Hubei 2606 10106 3603 3936 2089 13099 2591 1291 39321 
Hunan 2140 10952 3600 5405 2043 11064 2165 2626 39996 
Inner_Mongolia 940 1506 899 1758 238 1624 518 6983 14467 
Jiangsu 4346 11830 6494 1250 2221 16677 5349 3367 51534 
Jiangxi 1387 4791 1811 938 1054 5779 1283 1495 18538 
Jilin 1319 3058 1512 2225 683 4583 914 1226 15519 
Liaoning 3097 9354 3952 2852 1428 10183 2836 3067 36769 
Ningxia 276 351 91 135 60 284 62 1516 2776 
Qinghai 103 302 187 383 90 257 94 747 2163 
Shaanxi 1749 4359 1848 2656 1557 6451 1821 3398 23839 
Shandong 7810 20524 7621 3568 3486 31142 7215 4253 85619 
Shanghai 1184 3277 1863 309 794 3046 1370 0 11842 
Shanxi 1918 4758 1053 2909 959 5893 1406 3777 22673 
Sichuan 2167 15336 6803 2517 3553 16695 3769 1359 52198 
Tianjin 774 2569 1083 461 427 2935 1264 852 10365 
Tibet 0 1 1 2 0 1 0 8 12 
Xinjiang 984 1083 1309 3314 71 1309 736 6405 15211 
Yunnan 290 1801 813 1151 161 1747 304 4367 10632 
Zhejiang 1915 4664 3205 770 896 6816 2419 1758 22442 
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Figure 30: Comparison of concentration of ambient fine particulate matter (PM₂·₅) of the GAINS and 
the results of observed in 2015-2018 
 
 

Indicator 3.4: Sustainable and healthy transport 
 
Methods: 
This indicator shows the changes in emission intensity of road transport, as well as the average emission 
per vehicle, of 4 major pollutants (CO, HC, NOx, PM10), from 2000 to 2018 for China, and total 
emission intensity of road transport for all provinces from 2010 to 2018, where data is available. 
 
Emissions intensity is calculated through the ratio of vehicular emissions to vehicle ownership. 

Data   

1. Emission data is from China Vehicle Environmental Management Annual Reports (2009-2019)86  
2. Vehicle ownership data is from National Bureau of Statistics of China (2000-2018)87 
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Caveats  

There are several caveats for this first version of this indicator. Firstly, data used did not include low-speed 
vehicle or motorcycles, so it does not consider all emissions from vehicles. Secondly, this indicator does not 
currently measure greenhouse gas emissions intensity, so whilst it is an indicator of the health co-benefits of 
mitigation (through the reduction in road transport-related air pollutants), it does not currently measure 
mitigation directly. Thirdly, this indicator does not consider other health co-benefits of mitigation in the 
transport sector, such as the health benefits resulting from increased physical activity related to walking and 
cycling. Finally, provincial emission data is not available before 2010. 

 

Future Form of Indicator  

This indicator can be improved when reliable data of new energy vehicle ownership for each province 
becomes available, which can be used as supporting data for additional analysis. In the future, carbon 
intensity of vehicles will also be analysed for this indicator. Additionally, the Chinese government has 
recently released an Action Plan for Green Travel (2019-2022) in May, 2019. This will mean that data on the 
percentage of the population walking, cycling, and using public transport provincially and nationally should 
be soon available and will be introduced as a new indicator in future reports.  

Additional Information  

The emission of four major pollutants, hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx) and 
particulate matter (PM10), threatens public health, especially when people are close to the mobile sources in 
densely populated areas of many provinces in China. China has made great effort for the past decades to 
lower mobile source pollution, including the implementation of increasingly stringent standards for vehicle 
emission and fuel quality, and the push for cleaner fuel through modal shift and new energy vehicles. 86 Also, 
new energy vehicle ownership reached 1.46% of the total vehicle ownership in China in 2019, which has 
increased rapidly from 220,000 in 2014 to 3,810,000 in 2019.88  

 

Table 31: The emission intensity of road transport in China from 2000 to 2018 for CO, HC, NOx and 
PM10 (Unit: Tons of Emission/Vehicle) 

Years CO  HC NOx PM10 
2000 1.524635 0.16968 0.238049 0.03145 
2001 1.434485 0.165368 0.228075 0.029189 
2002 1.332086 0.152447 0.217225 0.026642 
2003 1.163693 0.136806 0.188843 0.022661 
2004 1.071385 0.123621 0.174109 0.020566 
2005 0.925416 0.108556 0.152865 0.017597 
2006 0.801114 0.093851 0.129823 0.015038 
2007 0.683973 0.080076 0.113345 0.012872 
2008 0.592006 0.069221 0.098243 0.010903 
2009 0.486577 0.056205 0.084864 0.009012 
2010 0.406905 0.046143 0.068804 0.007242 
2011 0.298835 0.039065 0.061605 0.006306 
2012 0.262094 0.031025 0.053315 0.005415 
2013 0.22984 0.027245 0.046464 0.004475 
2014 0.201581 0.023907 0.039656 0.003768 
2015 0.184784 0.021603 0.033105 0.003291 
2016 0.161431 0.019295 0.028781 0.002756 
2017 0.139683 0.01698 0.025485 0.002334 
2018 0.12308 0.01473 0.022465 0.001817 

 
Table 32: The total emission intensity of road transport from 2010 to 2018 for provinces in China 
where data is available (Unit: Tons of Emission/Vehicle) 

Provinces 2010 2011 2012 2013 2014 2015 2016 2017 2018 
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Anhui 0.517 0.392 0.325 0.274 0.252 0.225 0.190 0.198 0.174 

Beijing 0.230 0.192 0.160 0.144 0.127 0.116 0.098 0.156 0.134 

Chongqing 0.689 0.505 0.425 0.365 0.319 0.271 0.236 0.196 0.166 

Fujian 0.405 0.298 0.248 0.196 0.172 0.145 0.126 0.184 0.152 

Gansu 1.318 0.972 0.823 0.725 0.652 0.525 0.459 0.197 0.182 

Guangdong 0.510 0.379 0.334 0.291 0.243 0.220 0.189 0.169 0.147 

Guangxi 0.674 0.507 0.439 0.355 0.295 0.255 0.212 0.266 0.211 

Guizhou 0.530 0.413 0.365 0.326 0.296 0.256 0.222 0.206 0.168 

Hainan 0.487 0.386 0.432 0.320 0.275 0.222 0.155 0.232 0.160 

Hebei 0.636 0.473 0.401 0.353 0.310 0.274 0.236 0.200 0.172 

Heilongjiang 0.918 0.701 0.650 0.587 0.529 0.484 0.428 0.209 0.177 

Henan 0.627 0.470 0.416 0.357 0.266 0.275 0.238 0.189 0.165 

Hubei 0.582 0.438 0.385 0.339 0.288 0.244 0.199 0.198 0.158 

Hunan 0.456 0.351 0.318 0.282 0.249 0.221 0.187 0.204 0.162 

Inner Mongolia 0.782 0.580 0.537 0.483 0.448 0.424 0.378 0.185 0.166 

Jiangsu 0.409 0.310 0.250 0.216 0.186 0.163 0.143 0.162 0.145 

Jiangxi 0.799 0.593 0.484 0.396 0.347 0.294 0.250 0.211 0.174 

Jilin 0.843 0.633 0.565 0.497 0.434 0.396 0.344 0.155 0.154 

Liaoning 0.519 0.388 0.341 0.309 0.271 0.246 0.220 0.199 0.184 

Ningxia 0.842 0.654 0.566 0.500 0.476 0.370 0.326 0.227 0.186 

Qinghai 0.734 0.589 0.576 0.501 0.483 0.386 0.356 0.233 0.160 

Shaanxi 0.618 0.466 0.414 0.341 0.299 0.268 0.243 0.183 0.156 

Shandong 0.412 0.309 0.257 0.217 0.183 0.165 0.149 0.196 0.161 

Shanghai 0.334 0.263 0.234 0.223 0.197 0.168 0.138 0.212 0.186 

Shanxi 0.657 0.505 0.457 0.412 0.376 0.348 0.316 0.184 0.172 

Sichuan 0.377 0.294 0.262 0.225 0.190 0.170 0.150 0.184 0.164 

Tianjin 0.304 0.234 0.211 0.187 0.186 0.174 0.157 0.163 0.143 

Tibet 1.831 1.336 1.327 1.199 1.086 0.842 0.742 0.393 0.234 

Xinjiang 1.260 0.917 0.771 0.687 0.614 0.587 0.519 0.172 0.175 

Yunnan 0.620 0.485 0.438 0.404 0.372 0.351 0.308 0.107 0.179 

Zhejiang 0.255 0.192 0.167 0.149 0.127 0.115 0.099 0.137 0.126 

 

Indicator 3.5: Food, agriculture, and health 

Methods 

At the national level, emissions from livestock and crop production in China (area code 351) were 
obtained from the FAOSTAT from 2000-2017. At provincial level, emissions of 30 provinces in China 
mainland in 2017 were calculated, taking data from the China Statistical Yearbook. For livestock, 
methane emissions from enteric fermentation and manure management are calculated by multiplying 
livestock numbers and emission factors per head, nitrous oxide emissions from manure management 
and manure left on pasture are calculated by multiplying manure excreta and emission factors per 
kilogram of manure nitrogen. The following livestock are included: ruminant including buffaloes, 
camels, cattle (dairy), cattle (non-dairy), goats, and sheep, and non-ruminant including chicken 
(broilers), chicken (layers), ducks, swine (market), swine (breeding), asses, horses, mules, and turkeys.  
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For crops, methane emission from rice cultivation are calculated by multiplying rice area and emission 
factors per hectare. Nitrous oxide emissions from fertilizer (synthetic fertilizer and manure) and crop 
residues applied to soil are calculated by multiplying the nitrogen content of fertilizer or crop residue 
returning to field and emission factors per kilogram of nitrogen. Emissions from crop residue burning 
are calculated by multiplying the dry biomass of crop residue for burning and emissions factors per 
kilogram of dry biomass. 

Data   

1. At provincial level, crop production, sown area of rice and synthetic fertilizer use for crop emission 
calculation, and livestock number for livestock emission calculation were obtained from China 
Statistical Yearbook 2018.  

2. Emission factors for crop residue, enteric fermentation, manure management, and manure left on 
pasture were obtained FAOSTAT (calculated data).  

3. Crop residue biomass was calculated by multiplying grain production and a straw/grain ratio 
obtained from Gu et al. (2015).89  

4. Emission factors for straw burning were derived from Zhang et al. (2017)90 and Zhang et al. (2008)91. 
Animal excreta were calculated according to the Technical Guidelines for Compiling the Inventory 
of Atmospheric Ammonia Emission.92  

5. The percentage of manure applied to soil was derived from Ma et al. (2012).93 

Caveats  

The sum of provincial emissions calculated differ from national emission obtained from FAOSTAT, 
because some parameters are missing in FAOSTAT for the calculation of provincial emissions, or China 
specific data derived from literature. The sum of provincial emissions from livestock was 12% lower 
than livestock emissions for China obtained from FAOSTAT, mainly due to a relatively underestimation 
of emissions from manure left on pasture. In calculating manure nitrogen left on pastures by grazing 
livestock, China’s five main pastoral areas: Inner Mongolia, Gansu, Qinghai, Tibet, and Xinjiang were 
classified as grazing systems according to Bai et al. (2013),94 while other provinces were assumed to 
have no grazing systems due to data availability. This classification leads to a relatively underestimation 
of livestock manure left on pasture. The sum of provincial emissions from crop production was 16% 
higher than crop emissions for China obtained from FAOSTAT, mainly due to a relatively overestimation 
of emissions from burning of crop residues. In calculating emissions from burning of crop residues, we 
used emission factors derived from Zhang et al. (2008),91 who simulated the open burning of crop 
residues in China by a custom-designed combustion and test device. The emission of CO2e per kilogram 
dry matter of burned crop residues was 17-28 times higher than that from FAOSTAT calculated data 
using IPCC Tier 1 method. 

Findings 

Overall CO2e emissions from Chinese livestock have decreased by 7% since 2000 to approximately 
0.29 Gt in 2017 (Figure 31). Ruminants contribute to 77% of total livestock emissions (0.22 GtCO2e 
per year). This is split between non-dairy cattle (34-46%), followed by goats and sheep (17-20%), 
buffalo (12-13%) and dairy cattle (3-8%). Emissions from non-ruminants are divided between pigs (13-
16%), poultry (5-7%) and others (2-4%). A decrease in stock of non-dairy cattle by 28% is the main 
reason for livestock emission reduction from 2000 to 2017, while the stock of dairy cattle, goats and 
sheep, and poultry increased by 147%, 8%, and 35% respectively (Figure 32). 
 
Emissions of CO2e from crop production have increased by 21% since 2000, to around 0.39 Gt in 2017 
(Figure 31). The majority of the increase in emissions is attributed to synthetic fertilizer (45-52% of 
total crop emmissions in 2017) and crop residues (8-10%) which contributed 74% and 16% to the total 
increase in crop emissions over this period. The other activites contributing to crop emissions include 
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rice cultivation (29-35%), manure applied to soil (9-10%) and crop residues burning (1%).  
China is the largest consumer of synthetic fertilizer worldwide. Synthetic fertilizer has played an 
indispensable role in ensuring food security in China during the past three decades, but also is a major 
source of pollution for freshwater and coastal ecosystems and greenhouse gas emissions.95,96 From 2000 
to 2017, China’s chemical fertilizer use increased by 41%. However, in 2015, China made a plan of 
Zero Growth in Chemical Fertilizer Use by 202097 and since 2015, China’s chemical fertilizer use has 
begun to decline (Figure 33). 
 
At the provincial level, for livestock, Inner Mongolia, Sichuan, Yunnan and Xinjiang have the largest 
emissions (31% national wide) due to large numbers of ruminants (Figure 34). For crop production, 
Henan has the largest emission due to the consumption of synthetic fertilizer, followed by Heilongjiang, 
Hunan, and Anhui that have large area of rice cultivation. The four provinces together contribute to 27% 
of total national emissions from crop production.  

 
Figure 31: Gigaton CO2e emissions from 2000 to 2017. (A) CO2e emissions from livestock. (B) CO2e 
emissions from crop production. CO2e=carbon dioxide equivalent. 



68 

 

 

 
Figure 32: China’s livestock number during 2000 to 2017 
(A) Stock of ruminant animals. (B) Stock of non-ruminant animals.  
 

 
Figure 33: China’s consumption of chemical fertilizer products during 2000 to 2018 
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Figure 34: Provincial CO2e emissions in 2017. (A) CO2e emissions from livestock. (B) CO2e emissions 
from crop production. CO2e=carbon dioxide equivalent. 
 

Section 4: Economics and finance 

Indicator 4.1: Health and Economic Costs of Climate Change and Benefits from Mitigation 

Indicator 4.1.1: Costs of heat-related mortality 

Methods 

This indicator is based on the value of statistical life (VSL) to monetize the heatwave-related mortality, 
assuming a fixed VSL for each area in China across time. 31 provinces in China were included in the 
estimation. 
Heatwave-related mortality data is provided by WG1. 
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This indicator assumes a fixed VSL for each area in China across time. The mean value of VSLs in constant 
2007 price (about 1.62 million RMB)98 estimated in many studies. This was translated to the value in constant 
2015 US$ price. The monetized value of mortality is equivalent to mortality multiped by the fixed VSL. The 
total values are also calculated as a proportion of GDP for China and for each province. 

Data   

1. Heatwave-related mortality data as described in indicator 1.1.2; 
2. GRP, GRP index, GDP, GDP index and exchange rate data from National Bureau of Statistics of China.99 

Caveats  

The caveats of this indicator would mainly be in two aspects.Firstly, the VSL method has the disadvantage 
of relying on the estimates of what people say they would be willing pay to reduce mortality risks, collected 
in surveys. The results of studies highly depend on the survey design and characteristics of populations 
questioned, leading to doubts on the gap between surveyed results and actual VSL.Secondly, different areas 
have different VSLs, therefore using a fixed VSL in all regions may lead to some uncertainty. 

Future Form of Indicator  

In the future, this indicator would explore other methods to estimate economic costs of heatwave-related 
mortality, considering methods to estimate VSLs from wage-risk studies which measured revealed rather 
than hypothetical willingness to pay; or try to include value of Years of life lost (YLL) into consideration so 
that it could capture the age distribution of lives lost from heat stress. 

Indicator 4.1.2: Economic cost of heat-related labour productivity loss 

Methods 

This indicator measures the total economic costs on industrial output resulting from potential heat-related 
labour productivity losses reported in indicator 1.1.3. It sees how the heat-related labour productivity loss in 
each industry influences the output of other industries through inter-industrial dependencies. Its calculation 
is based on the Ghosh model under the Input-Output (IO) analytical framework (see Xia, Li 100 for a full 
description of the model). The approach considers loss in productive hours as an indicator that brings about 
reduction in industrial value added, which in turn affects the output of all sectors adversely through the 
production supply chains. Therefore, it distinguishes between direct and indirect economic costs due to heat-
related labour productivity loss. The direct cost results from the initial decrease in value added, and the 
indirect cost comes from inter-industrial dependencies. The analysis is also extended to a multi-regional scale 
to incorporate the spill-over effect of indirect economic cost through the inter-provincial trade links. 
 
The main procedures are as below: 
 
1. The calculations are first performed on the national scale using the Chinese IO tables available for five 

years between 2007-2017 (2007, 2010, 2012, 2015 and 2017), and then on the provincial scale using the 
Chinese Multiregional IO table in 2015. All the IO tables used in this analysis are converted from current 
LCU prices into constant US$ in 2015. 

2. The reductions in industrial working hours are compared with the normal industrial working hours 
without heat-related labour productivity loss. This elicits the percentage losses of labourers’ working 
hours caused by heat-related labour productivity loss each year, which constitutes a key input variable 
of the Ghosh model. It is assumed that there is no heat-related capital loss in this section. 

3. The calculated percentage reductions in industrial working hours are expected to cause the same 
percentage reductions in industrial value added, as labour is a major component of the industrial value 
added.  

4. The initial loss of a sector’s value added, which constitutes the direct economic cost, will have knock-
on effect that reduces other sectors’ output through the production and supply network depicted by the 
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IO matrix, and the aggregate of output reductions of all sectors is counted as the total economic cost 
caused by heat-related labour productivity loss. The increase from the direct to the total cost indicates 
the indirect cost resulting from inter-industrial dependencies. 

5. The industries are divided into primary, secondary and tertiary industries, following the same rules as 
Indicator 1.1.3. 
 

Data 

1. Data on heat-related labour productivity loss is provided by WG1 responsible for Indicator 1.1.3.  
2. The Chinese IO tables between 2007 and 2017 are obtained from the website of the National Bureau of 

Statistics of China.101  
3. The Chinese multi-regional IO table for 2015 is obtained from the CEADs dataset.102 

Caveats 

See Indicator 1.1.3, for caveats related to the calculation of heat-related labour productivity loss. 
The current report employs a supply-driven IO model that fixes the input proportions between different kinds 
of productive factors. This means that producers do not seek for substitutive factor inputs when labourers 
become less productive due to heat-related labour productivity loss. The model also excludes the possibility 
of price adjustment, such as rising wages, to encourage labourer’s production enthusiasm. Such rigidity 
decides that the model is better suitable for a short-term analysis. Therefore, the indirect economic cost is 
estimated during a single year with heat stress.  
 
Due to data availability, the analysis is only performed at specific years with accessible IO tables. Because 
of different IO tables used, the sum of provincial costs due to heat-related labour productivity loss may be 
slightly different from the national costs. 

Future Form of Indicator 

In the future, this indicator will be developed to cover consecutive years with well-established Chinese IO 
tables both on the national and multi-provincial scales. Additionally, the industries will be disaggregated into 
more sub-industries when deeper investigations are conducted on industrial labourers. 

Additional Information 

Although the tertiary industry suffered much smaller direct costs from heat-related labour productivity loss 
than other industries, it still made up a considerable proportion of indirect costs (15.3% in 2015) due to inter-
industrial dependencies. 

Table 33: Chinese direct and indirect economic costs, in billions of US$ in 2015, from heat-related 
labour productivity loss by industry and year. 

Years 
Direct losses (billion US$) Indirect losses (billion US$) 

Primary 
industry 

Secondary 
industry 

Tertiary industry Primary industry 
Secondary 
industry 

Tertiary 
industry 

2007 5.70 6.35 0.32 1.64 15.82 2.84 

2010 8.90 10.90 1.50 2.70 33.12 5.88 

2012 7.73 7.26 0.14 2.25 22.82 4.18 

2015 6.68 6.84 0.11 2.17 26.46 5.17 

2017 13.03 25.58 2.78 4.31 65.38 15.23 

 
Table 34: Chinese economic costs, in terms of shares in regional GDP, from heat-related labour 
productivity loss by province in 2015. 
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Provinces 
Direct costs (% of 

regional GDP) 
Indirect costs (% of regional 

GDP) 

Beijing 0.01% 0.15% 

Tianjin 0.05% 0.16% 

Hebei 0.07% 0.17% 

Shanxi 0.00% 0.14% 

Inner Mongolia 0.00% 0.11% 

Liaoning 0.00% 0.12% 

Jilin 0.00% 0.07% 

Heilongjiang 0.00% 0.09% 

Shanghai 0.38% 0.23% 

Jiangsu 0.26% 0.41% 

Zhejiang 0.16% 0.36% 

Anhui 0.20% 0.45% 

Fujian 0.16% 0.31% 

Jiangxi 0.31% 0.50% 

Shandong 0.09% 0.30% 

Henan 0.14% 0.40% 

Hubei 0.21% 0.35% 

Hunan 0.19% 0.28% 

Guangdong 0.79% 0.85% 

Guangxi 0.58% 0.64% 

Hainan 0.98% 0.43% 

Chongqing 0.08% 0.25% 

Sichuan 0.05% 0.16% 

Guizhou 0.00% 0.12% 

Yunnan 0.00% 0.16% 

Tibet 0.00% 0.05% 

Shaanxi 0.02% 0.13% 

Gansu 0.00% 0.15% 

Qinghai 0.00% 0.09% 

Ningxia 0.00% 0.11% 

Xinjiang 0.00% 0.07% 

 

Indicator 4.1.3: Economic costs of air pollution-related premature deaths 

Methods 

The methodology for this indicator differs from its counterpart in the global Lancet Countdown report, which 
refers to the monetary values of lost years of life due to ambient PM2.5 pollution, as well as the methods used 
in Indicator 4.1.1 of this report. Here, using methodology similar to that of Indicator 4.1.2, this indicator 
measures the reductions in industrial output resulting from PM2.5-related premature deaths of labourers. The 
calculation is based on the Ghosh model under the Input-Output (IO) analytical framework.103,104 The 
approach considers the PM2.5-related mortality of labourers as a form of labour productivity loss, and sees 
how the loss in each industry influences the output of other industries through inter-industrial dependencies. 
The model assumes that the percentage losses of labour productivity bring about the same percentage 
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reductions in industrial value added, which in turn affects the output of all industries adversely through the 
production supply chains. Therefore, it distinguishes between direct and indirect economic costs due to PM2.5 
pollution. The direct cost results from the initial decrease in value added, and the indirect cost comes from 
inter-industrial dependencies. The analysis is also extended to a multi-regional scale to incorporate the spill-
over effect of indirect economic cost through the inter-provincial trade links. 
 
The main procedures are as follows: 
 
1. The calculations are first performed on the national scale using the Chinese IO tables for two years 2015 

and 2018, and then on the multi-provincial scale using the Chinese Multiregional IO table in 2015. The 
multi-provincial analysis is performed for the single year of 2015, as it is the only year with the available 
Multiregional IO table. All the IO tables used in this analysis are changed from current LCU prices into 
constant US$ in 2015. 

2. The total numbers of PM2.5-related deaths are multiplied by the “labour force mortality rates” to calculate 
the absolute losses of labourers. Labour force mortality rates in this context refer to the proportions of 
deaths at the working age (i.e., 15-65) among deaths of all age groups. As PM2.5-related labour force 
mortality rates are not available at present, the all-cause labour force mortality rates are used as reference. 
Different provinces have different labour force mortality rates.  

3. The absolute losses of labourers are disaggregated into the primary, secondary and tertiary industries 
according to the sectoral results of PM2.5-related deaths, and then divided by the sizes of industrial labour 
force in provinces (or the national labour force in the analysis on the national scale) to obtain the relative 
losses of labourers.  

4. This entails the percentage losses of industrial labour productivity, which constitutes a key input variable 
of the Ghosh model. It is assumed that there is no capital loss caused by PM2.5 pollution and labourers 
are fully employed in the economy. 

5. The calculated percentage reductions in industrial labour productivity are expected to cause the same 
percentage reductions in industrial value added, as labour is a major component of the industrial value 
added. This assumption is drawn from the principle of the IO framework, which defines that proportional 
increase in industrial output can only be achieved by simultaneous increases in both capital and labour.105 
In other words, the shortage of any input can directly constrain the industrial output capacity, with full 
employment of input factors. 

6. The initial loss of an industry’s value added, which constitutes the direct economic cost, will have knock-
on effect that reduces other industries’ output through the production and supply network depicted by 
the IO matrix, and the aggregate of output reductions in all industries is counted as the total economic 
costs of premature deaths due to PM2.5 pollution. The increase from the direct to the total costs indicates 
the indirect costs resulting from inter-industrial dependencies. 

7. The primary, secondary and tertiary industries are identified following the same rules as Indicator 1.1.3. 

Data 

1. Data on premature mortality from ambient PM2.5 pollution is provided by WG3 responsible for Indicator 
3.3.2.  

2. The Chinese IO tables in 2015 and 2018 are obtained from the website of the National Bureau of 
Statistics of China.101  

3. The Chinese multi-regional IO table in 2015 is obtained from the CEADs dataset.102  
4. The provincial labour force by industry is sorted from Chinese provincial statistical yearbooks.  
5. The all-cause mortalities by province and age group are collected from the sixth national population 

census of China.106 

Caveats 

See Indicator 3.3.2, for caveats related to the calculation of premature mortality due to ambient air pollution. 
The morbidity rates of PM2.5 pollution, which could entail larger economic costs, are not incorporated in this 
analysis due to the short time limits of the project. However, this is made up by comparing the results with 
previous work that considers both PM2.5-related mortality and morbidity rates.103,104 The comparison would 
deliver more comprehensive information on the economic costs of PM2.5 pollution. The industrial labour 
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losses are not derived directly from the sectoral results of PM2.5-related deaths, as deaths attributed to a certain 
sector (e.g., the transport sector), do not necessarily mean deaths taking place within that sector. The 
breakdown of labour losses into the three industries is weighted-proportional to the regional employment in 
the three industries. For example, it is assumed that most PM2.5-related labour deaths attributed to the 
agricultural sector fall into the primary industry, while those attributed to the transport sector belong mainly 
to the secondary and tertiary industries. Therefore, the primary industry is given more weight when 
proportionally disaggregating the labour deaths with agricultural causes into the three industries, while the 
secondary and tertiary industries are given more weights for those attributed to the transport sector. The report 
employs a supply-driven IO model that fixes the input proportions between different kinds of productive 
factors. This means that producers do not seek for substitutive factor inputs when labour employment 
decreases due to PM2.5-related mortality. The model also excludes the possibility of market-based price 
adjustment, such as rising wages, to encourage the working enthusiasm of the remaining labourers. Such 
rigidity decides that the PM2.5-related economic cost is estimated on the short-term scale with constant 
economic conditions. In 2015, due to different IO tables used, the sum of provincial costs connected to PM2.5 
pollution in the multi-regional analysis may be slightly deviated from the national costs in the single-region 
analysis. Finally, this indicator considers the economic costs of mortality related to people’s ability to work, 
however it does not consider the monetary value people place on life (i.e., VSL).  

Future Form of Indicator 

An ideal form of this indicator would reflect economic costs resulting from both mortality and morbidity 
rates of PM2.5 pollution. This can be developed in future iterations of this indicator. 

Additional Information 

Table 35: Chinese direct and indirect economic costs, in billions of US$ in 2015, from premature 
mortality of PM2.5 pollution by industry and year. 

Years 
Direct losses (billion US$) Indirect losses (billion US$) 

Primary 
industry 

Secondary 
industry 

Tertiary 
industry 

Primary 
industry 

Secondary 
industry 

Tertiary 
industry 

2015 0.33 1.49 1.69 0.23 5.52 1.55 

2018 0.35 1.62 1.90 0.22 4.89 1.71 

 
Table 36: Chinese economic costs, in terms of shares in regional GDP, from premature mortality of 
ambient air pollution by province in 2015. 

Provinces 
Direct costs (% of regional 

GDP) 
Indirect costs (% of regional 

GDP) 

Beijing 0.04% 0.05% 

Tianjin 0.05% 0.07% 

Hebei 0.06% 0.09% 

Shanxi 0.04% 0.06% 

Inner Mongolia 0.05% 0.05% 

Liaoning 0.06% 0.09% 

Jilin 0.05% 0.08% 

Heilongjiang 0.04% 0.05% 

Shanghai 0.03% 0.05% 

Jiangsu 0.03% 0.07% 

Zhejiang 0.02% 0.06% 

Anhui 0.03% 0.10% 

Fujian 0.02% 0.04% 
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Jiangxi 0.02% 0.05% 

Shandong 0.05% 0.10% 

Henan 0.05% 0.10% 

Hubei 0.04% 0.06% 

Hunan 0.04% 0.05% 

Guangdong 0.03% 0.05% 

Guangxi 0.03% 0.05% 

Hainan 0.01% 0.04% 

Chongqing 0.05% 0.08% 

Sichuan 0.05% 0.08% 

Guizhou 0.04% 0.05% 

Yunnan 0.02% 0.04% 

Tibet 0.00% 0.01% 

Shaanxi 0.05% 0.06% 

Gansu 0.03% 0.05% 

Qinghai 0.03% 0.04% 

Ningxia 0.03% 0.05% 

Xinjiang 0.05% 0.06% 

 
 

Indicator 4.1.4: Economic losses due to climate-related extreme events 

Methods 

The methodology of this indicator is different from its counterpart in the global report, as it includes 
both direct and indirect economic losses of climate-related extreme events. Direct losses are the physical 
or tangible damage due to these events, which is reported in the global report. Indirect losses refer to 
the subsequent losses, including business interruption losses of affected economic sectors, and the 
spread of losses towards other initially non-affected economic sectors, and the costs of recovery 
processes.107  
 
In this report, the indirect losses are calculated as the reductions of industrial Gross Value Added (GVA), 
drawing on the Flood Footprint model which highlights the significance of inter-industrial dependencies 
and post-disaster recovery costs in the economic impact assessment of disaster risks.108-110 Loss values 
and all other economic data used in this analysis are converted into US$ 2015 terms. 
 
The main procedures are as below: 
 
1. Five years 2007, 2010, 2012, 2015 and 2017 are selected to perform the calculation of economic 

losses due to climate-related extreme events on the national scale. These are the years when Chinese 
Input-Output (IO) tables are available. The national IO tables used in this analysis are converted 
from current LCU prices into constant US$ in 2015, and then divided by the number of months per 
year as the calculation is performed on monthly basis. 

2. Annual direct damage due to climate-related extreme events is obtained on the national scale, and 
is further broken down into three industrial sectors and a residential sector, according to the 
proportions based on empirical evidence of Chinese flooding events between 1961-1990.  

3. The annual damage values are then split into five months (from May to September), as the summer 
seasons are considered as highly risky with climate-related extreme events. Therefore, the 
modelling follows a “consecutive multiple events” strategy that is originally introduced by Zeng 
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and Guan 108. 
4. The absolute direct damage (in US$ 2015 terms) is divided by the amount of industrial capital stock 

to get the percentage losses of capital productivity. The Chinese capital stock by industry is 
calculated using the perpetual inventory method, which is a common practice in the field of capital 
stock estimation.111-113 

5. The percentage losses of industrial capital productivity are delivered into the Flood Footprint model 
to calculate the indirect losses due to climate-related extreme events. The capital productivity loss 
of a certain industry initially reduces its own output capacity, and then spreads to other industries 
through inter-industrial dependencies, which are depicted by the IO matrix of that year. The capital 
loss in the residential sector does not affect industrial output capacity directly, as this sector does 
not participate in production activities. However, the reconstruction requirements in the residential 
sector competes for resources with the industrial sectors, which in turn slows down the recovery of 
the industrial output capacity. The reconstruction demands in both the industrial and residential 
sectors are satisfied through the proportional rationing scheme among all categories of final uses. 

6. The indirect losses are calculated as the accumulative losses of industrial GVA until the economy 
is recovered to its pre-event levels. 

7. The three major industrial sectors are identified following the same rules as Indicator 1.1.3. The first 
or primary industry refers to agricultural, forestry and fishing activities, the secondary industry 
includes mining, manufacturing, utilities and construction, and the third or tertiary industry includes 
transport, trade, catering services, finance, real estate and other services. 

Data 

1. Data on direct damage is sourced from the NatCatSERVICE of Munich Re.114  
2. The Chinese IO tables between 2007 and 2017 are obtained from the website of the National Bureau 

of Statistics of China.101  
3. Chinese GDP are from the World Bank Development Indicator Database.115  
4. Data on Chinese industrial capital stock is derived from the IMF’s Investment and Capital Stock 

Dataset (ICSD),116 and Statistical Yearbooks of the Chinese Investment in Fixed Assets.117 

Caveats 

The model has assumed no market-based price adjustment and substitution of suppliers, encountering 
event-induced shortage of intermediate supplies. Categories of input factors are employed in fixed 
proportions, which are defined by the IO matrix of the year, during the production processes. This means 
that the economic losses of climate-related extreme events are calculated on the short term, generally 
no more than two years, until the economy is recovered to the pre-disaster level.In addition, the model 
does not consider productivity losses of labourers, another key productive factor, resulting from climate-
related extreme events, as such data is not available at present. However, empirical evidence shows that 
compared to the percentage losses of capital, the relative losses of labour are usually much lower, so 
that they have little effect on the modelling results. 

Future Form of Indicator 

In the future, this indicator will be developed to present Chinese multi-provincial economic losses due 
to climate-related extreme events, using the Multi-regional Disaster Footprint model, when data on 
physical damage is improved on the provincial scale. 

Findings 

The economic losses in China, relative to GDP, due to climate-related extreme events, were declining after 
peaking in 2010, the year most severely hit by extreme events. However, recent losses in 2017 still reached 
nearly US$20 billion (0.18% of GDP) (Table 35). This is consistent with the pattern of physical damage 
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caused by these events estimated by Munich Re over the years.114 For all years, the total losses reached on 
average 134% of direct losses. This result is slightly lower than 139% in Hallegatte 118 who estimated the 
economic losses of Katrina in Louisiana. A major part (43%-51%) of indirect losses were found in the 
primary industry, although its direct losses stayed lower than other industries, both in relative and absolute 
terms. This is caused by the low capital intensity (capital per output) in this industry, which makes smaller 
physical losses bring about greater reduction in its capital productivity, and thus higher indirect losses.  

 
Figure 35: Economic losses from climate-related extreme events relative to GDP  
(dark color indicates direct costs and light one indicates indirect costs) 
GDP = gross domestic product. US$ 2015 = based on the value of the US dollar in 2015. 

 

Table 37: Chinese direct and indirect losses, relative to GDP, from climate-related extreme events by 
industry and year. 

Years 

Direct losses/US$10000 GDP Indirect losses/US$10000 GDP 

Primary 
industry 

Secondary 
industry 

Tertiary 
industry 

Primary 
industry 

Secondary 
industry 

Tertiary 
industry 

2007 2.42 6.99 6.92 5.44 2.09 5.07 

2010 2.61 7.52 7.45 6.85 2.12 5.39 

2012 1.19 3.43 3.40 3.37 0.89 2.32 

2015 1.16 3.33 3.30 3.14 0.86 2.23 

2017 0.87 2.52 2.49 1.94 0.75 1.60 

 
 

Indicator 4.2: The Economics of the Transition to Zero-Carbon Economies 

Indicator 4.2.1: Healthy energy investments 

Methods  

The methodology for this indicator remains the same as described in the 2018 global Lancet Countdown 
report appendix, however the 2019 global Lancet Countdown report used the updated changed definition of 
investment given by the IEA. The revised approach from IEA considered ‘ongoing’ capital spending, with 
investment in a new plant spread evenly from the year new construction begins, to the year it becomes 
operational. In this Chinese Lancet Countdown report and previous global reports, data was presented as 



78 

 

‘overnight’ investment, in which all capital spending on a new plant is assigned to the year in which the plant 
became operational.  

The data for this indicator is from the Wind Economic database.119 Wind is a comprehensive and paid 
database which massively combines macro and sectoral data. It is commonly used for financial and macro 
analysis. Four categories of energy investment are defined: 
 
• Fossil-fired power – investment in fixed capital information and constructing power generation facilities of 
coal-, gas-, and oil-fired electricity. 
• Nuclear –investment in fixed capital information and constructing power generation facilities of nuclear 
electricity. 
• Hydro power – investment in fixed capital information and constructing power generation facilities of 
hydroelectricity. 
• Wind power – investment in fixed capital information and constructing power generation facilities of wind 
electricity. 
• Solar PV – investment in fixed capital information and constructing power generation facilities of solar 
electricity. 
• Biomass – investment in fixed capital information and constructing power generation facilities of biomass 
electricity. 
• Grid – investment in fixed capital information of constructing overall power grid. 
 
There are two types of investments for each kind of energy in the power sector. One is the investment in fixed 
capital formation, which is a general term for the workload of constructing and purchasing fixed assets and 
the expenses related to it in a certain period (type 1). The other is investment in constructing power generation 
facilities including construction of electricity grid and power networks (type 2, Table 38). Considering the 
data continuity, especially the availability of data in 2018-2019, only the latter type of investment was 
analyzed in this indicator. 

Data  

1. Energy investment data, listed by wind, hydro, nuclear, coal and overall power grid, is taken from the 
Wind Economic database.119 

2. The National Power Industry Statistics Data contributes the results of Solar PV and it originates from 
National Energy Administration of PRC.120  

3. Biomass data is taken from the China National Renewable Energy Center (CNREC) Renewable 
Energy Outlook 2019.121 

4. Values presented are in US$ 2019 billion, based on the value of RMB in 2015 and the exchange rate 
according to National Bureau of Statistics of China. 122 

Caveats  

Renewable energy investment here mainly includes centralized project but excludes investment in 
decentralized facilities. In the original dataset, there are two types of investment dataset. Type 1 is investment 
in fixed capital formation, and Type 2 is investment in constructing power generation facilities. Type 1 
doesn’t include solar PV and is only available up to 2017. Type 2 is more comprehensive and includes data 
until 2019, however, it doesn’t include other facilities related to renewable energy power generation and 
distribution. It is worth noting that type 2 is part of type 1 and investment in constructing power generation 
facilities could partially represents the future use of this energy. Furthermore, we also used data from China’s 
Renewable Energy Outlook 2019121 for biomass.  

Data on the recent investments in energy efficiency improvement is not available. Meanwhile, low-carbon 
energy may also include sectors other than power generation, although data is not available. This indicator 
for provincial level should be updated for the most recent years. This indicator should be updated with the 
data before 2010. 
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Future Form of Indicator 

This indicator for provincial level should be updated for the most recent years. This indicator should be 
updated with the data before 2010. Further datasets containing data on investments in energy efficiency and 
low-carbon enery in sectors other than power generation will be explored.  

Additional Information 

 

 
Figure 36: Investment in power sector construction from 2008 to 2019 

 

Table 38: Investment in power sector construction from 2008 to 2019 (US$ billion) 
 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Fossil 31.72  29.38  26.28  19.81  17.08  15.50  18.64  18.67  17.62  13.29  11.79  9.29  

Hydro 16.04  16.50  15.09  16.97  21.11  20.81  15.35  12.67  9.71  9.64  10.23  12.00  

Nuclear 6.23  11.12  11.93  13.35  13.37  10.17  8.67  9.07  7.93  7.03  6.63  4.94  
Wind 9.97  14.88  19.12  15.78  10.35  10.54  14.90  19.27  14.59  10.55  9.74  17.27  
Solar PV     9.34  20.06  29.89  49.52  67.15  76.12  53.92  43.84  
Biomass          4.00  6.29  8.34  
Grid 54.71  74.19  63.53  64.44  62.37  65.04  67.06  74.50  85.50  82.72  81.53  71.61  

Non-fossil 32.24  42.50  46.14  46.10  54.16  61.58  68.81  90.52  99.39  107.34  86.80  86.39  

Total 
[Generation] 63.96  71.88  72.42  65.91  71.24  77.08  87.45  109.19  117.01  120.64  98.59  95.68  

Total 118.67  146.07  135.95  130.35  133.62  142.12  154.52  183.69  202.50  203.35  180.13  167.29  

[Notes: originally derived from Wind Economic database and China Renewable Energy Outlook 2019121] 
 

Indicator 4.2.2: Employment in low-carbon and high-carbon industries 

Methods 

This indicator presents China’s direct employment in fossil fuel extraction industries, including coal mining, 
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oil and gas exploration and extraction, as well as direct and indirect employment in renewable energy. 

The data for this indicator is sourced from REN21 Global Status Report 2019 123 (renewables) and CEIC 
Data (2012-2019)124 (fossil fuel extraction), National Bureau of Statistics of China122. 

Renewable industries included are:  

 Hydropower 
 Solar energy  
 Wind energy;  
 Bioenergy;  
 Other technologies.  

Bioenergy includes liquid biofuels, soil biomass and biogas. Solar energy includes solar heating/cooling; 
solar photovoltaic and concentrated solar power, ‘Other technologies’ includes geothermal energy, ground-
based heat pumps, municipal and industrial waste, and ocean energy. Fossil fuel extraction includes coal 
mining, oil and gas exploration and production.Fossil fuel extraction values include direct employment, 
whereas renewable energy jobs include direct and indirect employment (e.g. equipment manufacturing), 
except for large hydropower (direct employment only).  

Due to an improvement in data collection and estimation methodology, employment values reported for other 
technologies are unavailable in some years.  

Data 

1. Data on renewable energy employment is sourced from REN21 Global Status Report 2019.123  
2. Data on employment in fossil fuel extraction is from CEIC Data (2012-2019)124, National Bureau of 

Statistics of China122 

Caveats  

The caveats of this indicator can be described in three aspects. Provincial level data is not available for most 
recent years and employment in low-carbon industries data is only available from 2012. Both direct and 
indirect employment in renewable industries are counted, whereas only direct employment in fossil fuel 
extraction is considered for employment in fossil fuel industries.  
. 
Future Form of Indicator 
 
An ideal future form of this indicator would track both direct and indirect employment from the renewables 
and fossil fuel extraction industries, along with the provincial level distribution in their change over time.  
 

Additional Information 
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Figure 37: Employment in renewable energy and fossil-fuel extraction sectors  
 

Table 39: China employment in renewable energy and fossil-fuel extraction sectors (Million Jobs) 

 
 

Indicator 4.2.3: Fossil fuel subsidies 

Methods 

The methodology for this indicator is the same as described in the 2019 global Lancet Countdown report 
appendix.1 The data for this indicator is taken from the IEA,125 which is calculated based on the price-gap 
approach. As the most commonly applied methodology for quantifying consumption subsidies, the price-gap 
approach compares average end-user price paid by consumers with reference prices that reflect full cost of 
supply. Therefore, the price gap equals to the amount by which an end-use price falls short of the reference 
price, indicating the presence of a subsidy. Prices are presented in US$2018. The data required for the price-
gap calculations are extensive. Original data and a detailed description of the calculation methodology can 
be obtained from the IEA (2019).126 

Data   

1. IEA, Fossil-fuel consumption subsidies by country.125 

Caveats  

Coal consumption were not available for any of the years reported, and gas consumption subsidies were 
unavailable for some years, due to the lack of consistent data. Moreover, these values do not include the 
economic value of the unpriced negative externalities. 

 2012 2013 2014 2015 2016 2017 2018 

Solar Energy 1.1 1.93 2.241 2.395 2.663 2.897 2.875 

Bioenergy 0.38 0.354 0.521 0.521 0.376 0.376 0.382 

Hydropower  0 0 0.126 0.1 0.407 0.407 0.308 

Wind Power 0.267 0.356 0.502 0.507 0.509 0.51 0.51 

Other Technologies 0 0 0 0 0 0.002 0.003 

Fossil Fuel Extraction 5.996 6.072 4.884 5.238 4.72 4.13 3.881 
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Future Form of Indicator  

Future versions of this indicator will aim to have the consistent inclusion of production and consumption 
subsidies for all fuels, especially coal, available on an annual basis. Similar to the global Lancet 
Countdown report, a ‘net carbon price’ indicator will be developed, including data from this indicator, 
along with that of the carbon pricing (Indicator 4.3.1). 

Additional Information  

 

 
Figure 38: Fossil fuel and electricity consumption subsidies in China, 2010-2018 
Note: The number on top of each bar represents the rank of fossil fuel subsidy of China in the world on the 
corresponding year.  
 
Table 40: Fossil fuel consumption subsidies in China, 2010-2018 (million 2015 US$) 

Year Oil Electricity Gas Coal Total 

2010 11885.9  29827.3  - - 41713.1  

2011 11450.1  31697.7  530.4  - 43678.2  

2012 11086.9  23531.6  1065.6  - 35684.0  

2013 11728.9  13634.7  2358.3  - 27721.9  

2014 10840.4  10520.0  3024.9  - 24385.3  

2015 12457.5  6661.9  - - 19119.4  

2016 14658.8  26599.9  - - 41258.8  

2017 16437.6  21343.0  - - 37780.7  

2018 16953.9  23450.3  1520.4  - 41924.5  

 

Indicator 4.2.4: Coverage and strength of carbon pricing 

Methods 

The methodology for this indicator remains the same as described in the appendix of the 2019 global Lancet 
Countdown report. Data for this indicator, including general information and daily real-time prices, are from 
the World Bank Carbon Pricing Dashboard and the websites of carbon pilot markets in China. Price data 
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period is from Jan. 2014 to April 2020 for eight pilot markets, including Beijing, Shanghai, Guangdong, 
Tianjin, Hubei, Chongqing, Fujian, and Shenzhen. Annual weighted average prices are calculated from daily 
price data for these eight pilot markets. GHG coverage data is presented as the proportions of 2012 global 
(53,937 MtCO2e), national and jurisdiction’s anthropogenic GHG emissions are based on emission data from 
EDGAR (Emissions Database for Global Atmospheric Research) as well as the coverage calculations from 
World Bank Carbon Pricing Dashboard. Here the “proportion of jurisdiction’s GHG emissions covered” is 
calculated by dividing the covered quantity of emissions of carbon markets by the total GHG emissions in 
the corresponding administrative region. For example, when calculating the emission coverage of regional 
pilots, then the “jurisdiction’s emission” is the sum of all GHG emissions in these pilot regions. Here data is 
presented for 2019.  

Data   

1. Data on carbon prices is taken from the World Bank Carbon Pricing Dashboard;127  
2. GHG emissions data is taken from EDGAR.128 

Caveats  

The instruments experience some overlap in emission coverage with China’s national ETS (Table 41). The 
to-be-implemented China national carbon market in 2021 and the overlapping of regional pivots with it are 
also considered. Here the “proportion of jurisdiction’s GHG emissions covered” is calculated by dividing the 
covered quantity of emissions of carbon markets by the total GHG emissions in the corresponding 
administrative region. The time series plot shows the annual average prices of carbon in eight Chinese pilot 
carbon markets (Table 42). All these markets open in the year 2013 or later, and the prices are somewhat 
fluctuant. Generally, the prices are relatively low, especially compared to the prices of carbon pricing 
initiatives in other countries, which are typically above US$15 and could also be as high as more than US$100 
(Sweden carbon tax). Currently, the prices of these pilots are probably unable to support the climate target 
“well below 2°C” as literatures show that the required carbon price might be US$40-80 by 2020. 

Additional information  

 
Figure 39: Carbon prices in eight pilot markets in China 

 

Table 41: Coverage of carbon pricing in China 
Carbon pricing coverages GHG emissions Proportion of global Proportion of Proportion of 
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covered 
[MtCO2e] 

GHG emissions 
covered 

China's GHG 
emissions covered 

jurisdiction's GHG 
emissions covered 

Total, regional pilots, including 
overlapping# 

1330.03 2% 11% 53% 

Total, regional pivots, excluding 
overlapping 

864.52 1% 7% 35% 

Total, China + regional, including 
overlapping 

4561.93 8% 37% 31% 

Total, China + regional, excluding 
overlapping 

4121.14 8% 33% 28% 

# Here the “overlapping” means the overlapping of regional carbon market with China’s national 
carbon trade program which is scheduled to be implemented in 2021 
 
Table 42: Carbon prices in eight pilot markets in China, US$ /tCO2 

Name of the initiative 2013  2014  2015  2016  2017  2018  2019  2020  
Beijing pilot ETS  8.52 8.21 8.40 7.94 9.48 11.38 11.97 
Chongqing pilot ETS  5.00 3.91 1.26 0.24 3.84 0.56 4.44 
Fujian pilot ETS     5.56 3.20 1.546 1.98 
Guangdong pilot ETS  10.08 5.49 1.39 2.02 2.33 2.97 3.85 
Hubei pilot ETS  3.41 4.18 2.21 1.91 2.33 4.20 3.84 
Shanghai pilot ETS  6.42 4.73 1.38 4.90 6.23 4.56 4.96 
Shenzhen pilot ETS 4.77 12.99 5.98 5.90 5.76 6.76 0.56 1.17 
Tianjin pilot ETS  5.69 4.21 2.30 1.32 1.36 2.11 2.15 

 
 

Section 5: Public engagement 
 

Indicator 5.1: Media coverage of health and climate change 

Methods 

Although around 1.4 billion newspapers are sold per month in China, these numbers have been declining 
since 2013.129 On the other hand, social media platform Weibo has been increasing its users in recent years, 
with around 400 million active users in 2020 with 130 million words and 1.5 million videos published on 
this platform every day and 64,000 average posts per minute.130 For this indicator, three types of media 
accounts on Weibo to study coverage of climate change and health in social media, including official media 
(@People’s Daily), commercial media (@The Beijing News and @Caixin), and professional media (@Health 
News and @China Science Daily), were selected. Weibo posts from January 2010 to December 2019 were 
searched and collected using a python-based crawler. Due to the word limit of Weibo posts, posts are 
generally very short, so when searching for related posts, as long as a relevant keyword appears, it is regarded 
as a qualified post. First, posts containing climate change-related keywords. The choice of keywords in 
accordance to previous research of media coverage of health and climate change for People’s Daily in China 
in the global Lancet Countdown reports (Table 43). 
All health and climate change-related posts were manually screened to avoid false-positive results. Posts 
containing keywords but irrelevant to health and climate change are excluded from the search result. 
 
Table 43: Chinese keywords for the search in Weibo 

Climate change-related keywords Health-related keywords 
Chinese English Chinese English 

气候变化 Climate change 疟疾 Malaria 

全球变暖 Global warming 腹泻 Diarrhea/ Scour 

温室 Greenhouse 感染 Infected 

极端天气 Extreme weather 肺炎 Pneumonia 

全球环境变化 Global environment change 流行病 Epidemic 

低碳 Low carbon 公共卫生 Public health 

可再生能源 Renewable energy  卫生 Hygiene 
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碳排放 Carbon Production 发病 Disease outbreak 

二氧化碳排放 Carbon dioxide emissions  营养 Nutrition 

气候污染 Air pollution 精神障碍 Mental disorders 

气候 Climate 发育 Puberty growth 

全球升温 Global warming 传染 Infection 

再生能源 Renewable energy 疾患 Disease 

CO2 排放 CO2 emissions 症 Symptom 

温室气体 Greenhouse gas 瘟疫 Epidemic 

极端气候 Extreme weather 流感 Flu 

高温 High temperature 流行感冒 Influenza 

变暖 Warming 治疗 Treatment 

排放 Emission 保健 Health care 

环境变化 Environmental change 健康 Health 

升温 Warming 死亡 Death 

全球温升 Global warming 精神疾病 Mental disease 

热浪 Heat wave 精神病 Mental illness 

暴雨 Rainstorm 登革热 Dengue 

气温 Temperature 饥饿 Hunger/ Famine/ Starvation 

洪水 Flooding 粮食 Food 

洪灾 Inundation 有害 Harmful 

气候反常 Abnormal climate 皮肤病 Dermatosis 

野火 Wildfire 风湿 Rheumatism 

山火 Forest fire 呼吸系统疾病 Respiratory diseases 

雪灾 Snowstorm 人类健康 Human health 

低温 Low temperature 人体健康 Physical health 

年代际 Interdecadal 身体健康 Body health 

冰雪 Ice and snow 心脏病 Heart disease 

可持续发展 Sustainable development 糖尿病 Diabetes 

海洋酸化 Ocean acidification 疾病 Illnesses 

静稳 Stagnant 热死  Heat death 

  口罩 Face mask 

  防护 Protection 

 

Data 

1. Posts published by Weibo accounts @People’s Daily, @The Beijing News, @Caixin, @Health News, 
@China Science Daily were collected from January, 2010 to December, 2019; 

2. Choice of keywords in accordance to previous research of media coverage of health and climate 
change for People’s Daily in China in the global Lancet Countdown report.1 

 

Future Form of Indicator 

1. The number of social media accounts can be expanded in the future.  
2. The keywords used in this research are obtained from the study of media coverage of health and climate 
change for People’s Daily in China after manual screen, which is a traditional media. Therefore, the keywords 
should be edited to be more in line with the characteristics of social media in the future research. 
 

Additional Information 

Figure 40 and Figure 41 illustrate the number of climate change-related and health and climate change-
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related posts, respectively. The official media People’s Daily published the highest number of posts on health 
and climate change  (296) over the whole 2010-2019 period while commercial media Caixin had the highest 
number of posts on climate change (2266). Health News posted lowest on both topics. However, the Health 
News had the highest ratio of health-related issues to climate change-related posts and Caixin had the lowest. 
Therefore, although official media and commercial media cared about health problems and climate change-
related topics, they did not connect them together while professional media had more consideration on their 
connection. 
 

 
Figure 40: Coverage of climate change on five media accounts on Weibo 

 
  

 
Figure 41: Coverage of climate change and health on five media accounts on Weibo after manual screening 
 

 

Indicator 5.2: Individual engagement in health and climate change 

Methods 

This indicator analyses individual engagement in health and climate change through search queries related 
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to health and/or climate change, through the search engine, Baidu, the most widely used search engine in 
China, with more than 1.1 billion users which covers most of the population in China. 131 Baidu always takes 

more than 66% of the market share of the search engine in China over the past decades. 132 The keywords, 
developed by this team of researchers, were designed to capture search queries related to health and climate 
change. The used keywords are mainly based on the health and climate change search terms for indicator of 
media coverage of health and climate change in the global Lancet Countdown 2019 report,1 but also include 
more search terms to improve the coverage in Chinese. All the queries in Baidu™ search engine in which 
contain a minimum of one health keyword (Table 44) were identified as health queries. Similarly, queries 
with at least one climate change keyword (Table 45) were identified as climate change queries. The queries 
in which appeared keywords from both (I) health, and (II) climate change were identified as health&climate 
change co-queries.  
 
The false-positive ratio for such keyword matching method for search queries is low. At first, the length of 
the queries is short. According to our statistics, the average Chinese character length of climate change 
queries, health queries and health&climate change co-queries in our data is 15.87, 12.80 and 20.73, 
respectively. Given such short query length windows, the queries containing the corresponding keywords 
have a high probability to be related to the topic of the keyword. Furthermore, we also manually examined 
1000 matched queries for each type of keywords. The false-positive ratios for climate change queries, health 
queries and health&climate change co-queries are 2.0%, 6.1% and 5.1%, respectively.  
 
Table 44: Health-related keywords 

Health-related keywords in Chinese  Health-related keywords in English 

健康 Healthy 

疾病 Disease 

养生 Health preservation 

保健 Healthcare 

公共卫生 Public health 

疟疾 Malaria 

死亡率 Mortality 

营养 Nutrition 

营养不良 Malnutrition 

脱水 dehydration 

发病 Morbidity 

发病率 Morbidity 

发育迟缓 Stunting 

传染病 Communicable disease 

慢性病 Chronic disease 

高血压 Hypertension 

肿瘤 Tumour 

中风 Apoplexy 

心脏病 Heart disease 

肺炎 Pneumonia 

癌症 Cancer 

肺癌 Lung cancer 

肝癌 Liver cancer 

糖尿病 diabetes 

肥胖 Obesity 

身体超重 Overweight 
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非传染性疾病 Non-communicable diseases 

流行病 Epidemic 

流行病学 Epidemiology 

腹泻 Diarrhoea 

SARS SARS 

非典型肺炎 Atypical pneumonia 

严重急性呼吸综合征 Severe acute respiratory syndrome (SARS) 

重症急性呼吸综合症 Severe acute respiratory syndrome (SARS) 

麻疹 Measles 

早产 Premature 

流产 Abortion 

抑郁障碍 Depressive disorder 

抑郁症 Depression 

心理障碍 Psychological disorders 

心理问题 Psychological problems 

心理疾病 Mental illness 

精神障碍 Mental disorders 

精神病 Mental disease 

精神疾病 Mental illness 

精神健康 Mental health 

 

Table 45: Climate change-related keywords 
Climate change-related keywords in Chinese Climate change-related keywords in English 

气候变化 Climate change 

气候变暖 Climate warming 

全球变暖 Global warming 

全球暖化 Global warming 

全球温度升高 Global temperature rise 

全球气温升高 Global temperature rise 

地球温度升高 The rise of the earth's temperature 

海平面上升 Sea level rise 

冰川融化 Glacial melting 

温室效应 Greenhouse effect 

温室气体排放 Greenhouse gas emissions 

碳排放 Carbon emission 

二氧化碳排放 CO2 emission 

碳减排 Carbon emission reduction 

二氧化碳减排 Carbon dioxide reduction 

温室气体减排 Greenhouse gas emission reduction 

极端天气 Extreme weather 

全球环境变化 Global environmental change 

气候变异 Climate variability 
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The climate change query proportion was calculated by using the number of identified climate change 
queries to divide the total number of queries in the same fixed time interval. The formula of query 
proportion can be formulated as: 

𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒚 𝒑𝒓𝒐𝒑𝒐𝒓𝒕𝒊𝒐𝒏 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

𝑯𝒆𝒂𝒍𝒕𝒉 & 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔   

𝑪𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

=
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒉𝒆𝒂𝒍𝒕𝒉&𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

𝑯𝒆𝒂𝒍𝒕𝒉 & 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔 

𝑯𝒆𝒂𝒍𝒕𝒉 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

=
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒉𝒆𝒂𝒍𝒕𝒉&𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒉𝒆𝒂𝒍𝒕𝒉 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

In order to visualise the geographical distribution of query proportion in China, the indicator was also 
calculated in provincial level. In order to calculate such query proportion distribution, all the queries were 
searched within the recent year (from 1st Jan. 2019 to 31th Dec. 2019). For each province in China, the climate 
change query proportion and health query proportion were calculated with the number of identified health or 
climate change queries in this province as numerator, and with the number of total queries in this province 
as denominator.  

None of the queries of this study can be associated with a particular individual. Each query record only 
contained the query, the submission time and the submission city, without of information about the identity 
of any user. Furthermore, any of original search logs are being processed and used with respect to Baidu’s 
privacy policy (https://www.baidu.com/duty/yinsiquan.html). In this study, we used the search queries all 
over China from Jan 2017 to Dec. 2019. 

Data 

1. The search query data were based on search query logs from search engine provided by Baidu Inc. All 
the analytics of this indicator are conducted on Baidu’ servers by researchers from Baidu.  

Caveats 

First of all, though Baidu is the largest search engine in China, it does not cover all population groups in 
China. Particularly, some groups of the population, such as the elderly, children, the poor and less educated 
people, have few chances to use the search engine. Therefore, this indicator only reflected the public attention 
that is biased towards attention from typical internet users. Extending the analyses to other groups based on 
other complementary methods, such as survey-based method, will help to reduce this bias, and uncover the 
engagement heterogeneity in different population groups. 

Second, this indicator uses search behavior in the search engine as a proxy for engagement phenomenon. 
There are other activities to engage in climate change, like reading books or attending social events. Some 
survey-based methods might provide some calibration for this indicator in the future.  

Though the above caveats can be overcome by survey-based methods, it is not easy to calculate the indicator 
with as large-scale samples as the indicator based on the queries from the search engine. The high cost of the 
survey-based method is the main obstacle to implementing the survey-based indicator, especially considering 
that the respondents of the survey disperse in diverse regions over China. 

In this study, since the queries were identified by keywords, the coverage and the types of keywords have an 
influence on the final results. Though the keywords have been enumerated with the best effort, it is possible 
to miss some keywords to identify the related queries. 



90 

 

Future Form of Indicator  

In this future, this indicator will pay more attention to recall more queries related to health and climate change 
topic. In this study, the analysis here is based on a narrow range of keywords. Many queries which are direct 
or indirectly related with health and climate change may be excluded. Future work in this area will consider 
to cover more engagement reflected in the queries.  In order to recall more queries about climate change 
and health, future efforts of this indicator will be made to improve the coverage of identified queries by a 
knowledge graph. In future, a knowledge graph about climate change will be constructed based on the 
scientific journal and reports. The existing medical knowledge graph can also be utilized. Then the climate 
change and/or health queries can be identified if the queries contain any entity in the climate change 
knowledge graph and/or medical knowledge graph. Based on knowledge graph, we can also provide 
additional forms of analysis. 

Additional Information  

 
 

 
Figure 42: Proportion of health and climate change co-queries out of total climate change queries in 
tier-1, tier-2 and other cities  
 
While the proportion of queries related to climate change continued to increase in the past three years, the 
queries for health and climate change are seldom co-searched by users (Table 46).  
Further analysis also showed that the proportion of health&climate change co-query over climate change 
queries in developed cities is higher than in other cities in China. Here the cities are divided into three levels 
according to the Chinese city tier system which is a hierarchical classification of Chinese cities. The 
consensus in China is that four cities belong to tier-1, which are Beijing, Shanghai, Guangzhou, and Shenzhen. 
The tier-2 cities in this study consist of the capital city of each province plus other four vice provincial cities 
(Dalian, Qingdao, Ningbo and Xiamen). Figure 43 shows the proportion of health&climate change co-queries 
over climate change queries of tier-1 cities was 19.74% higher than the one of overall cities, and one of tier-
2 cities was 8.33% higher than the one of overall  cities. Tier-1 and Tier-2 cities represent the most 
developed areas of  China. To sum up, the proportion of the health&climate change co-queries over climate 
change queries in developed cities (tie-1 and tie-2 cities) is 11.53% more than the overall cities. This indicates 
that, with the economic development of cities, more people will engage in the impact of climate change on 
health. 
 
Table 46 Queries (per hundred thousand) related to health and climate change in 2017-2019 

Year 2017 2018 2019 



91 

 

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒊𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

0.793 1.018 0.921 

𝑯𝒆𝒂𝒍𝒕𝒉 & 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔   

𝑪𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

204.8 146.3 203.4 

𝑯𝒆𝒂𝒍𝒕𝒉 & 𝒄𝒍𝒊𝒎𝒂𝒕𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 𝒄𝒐 − 𝒒𝒖𝒆𝒓𝒊𝒆𝒔 

𝑯𝒆𝒂𝒍𝒕𝒉 𝒒𝒖𝒆𝒓𝒊𝒆𝒔
 

0.396 0.359 0.467 

 
 

 
Figure 43: Share of health&climate change co-queries out of total climate change queries in tie-1, tie-
2 and other cities 
 
Figure 44 illustrates that the arid areas in Northern and Western China, and hot areas in summer, such as 
Chongqing, have a more substantial proportion of climate change queries, indicating more people engaging 
in the climate change concern than other areas in China. Meanwhile, there are also more people in Tibet 
engaging in the climate change since the climate change affects the world's third pole at a greater margin than 
nearly any other areas in China. 
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Figure 44: The distribution of the proportion of the queries related to climate change in different provinces 
in China in 2019.  
 
We also observe that the COVID-19 pandemic has triggered more individual engagement in climate change, 
especially at the beginning of the COVID-19 pandemic in China. More analytics about COVID-19 and 
climate change will be provided in the follow-up report next year.  

Indicator 5.3: Coverage of health and climate change in scientific journals 

Indicator 5.3.1 Coverage of health and climate change in CNKI 

Methods 

Keywords for the topics of (a) Climate Change, and (b) Health were selected in accordance with the new 
climate change keywords used in the MJA-Lancet Countdown 2019 report 133 were identified as shown in 
Table 47. Firstly, number of search result of journal articleswith the climate change-related keywords (Table 
47) were counted from 2008 to 2019 on CNKI, a national research database, led by Tsinghua University. 
Secondly, the number of search results of climate change-related and health-related keywords were counted 
from 2008 to 2019 on CNKI. Thirdly, manually screening was used to filter articles. If the manual screening 
confirmed that the topic is Health and Climate Change, it is retained.  
 
Table 47: Chinese keywords for the search in scientific journals 

Climate change-related keywords Health-related keywords 
Chinese English Chinese English 
气候变化 Climate change 健康 Health 

全球变暖 Global warming 疾病 Disease 

温室效应 Greenhouse effect 非传染性疾病 

传染病 

Non-Communicable, 
NCD, Communicable 

温室气体排放 

温室气体减排 
二氧化碳（碳）减排 

Greenhouse gas emission, 
Carbon emissions 

流行病学 Epidemiology 

干旱 Drought 生活方式 Lifestyle 

野火 Bushfire 死亡 Mortality 

热带气旋 Tropical cyclone 营养 Nutrition 

热浪 Heatwave 营养不良 Malnutrition 

  脱水 Dehydration 

  发病 Morbidity 

  移民 Migration 

  精神疾病 Mental disorders 

  协同效益（应） Co-Benefits 

Data 

1. Scientific journal articles on health and climate change were searched in the national database, CNKI 
(https://www.cnki.net/). 

Caveats 

The list of keywords is very limited and it may not contain all climate change- and health-relevant keywords.  

Future Form of Indicator 

The source of Chinese papers and list of keywords can be further expanded in the future. Coverage in English 
scientific journals would be explored in next year’s research. 
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Additional Information  

 

 
Figure 45: Annual coverage of climate change- and health and climate change- related journals in 
Chinese and English between 2008 and 2019. (A) Climate change only. (B) Health and climate change.  
 
Chinese scholars have been studying the impact of climate change on human infectious diseases in recent 
years.134,135 
 
 

Indicator 5.3.2 Coverage of health and climate change in Ovid Embase and Ovid Medline databases 

Methods  

The inclusion of climate-related terms and their co-occurrence with health terms in scientific publications 
was tracked using a bibliometric search in both Ovid Medline (including Medline In-Process & Other Non-
Indexed Citations for those citations not indexed) and Ovid Embase databases as described in the global 
Lancet Countdown report. Following a search unrestricted by geographical location, results for China were 
specifically filtered through Endnote. 

The Ovid Embase and Ovid Medline databases were selected due to their coverage of health, medical and 
biomedical sciences, with content that is predominantly journal articles. Ovid Medline contains 25 million 
citations from 5600 journals, while Ovid Embase is bigger with 32 million citations from 8,500 journals. 
Where Medline is predominantly health and biomedicine, Embase has a greater pharmaceutical focus, all of 
which are relevant to health and climate change. Both databases are updated online daily and can thus provide 
the annual data (with a 31 December cut-off each year) needed for the indicator. These databases also function 
through the sophisticated Ovid interface and allow access to the comprehensive indexing systems and 
thesaurus of Medical Subject Headings (MeSH) for Medline and Emtree for Embase. 

Also considered for use were Science Direct and the Web of Science suite of databases, but, with broad 
subject coverage, these would not enable the necessary search precision. 

By screening the retrieved articles between 2007 and 2019, those articles that contained both health and 
climate change terms in their title or abstract, but do not make any meaningful link between them, were 
excluded. A meaningful link here means some association between climate change and an aspect of health. 
This link may be the focus of the article or tangential to it. As an example, climate change may be mentioned 
at the end of an abstract, where it is noted the health topic that is the focus of the article (e.g. dengue fever 
distribution) is expected to worsen or change under climate change scenarios. 

Data were extracted using search filters that function via Boolean operators (AND, OR, NOT) (see below for 
final search strategies). For purposes of consistency and efficiency of analysis, the majority of each search 
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filter is designed to produce results with the search terms in either the title or abstract. Indeed, indexing is 
also likely to be poorly assigned or inconsistently assigned to references. The search filter is designed to 
retrieve all relevant results (high sensitivity) while keeping irrelevant results, and therefore effort on the part 
of the researchers, to a minimum (high precision).  

To identify articles where associations are made between climate change and health, the filter was split into 
two facets, one for climate change and one for health. Terms that made up the filter were derived using both 
subjective and objective methods. Subjective methods included utilising terms already known by the research 
team, as well as those appearing in previous iterations of the Lancet Countdown. Objective methods included 
the use of online word frequency software (Writewords). Articles looking at health and climate change were 
run through this software, which organises the words or phrases in order of frequency, allowing relevant 
terms to be extracted. 

Though this process was iterative, the climate change facet was undertaken first, as this was considered to 
likely consist of fewer terms and be comparatively less complex. All terms were tested independently and 
alongside other terms: that is, each was input into the OVID databases, from which samples of 100 were 
drawn and screened for relevance. Terms with high relevance were either piloted or adapted, to be tested 
alongside other terms and to restrict inclusion to records referring to human health. With different indexing 
systems, these were then translated between the databases. In addition, terms to ascertain results for editorials, 
comment sections, and letters were used to compare the volume of these against journal articles.  

Estimates of sensitivity for the strategies were established by running the climate change facet through the 
Ovid interface alone, without the health facet. Samples of 1000 were then extracted and screened for relevant 
articles. The number of relevant articles found that were also found by the whole search strategy were divided 
by the number of total relevant articles found, giving an estimate of sensitivity in percentage form. For this 
indicator, the 90% sensitivity threshold required for systematic reviews was used (Beynon, 2013).  

With an acceptable estimate of sensitivity (>90%), results of the search strategies were downloaded into 
Endnote and into two separate libraries: one for Medline (and Medline In-Process & Other Non-Indexed 
Citations), the other for Embase. Duplicates were removed from the individual libraries, before the libraries 
were merged and duplicates, shared across the library, were removed. The remaining records were screened 
for inclusion based on the inclusion and exclusion criteria outlined above for articles making a meaningful 
link between health and climate change. Results were screened twice by the same researcher. In addition, 
another researcher screened a 10% sample to ensure the criteria were met. The step-wise process of the 
selection of articles can be seen in Figure 47. 

 

 

Figure 46: PRISMA flow diagram showing steps of selection process. 
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Numbers indicate the article count retained at each step of the process. With the applied search terms more 
than 18,000 scientific articles on health and climate change were identified for the period of 2007-2019. After 
the screening process, only 30.8% (n=5579) were retained and found to be relevant. 

Following screening, precision was established by calculating the number of relevant records retrieved, 
divided by the total number of records retrieved. The development of the search strategy was repeated, and 
all of the necessary stages leading up to this point, until precision was established at over 50% for each 
database. 

With an acceptable level of precision established for each database, the data were coded and organised in 
Endnote. Results for China were filtered based on the institutional location of the first author.  

 

Search terms 

Medline Medline (In-Process & Other Non-
Indexed Citations) 

Embase 

1 carbon 
footprint*.ti,ab.  

1 (climat* adj3 chang*).ti,ab.  1 (climat* adj3 
chang*).ti,ab.  

2 carbon footprint/  2 climate variability.ti,ab.  2 Climate Change/  

3 (climat* adj3 
chang*).ti,ab..  

3 (climat* adj3 warming).ti,ab.  3 Greenhouse Effect/  

4 climat* 
cris?s.ti,ab.  

4 global warming.ti,ab.  4 greenhouse gas*.ti,ab.  

5 climat* 
variability.ti,ab.  

5 greenhouse effect*.ti,ab.  5 global warming.ti,ab.  

6 climat* 
warming.ti,ab.  

6 green house effect*.ti,ab.  6 Carbon Footprint/  

7 exp Climate 
Change/  

7 greenhouse gas*.ti,ab.  7 Greenhouse Gas/  

8 GHG*.ti,ab.  8 (greenhouse adj2 
emission*).ti,ab.  

8 (greenhouse adj2 
emission*).ti,ab.  

9 global 
warming.ti,ab.  

9 climat* model*.ti,ab.  9 (climat* adj3 
warming).ti,ab.  

10 greenhouse 
effect*.ti,ab.  

10 climat* scenario*.ti,ab.  10 GHG*.ti,ab.  

11 greenhouse effect/  11 green house emission*.ti,ab.  11 climat* model*.ti,ab.  

12 greenhouse 
emission*.ti,ab.  

12 GHG*.ti,ab.  12 climat* variability.ti,ab.  

13 greenhouse 
gas*.ti,ab.  

13 carbon footprint*.ti,ab.  13 carbon footprint*.ti,ab.  

14 Greenhouse 
Gases/  

14 climate induced.ti,ab.  14 climat* scenario*.ti,ab.  

15 climate 
induced.ti,ab.  

15 climat* cris?s.ti,ab.  15 greenhouse effect*.ti,ab.  

16 climat* 
scenario*.ti,ab.  

16 health.ti.  16 climate induced.ti,ab.  

17 climat* 
model*.ti,ab.  

17 disease*.ti.  17 climat* cris?s.ti,ab.  

18 exp Health/  18 infectious.ti.  18 Ep.fs.  

19 Global Health/  19 mortality.ti.  19 exp Malignant 
neoplasm/  

20 health status/  20 healthy.ti.  20 exp skin disease/  
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21 health status 
disparities/  

21 mental.ti.  21 exp lung disease/  

22 exp disease/  22 malaria.ti.  22 diabetes mellitus/  

23 exp virus diseases/  23 dengue.ti.  23 Disease association/  

24 exp viruses/ and 
human*.ab.  

24 respiratory.ti.  24 Western blotting/  

25 exp 
Communicable 
Diseases/  

25 infection*.ti.  25 etiology/  

26 Infection/  26 wellbeing.ti.  26 immunology/  

27 aedes/  27 well being.ti.  27 Infection/  

28 water/ps  28 outbreak*.ti.  28 Death/  

29 allergens/  29 zika.ti.  29 Cardiovascular disease/  

30 exp Disease 
Outbreaks/  

30 undernutrition.ti.  30 Fever/  

31 exp Mortality/  31 influenza.ti.  31 health/  

32 mo.fs.  32 hospitali?ation*.ti.  32 Mental disease/  

33 exp Malaria/  33 epidemic.ti.  33 Epidemiology/  

34 exp disease 
transmission, 
infectious/  

34 ecohealth.ti.  34 Cerebrovascular 
accident/  

35 exp Neoplasms/  35 ebola.ti.  35 hospital admission/  

36 exp Heat Stress 
Disorders/  

36 death.ti.  36 anemia/  

37 exp Fever/  37 kills.ti.  37 Chronic disease/  

38 exp Metabolic 
Diseases/  

38 cholera.ti.  38 public health/  

39 exp Death/  39 foodborne.ti.  39 cancer risk/  

40 exp Skin/re  40 epidemics.ti.  40 Virus infection/  

41 exp Environmental 
Illness/  

41 endemic.ti.  41 kidney failure/  

42 Community-
Acquired 
Infections/  

42 pandemic.ti.  42 Mental health/  

43 exp Mental 
Disorders/  

43 syndrome.ti.  43 Neurologic disease/  

44 Environmental 
Exposure/ae  

44 asthma.ti.  44 Health status/  

45 nutrition disorders/  45 illness*.ti.  45 exp Birth weight/  

46 child nutrition 
disorders/  

46 morbidity.ti.  46 Human 
immunodeficiency 
virus/  

47 exp 
Rickettsiaceae/  

47 cancer.ti.  47 exp zoonosis/  

48 exp infant nutrition 
disorders/  

48 malnutrition.ti.  48 prophylaxis/  

49 exp malnutrition/  49 mental health.ti.  49 Disease transmission/  

50 exp wasting 
syndrome/  

50 mental disorder*.ti.  50 Gastrointestinal disease/  
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51 exp encephalitis/  51 (global adj2 nutrition*).ti.  51 Infection risk/  

52 salmonella 
infections/  

52 (population adj2 nutrition*).ti.  52 Mental stress/  

53 Helminthiasis/  53 (security adj2 nutrition*).ti.  53 antivirus agent/  

54 food 
contamination/  

54 (insecurity adj2 nutrition*).ti.  54 exp allergen/  

55 zoonoses/  55 (global adj2 food adj2 (supply 
or production)).ti.  

55 Childhood disease/  

56 Noncommunicable 
Diseases/  

56 (security adj2 food).ti.  56 immunogenicity/  

57 health.ti.  57 (insecurity adj2 food).ti.  57 malnutrition/  
58 disease*.ti.  58 lyme disease.ti.  58 Pregnancy outcome/  

59 infectious.ti.  59 Chikungunya.ti.  59 exp *malaria/  

60 mortality.ti.  60 Hantavirus.ti.  60 Health hazard/  

61 healthy.ti.  61 West Nile disease.ti.  61 Life expectancy/  

62 mental.ti.  62 west nile fever.ti.  62 Child development/  

63 mental.ti.  63 global disease*.ab.  63 dermatology/  

64 malaria.ti.  64 global health.ab.  64 hygiene/  

65 malaria.ti.  65 well being.ab.  65 virus detection/  

66 dengue.ti.  66 wellbeing.ab.  66 genotoxicity/  

67 respiratory.ti.  67 human health.ab.  67 Allergic rhinitis/  

68 infection*.ti.  68 vector borne disease*.ab.  68 women's health/  

69 wellbeing.ti.  69 health implication*.ab.  69 exp leishmania/  

70 well being.ti.  70 public health.ab.  70 encephalitis/  

71 outbreak*.ti.  71 health consequence*.ab.  71 Child health/  

72 zika.ti.  72 mental health.ab.  72 Communicable disease/  

73 undernutrition.ti.  73 reproductive health.ab.  73 virus vector/  

74 influenza.ti.  74 health adaptation.ab.  74 infant mortality/  

75 hospitali?ation.ti.  75 (mortality adj2 morbidity).ab.  75 Health disparity/  

76 epidemic.ti.  76 infectious disease*.ab.  76 Psychological well 
being/  

77 ecohealth.ti.  77 health outcomes.ab.  77 Reproductive health/  

78 ebola.ti.  78 health vulnerability.ab.  78 Tropical medicine/  

79 death.ti.  79 (health adj2 impact*).ab.  79 Vulnerable population/  

80 kills.ti.  80 (health adj2 threat*).ab.  80 Allergic disease/  

81 cholera.ti.  81 (burden adj2 disease*).ab.  81 Maternal welfare/  

82 foodborne.ti.  82 (population adj2 health).ab.  82 Toxoplasma gondii/  

83 epidemics.ti.  83 (health adj2 effect*).ab.  83 Disease burden/  

84 endemic.ti.  84 (health adj2 risk*).ab.  84 Childhood mortality/  

85 pandemic.ti.  85 (health adj2 benefit*).ab.  85 Dengue virus/  

86 syndrome.ti.  86 (health adj2 co-benefit*).ab.  86 Infectious agent/  

87 asthma.ti.  87 mental disorder*.ab.  87 respiratory tract allergy/  

88 illness*.ti.  88 Noncommunicable 
Disease*.ab.  

88 enterovirus/  

89 morbidity.ti.  89 malaria.ab.  89 anopheles/  
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90 cancer.ti.  90 syndrome.ab.  90 pollen allergy/  

91 malnutrition.ti.  91 (tree or trees or soil).ti.  91 campylobacter/  

92 mental health*.ti.  92 (people or human* or public 
health or men or women or 
children or patients or 
students).af.  

92 exp Heat injury/  

93 (global adj2 
nutrition*).ti.  

93 (editorial or letter or 
comment).pt.  

93 Global health/  

94 (population adj2 
nutrition*).ti.  

94 or/1-15  94 Non communicable 
disease/  

95 (security adj2 
nutrition*).ti.  

95 or/16-90  95 norovirus/  

96 (insecurity adj2 
nutrition*).ti.  

96 94 and 95  96 Ebola hemorrhagic/  

97 (global adj2 food 
adj2 (supply or 
production)).ti.  

97 96 not 91  97 Health impact 
assessment/  

98 (security adj2 
food).ti.  

98 97 and 92  98 Yellow fever/  

99 (insecurity adj2 
food).ti.  

99 limit 98 to yr="2007 -2019"  99 leptospira/  

100 Chikungunya.ti.  100 limit 99 to abstracts  100 chikungunya/  

101 Hantavirus.ti.  101 100 not 93  101 Arbovirus/  

102 West Nile virus.ti.  
  

102 tick-borne disease/  
103 west nile fever.ti.  

  
103 Food insecurity/  

104 global disease*.ab.  
  

104 Premature mortality/  

105 global health.ab.  
  

105 Trihalomethanes/  

106 well being.ab.  
  

106 population health/  

107 wellbeing.ab.  
  

107 Japanese encephalitis/  
108 human health.ab.  

  
108 Crimean-Congo 

hemorrhagic fever/  

109 vector borne 
disease*.ab.  

  
109 urban health/  

110 health 
implication*.ab.  

  
110 disease*.ti.  

111 public health.ab.  
  

111 cancer.ti.  

112 health 
consequence*.ab.  

  
112 health.ti.  

113 mental health.ab.  
  

113 infection*.ti.  

114 reproductive 
health.ab.  

  
114 mortality.ti.  

115 health 
adaptation.ab.  

  
115 respiratory.ti.  

116 (mortality adj2 
morbidity).ab.  

  
116 death.ti.  

117 infectious 
disease*.ab.  

  
117 healthy.ti.  
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118 syndrome.ab.  
  

118 mental.ti.  

119 health 
outcomes.ab.  

  
119 asthma.ti.  

120 health 
vulnerability.ab.  

  
120 influenza.ti.  

121 (health adj2 
impact*).ab.  

  
121 illness*.ti.  

122 (health adj2 
threat*).ab.  

  
122 malaria.ti.  

123 (burden adj2 
disease*).ab.  

  
123 infectious.ti.  

124 (population adj2 
health).ab.  

  
124 outbreak*.ti.  

125 (health adj2 
effect*).ab.  

  
125 hospitali?ation*.ti.  

126 (health adj2 
risk*).ab.  

  
126 epidemic.ti.  

127 (health adj2 
benefit).ab.  

  
127 dengue.ti.  

128 (health adj2 co-
benefit*).ab.  

  
128 endemic.ti.  

129 mental 
disorder*.ab.  

  
129 well being.ti.  

130 Noncommunicable 
Disease*.ab.  

  
130 pandemic.ti.  

131 malaria.ab.  
  

131 cholera.ti.  

132 mycotoxins/ not 
food 
contamination/  

  
132 ebola.ti.  

133 respiratory tract 
diseases/  

  
133 zika.ti.  

134 Aspergillus/  
  

134 west nile virus.ti.  

135 Candida/  
  

135 epidemics.ti.  

136 exp candida/  
  

136 wellbeing.ti.  

137 exp aspergillus/  
  

137 Hantavirus.ti.  

138 Disease 
Susceptibility/  

  
138 (insecurity adj2 food).ti.  

139 encephalitis/  
  

139 kills.ti.  

140 HIV infections/  
  

140 (global adj2 food adj2 
(supply or 
production)).ti.  

141 bacterial infection/  
  

141 flavivirus.ti.  

142 or/1-17  
  

142 (global adj2 
nutrition*).ti.  

143 or/18-131  
  

143 (security adj2 
nutrition*).ti.  

144 or/18-141  
  

144 ecohealth.ti.  
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145 (tree or trees).ti.  
  

145 (security adj2 food).ti.  

146 soil.ti.  
  

146 (mortality adj2 
morbidity).ab.  

147 exp animals/ not 
humans.sh.  

  
147 public health.ab.  

148 142 and 143  
  

148 mental health.ab.  

149 142 and 144  
  

149 infectious disease*.ab.  

150 148 not 145  
  

150 well being.ab.  

151 150 not 146  
  

151 malaria.ab.  

152 151 not 147  
  

152 health outcomes.ab.  
153 149 not 145  

  
153 (health adj2 effect*).ab.  

154 153 not 146  
  

154 human health.ab.  

155 154 not 147  
  

155 mental disorder*.ab.  

156 155 NOT 152 
  

156 (burden adj2 
disease*).ab.  

157 limit 152 to 
yr="2007 -
Current"  

  
157 (health adj2 

impact*).ab.  

158 limit 155 to 
yr="2007 -
Current"  

  
158 wellbeing.ab.  

159 (editorial or letter 
or comment).pt.  

  
159 global health.ab.  

160 157 not 159  
  

160 gastroenteritis.ab.  

161 158 not 159  
  

161 (population adj2 
health).ab.      

162 reproductive health.ab.  
    

163 (health adj2 threat*).ab.  
    

164 health consequence*.ab.  
    

165 health implication*.ab.      
166 flavivirus.ab.  

    
167 aeroallergens.ab.  

    
168 vector borne 

disease*.ab.  
    

169 (health adj2 co-
benefit*).ab.  

    
170 health adaptation.ab.  

    
171 or/1-17 

    
172 or/18-170 

    
173 (tree or trees).ti.  

    
174 soil.ti.      
175 (exp animal/ or 

nonhuman/) not exp 
human/      

176 or/172-174 
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177 171 and 172 

    
178 177 not 176 

    
179 limit 178 to yr="2007 -

2019"      
180 limit 179 to abstracts 

Data 

1. Articles in scientific journals were searched in the Ovid Embase and Ovid Medline databases. The 
bibliometric search worked with specific inclusion and exclusion criteria that were applied to capture 
only the most relevant literature. This includes peer-reviewed scientific articles on health and climate 
change in English, with no direct restriction to country or population applied. All peer-reviewed articles, 
originating from Chinese institutions, and reporting the findings of original qualitative and quantitative 
studies will be included, together with reviews, editorials, viewpoints, letters or comments.  

Caveats 

The methodology provided here enables a quantitative appraisal of the research question. The quality of the 
data and the specifics of its content are not assessed by the indicator team. However, with the outputs all 
published in peer-reviewed journals, there is a de facto check on quality. For this reason, the indicator does 
not cover grey literature. 

Future Form of Indicator 

There is scope to formulate add-ons to the indicator, for example focusing on trends in scientific coverage 
of particular climate-sensitive health outcomes. 

 
 

Additional information to Figure 3 in the maintext 

Figure 3 in the maintext displayed the key rising health risks from climate change in each province in China 
when only considering indicators shown in the maintext. As the findings of more indicators are displayed in 
the appendix, the following Figure 47 gives a more comprehensive picture on the key risking health risks 
from climate change in each province.  
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Figure 47. The key rising health risks from climate change in each province in China. 
Each province is colored by the number of indicators with growth rate larger than 10% between 2000 and 
2019. Each color in the pie chart represents one aspect of health risk, such as heat vulnerability, wildfire 
exposure and etc. Slice area is proportional to the changing rates of different health risks. The provinces are 
grouped by geographic regions. This figure indicates that no province is immune to the health impact of 
climate change, but different provinces have their unique health threats. In Shandong province, the top three 
rapidly increasing health risks are respectively occurrences of severe and super typhoon, heatwave-related 
mortality and wildfire exposure. Although Henan is next to Shandong, the top three rapidly increasing health 
risks in Henan are different.  
 

Additional information to Figure 12 in the maintext 

Figure 12 in the maintext only displays the the trend of selected indicators. For some indicators, we have 
displayed the results of several sub-indicators in figure 12. For example, indicator 3.1 contains reduction of 
carbon intensity, coal phase-out and low-carbon electricity, which have all been shown in figure 12. Table 
48 explains the detailed description of each indicator behind the figure 12 in the maintext. 

Table 48: Description of of each indicator presented in indicator trend overview of 2020 China 
Lancet Countdown assessment report 

  Name of indicator Description of of each indicator 

Im
pact 

1 Heatwave days in 65+ 
Change in heatwave exposure days per person aged 65+ in China, compared to 1985-
2005 

2 Heatwave-related mortality The number of heatwave-related mortality in China 

3 Labour productivity loss The average heat-related work hours loss per worker in China 

4 Severe+ typhoon occurrence The occurences of cyclones larger than typhoon (i.e. severe typhoon and super typhoon) 

5 
Climate suitability for 
dengue 

The vectorial capacity of Aedes 

6 
Costs of heatwave-related 
mortality 

Annual national monetized value of heatwave-related mortality US$Billion 

R
esponse 

1 Reduction of carbon intensity 
Reduction of carbon intensity of the energy system, compared with year 2011 (sectoral 
approach) 

2 Coal phase-out Share of Coal in TPES 

3 Low-carbon electricity share of low-carbon electricity generation in total electricity generation 
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4 Clean household energy use Share of electricity in total household energy consumption 

5 
Reduction of urban air 
pollution 

Reduction of annual average PM2.5 concentrations of China's cities compared with 
year 2014  

6 
Reduction of fossil fuel 
subsidies 

Reduction of fossil fuel subsidies US$ billion, compared with year 2010 
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